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grained massively parallel problems in which all parallel threads

do the same operations most of the time. However, this fine-
grained synchrony limits the application space of SIMD (single instruc-
tion, multiple data) machines. If there are many alternative data-
dependent actions among the parallel threads, the total execution time
is the sum of the alternatives rather than the maximum single-thread
execution time. Additionally, if the application is not inherently load-
balanced, performance can degrade seriously: Most of the processors
finish their work quickly and become idle, while a few processors end up
with the lion’s share of the work. Thus, the economics of purchasing a
high-performance computer often dictate giving up peak performance
on asmall application set (massively parallel SIMD) in favor of more mod-
est improvement over a larger range of applications (general-purpose
MIMD).

Ideally, one platform would provide the advantages of a SIMD array for
applications well suited to SIMD processing without penalizing less well-
structured applications. That is, a SIMD array would be integrated into the
architecture of a high-performance computer, so some applications could
benefit from the SIMD array while others could still run on the more flex-
ible high-performance “carrier” (host). Researchers at the Supercomputing
Research Center (SRC) have carried this notion one step further. We have
integrated the SIMD array so closely into the architecture of the high-
performance host that the hardware comprising the SIMD array can be
used either as a SIMD processor array or as additional conventional memory.!

SRC researchers have designed and fabricated a processor-in-memory
(PIM) chip, a standard 4-bit memory augmented with a single-bit ALU con-
trolling each column of memory. In principle, PIM chips can replace the
memory of any processor, including a supercomputer. To validate the
notion of integrating SIMD computing into conventional processors on a
more modest scale, we have built a half dozen Terasys workstations, which
are Sun Microsystems’ Sparcstation-2 workstations in which 8 megabytes
of address space consist of PIM memory holding 32K single-bit ALUs. We
have designed and implemented a high-level parallel language, called data-
parallel bit C (dbC), for Terasys and demonstrated that dbC applications
using the PIM memory as a SIMD array run at the speed of multiple Cray-
YMP processors. Thus, we can deliver supercomputer performance for a
small fraction of supercomputer cost.

Since the successful creation of the Terasys research prototype, we have
begun work on processing in memory in a supercomputer setting. Ina col-
laborative research project, we are working with Cray Computer to incor-
porate a new Cray-designed implementation of the PIM chips into two
octants of Cray-3 memory.

SIMD processor arrays provide superior performance on fine-
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TERASYS WORKSTATION
A Terasys workstation (see Figure 1) consists of

* a Sun Sparc-2 processor,

| *an SBus interface card residing in the Sparc cabinet,
.« aTerasys interface board, and

¢ one or more PIM array units.
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Figure 1. A 16K processor Terasys workstation.

The notion of computing in memory has been with us for sev-
eral decades. For example, Stone' proposed a logic-in-memory com-
puter consisting of an enhanced cache memory array that serves
as a high-speed buffer between CPU and conventional memory.

More recently, a group at the University of Toronto has
designed a computational RAM—conventional RAM with SIMD
processors added to the send amplifiers in a 4-Mbit DRAM
process.?

In the commercial realm, Hitachi markets a video DRAM chip
with limited processing in the memory. This chip, the HM53642
series, is a 65K x 4-bit multiport CMOS video DRAM with simple
logic operators on each of the 4 bit-planes.

Our data-parailel C is similar to MasPar’s MPL? and Thinking
Machines C*.4 Wavetracer's MultiC® had user-defined bit lengths,
but did not have the bit extraction/insertion or generic bit-length
features. Our generic SIMD interface is patterned after the CM-
2 Paris instruction set.
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The Terasys interface board and PIM array units fit into an
external enclosure. The system can accommodate up to
eight PIM array units, with 4K processors per array unit,
giving a maximum configuration of 32,768 PIM proces-
Sors.

