
Prefetching

6.911 Architectures Anonymous



Why Prefetch?

• All about hiding data access latency
– issue requests for data before they are needed

• transparent, heuristic look-ahead

• explicit user-controlled prefetching

• gray area in-between

– not without penalties
• subtleties in shared memory/multiprocessor

environments

• cache pollution

• higher memory bandwidth => more congestion in
multiprocessor networks



Implementation Options

• Hardware prefetching
– fast, transparent

– silicon-inefficient

– validation difficulties

• Software prefetching
– slower (but not as slow as a cache miss!)

– requires some hardware support

– mistakes are easier to correct



Hardware Implementations

• Some options:
– Block-based cache replacement

– Stride-based and markov predictors

– Instruction trace-based speculative prefetching

• Penalties:
– validation issues

– silicon inefficiency

– application-dependent performance issues



What’s Wrong with this Picture?



Software Implementations

• Require some hardware support
– explicit prefetch instructions

– slightly modified cache structures

– hooks for coherency, performance monitoring
issues

• Can be explicit in user program, or inferred
by compiler (or even by JIT/run-time
evaluator!)



Multiprocessor Issues

• Coherency
– prefetching blocks can lead to cache coherency

protocol issues

• Bandwidth considerations



Papers
• Tolerating Latency Though Software

Controlled Prefetching…
– non-binding software controlled prefetching on

the DASH architecture

• Two Adaptive Hybrid Cache Coherency...
– Invalidate/update/adaptive hybrid in multiproc.

• Decoupled Access/Execute Computer
Architectures
– explicit software “prefetching” to an extreme

– divide program into control and access threads


