
T
a
g
g
e
d
/
C
a
p
a
b
ilit
y
A
r
c
h
it
e
c
t
u
r
e
s

S
h
a
m
ik
D
a
s

2
8

M

a
r
c
h

2
0
0
0

Overview

• What is a capability?

What is a capability architecture?

• Examples of capabilities in use:

{ EROS

{ Symbolics 3600

{ guarded pointers

• Other capability architectures

• Questions

What is a Capability?

• capability { token, ticket or key that gives possessor permis-

sions on an entity or object

• Implementation:

{ unique object identi�er plus access rights for the object

• Properties of capabilities:

{ protected (unforgeable, unmodi�able)

{ context-independent

{ persistent after process exit

{ provide uniform access to shared resources

Access Models

• System Object Access Matrix

File 1 File 2 File 3 Process X Port Y . . .

TK read read read delete send

write write write suspend receive

revive

Jeremy read read send

write write

bunnie send

receive

JP read read send

...

Access Models (cont.)

• Access Control Lists vs. Capabilities

Access Control Lists

{ system must maintain list for each object

{ lists must be kept secure

{ system must be able to verify users' identities

{ access rights are not transferable

{ access rights are easily revokable

Capabilities

{ system only needs to verify capability

{ capabilities must be unforgeable

{ access rights are easily transferred

{ access rights are not easily revoked

Access Models (cont.) { Take-Grant

• Formal Framework: Take-Grant model

{ read, write capabilities on data

{ take, grant capabilities on capabilities

• Access Graph:

p1 p2o

r,w,g r,t

Take-Grant (cont.)

• Implied Permissions:

{ de jure access

{ de facto access

p1 p2o

r,w,g r,t

(r,w,t)

r,w,t,g

(r,w,t,g)
(r,w)

(r,w,t,g)

(r,w,g)

(r,w,t)

r,w,t,g

• Assumptions:

{ presumed collusion

Issues with Take-Grant

• Security Veri�cation

{ run-time veri�cation requires reference monitor

• Selective Access Revocation

p1

p2

o

r,t

r,t

??

??
p2

p1 o1

o2

r,t

r,t

o

• Possible Remedies

{ capability versioning

{ indirection (Diminished-take model)

Diminished-Take model

• Indirection

{ ra, wa, ta, ga direct rights

{ ri, wi, ti, gi indirect rights
p2

p1 o1

o2

o

ri,ti

ri,ti

ra,ta

ra,ta

• Diminish Operation

{ dta, dti, dga, dgi diminished rights

{ diminish(r) = r ∩ {ri, ra,dti,dta}

{ reduces need for reference monitor

The Extremely Reliable Operating System (EROS)

• Capability-Based OS

{ runs on commodity processors

{ diminished-take capability model

{ universal persistence through checkpointing

E
R
O
S
B
e
n
c
h
m
a
rk
s

Symbolics 3600 Lisp Machine

• Lisp-based instruction set

{ most Lisp operations run in one cycle

• tagged data and run-time type checking

• generic instructions

{ one instruction covers all applicable data types

• hardware-assisted garbage collection

Garbage Collection

• Hardware support

{ type �elds

{ page tags

{ multiword read instructions

• rapid identi�cation of pointers

• rapid page scan

Guarded Pointers

• issue: sharing across threads vs. sharing across processes

• pointer architecture
1 4 bits 6 bits 54 bits

Pointer
 Tag

Permission
 Bits

Segment
Length (L) Address

L bits54 - L bits

Segment Offset

• requires ISA modi�cations/extensions

• example: M-machine memory system

{ allows for zero-cost context switching

O
t
h
e
r
C
a
p
a
b
ility
-B
a
s
e
d
S
y
s
t
e
m
s

B
u
rro
u
g
h
s
B
5
0
0
0

s
e
g
m
e
n
t
e
d
m
e
m
o
ry
,
s
e
g
m
e
n
t
d
e
s
c
rip
t
o
rs

M
IT

P
D
P

1

s
u
p
e
rv
is
o
r
in
s
t
ru
c
t
io
n
s
,
C
-lis
t
s

IB
M

S
y
s
t
e
m

3
8

a
u
g
m
e
n
t
e
d
IS
A

a
n
d
t
a
g
g
e
d
m
e
m
o
ry

In
t
e
l
i4
3
2

tw
o
-p
a
rt
(
d
a
t
a
+
c
a
p
a
b
ility
)
s
e
g
m
e
n
t
a
t
io
n

M
a
c
h

m
ic
ro
k
e
rn
e
l
O
/
S
w
it
h
c
a
p
a
b
ilit
ie
s
fo
r
p
o
rt
s

A
m
o
e
b
a

o
b
je
c
t
-b
a
s
e
d
d
is
t
rib
u
t
e
d
O
/
S