A data parallel program resides on the Sparc.
Conventional sequential instructions are executed by the
Sparc. Operations on data paralle]l operands are conveyed
as memory writes through the Terasys interface board to
PIM memory and cause the single bit ALUs to perform the
specified operations at the specified row address across all
the columns of the memory.

An instruction written to the PIM array is actually a 12-
bit address in a 4K entry table of horizontal microcode,
which is generated on a per-program basis. The selected
table entry is the real instruction, which is sent from the
Terasys interface board to the PIM array units.

For global communications among the processors there
are three networks: global OR, partitioned OR, and par-
allel prefix network. Level 0 of the PPN serves as a bidi-
rectional linear nearest-neighbor network.

In the following sections, we describe the PIM chip and
single-bit processor, the three interprocessor communi-
cation networks, the PIM array unit, and the Terasys inter-
face board.

Processor-in-memory chip

The PIM integrated circuit, with slightly over one million
transistors on 1-micron technology, contains 2K x 64 bits
of SRAM, 64 custom-designed single-bit processors, plus
control and error detection circuitry.? Figure 2 shows the
PIM chip. Solid lines outline conventional memory com-
ponents, while dotted lines delimit the added PIM circuitry.

In conventional memory mode, the chip is configured as
a 32K x 4-bit SRAM with an 11-bit row address and a 4-bit
column address. In response to the row address signals, it
loads the selected row into a 64-bit register. The column
address selects a 4-bit nibble (one of 16 nibbles composing
the 64-bit register).

To operate in PIM mode, the chip is activated by one of
25 command bits from the Terasys interface board.
Command mode initiates an internal row operation with
64 processors operating on one of 2K rows of memory. The
processors can perform a local operation and optionally
read/write the global OR, partitioned OR, and parallel
prefix lines.

PIM processor

The PIM processor is a bit-serial processor that accesses
and processes bits to/from a 2-Kbit column of attached
memory. Functionally, the processor is divided into upper
and lower halves. The upper half performs the actual com-
putations on the data, while the lower half performs rout-
ing and masking operations. Data is brought in from the
processors’ attached memory through the load line, cir-
culates through the logic as specified by the program, and
is written back to memory via the store line. Figure 3 is a
simplified diagram of the processor.

Three primary registers, denoted A, B, and C, supply
data to the ALU. The registers have three primary input
lines for receiving data, each of which also can be inverted
to receive the logical NOT of that input.



At each clock cycle, the pipelined ALU can either load
data from memory or store data to memory, but not both
at the same time. Also, on each clock cycle, the ALU pro-
duces three outputs that can be either selected for storage
(under mask control) or selected for recirculation.
Additionally, data can be sent to other processors via the
routing network.

The processor can input data through a multiplexer
(MUX) from either the parallel prefix network, the global
OR network, the partitioned OR network, or the internal
mask/register control (see the “Network and mask” line
at lower right in Figure 3).

Indirect addressing

Indirect addressing signifies an operation A[i], where
each processor has its own instances of A and i. To perform
this operation, the processors must access different mem-
ory locations simultaneously.

We decided against hardware support for indirect
addressing in the current PIM implementation for two
major reasons. First, introducing indirect addressing reg-
isters on a per-processor basis would reduce the number
of processors per chip. Second, the error detection and
correction circuitry, which operates on a row basis, would
not operate correctly in the presence of per-processor indi-
rect addressing registers. Thus, we opted for indirect
addressing through microcode. To make this operation
efficient, we have the compiler emit array-bound infor-
mation as part of an indexing operation. This allows the
microcoded indexing subroutine to limit the number of
locations to query to the number of array elements rather
than the entire 2K bits.

In indirect addressing, each processor holds its private
instance of an array. The application can also use a single
array A in Sparc conventional memory, which is shared by
all PIM processors. Each processor can index this shared
table with its unique index i that is in PIM memory. An
optimized microcode routine, which is a factor of 8 faster
than the more general per-processor table lookup, is pro-
vided for this operation in a Fortran-based library called
Passwork (Parallel SIMD Workbench).?

Interprocessor communication

Asimple linear interconnect, augmented by global OR,
partitioned OR, and parallel prefix net-
works, has been incorporated into the PIM

the value of the GOR signal. The microcode programmer
has access to the GOR signal at the host processor through
a GOR register containing the last 32 GORs generated by
the system.

PARTITIONED OR NETWORK. In contrast to the GOR,

which performs only many-to-one communication, the
POR network can be used for many-to-one or one-to-many
communication among groups of processors. The 32K
processors in the Terasys workstation can be partitioned,
starting with 2 processors per partition and increasing in

11-bit row address
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Figure 2. A processor-in-memory chip.
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design. This allows the PIM processor to

™

compute a global OR or partitioned OR
signal in one tick,

send one bit of data to a left or right
neighbor in one tick, and

« perform parallel prefix operations in log
(number-of-processors) ticks per bit.

GLOBAL OR. The logical OR network
combines signals from all processors and
returns a single bit result to the host. GOR
is performed across all 32K processors in
hardware. This signal is used to condition-
ally control instruction execution: One of

Load A'BC
A
AB+AC+BC
Network | MUX B I ALU
cl C+(A'B) r
Recirculate

Network
and
mask

two instructions can be selected based on

Figure 3. A processor-in-memory processor.
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powers of 2 up to 32K processors per parti-
tion. Within a partition, an OR tree is
formed from all the processors in the parti-
tion, and the result is fed back to them. POR
hardware support is provided for groups of
64, 128, 256, and 512 processors. Other
groupings are implemented in software.
The POR network is useful in matrix-
pivoting operations. Disjoint matrices in dif-
ferent POR partitions can have different

. pivot points. The pivot information can be

broadcast from one processor in each partition to all proces-
sors in that same partition. This is accomplished by using
the internal mask to select a particular processor in each par-
tition and then performing the POR operation, where only
the signal from the selected processor is moved up the OR
tree and fed back to the other processors in the partition.

PARALLEL PREFIX NETWORK (PPN). The PPN consists
of 15 levels, settable by the programmer. It can be used for
nearest-neighbor communication and for linear scan oper-

. ations, which are useful for accumulating partial results

such as sums or other associative operations.

At level 0, the PPN is a one-dimensional communica-
tions path used to transfer data among the processors, so
that all processors can send to either the left or right neigh-
bor in one tick. At higher levels, the PPN is a few-to-many
communication path.

At level 0, each selected processor i sends data to its
immediate neighbor to the left (i—1) or to the right (i+1).
Levels 1-15 send data to the left only. At level 1, the PPN
enables even-numbered processors i to send data to two
left neighborsi—1 and i—2. At PPN level 2, processors 0, 4,
8, ... can send to the four left neighbors. Succeeding PPN
levels expand at a power of 2, until at level 15, one data
source broadcasts to all 32K processors.

The PPN network can be set to either the toroidally
wrapped mode, where processor 0 gets its data from proces-
sor 32,767, or to “fill” mode, where processor 0 input data is
fixed at O or 1. Three other levels of toroidally wrapped data
are also supported at the 8-bank, bank, and chip levels.

Levels 0-9 of the PPN, which correspond to the PPN up
to the memory bank (see “PIM array unit” below), are
implemented in hardware. Levels above the memory bank
are implemented in software.

GENERAL DATA MOVEMENT. Unstructured inter-
processor data communication is through the host proces-
sor. For general any-to-any communication, PIM data
values are sent to the host, transposed from bit-serial to
bit-parallel representation, permuted in conventional
memory, transposed again, and sent back to the PIM mem-
ory. This operation is time-consuming on the Terasys
workstation. In the new vector supercomputer PIM array,
where this operation will use the gather-scatter hardware,
performance will be comparable to general communica-
tion networks in massively parallel processors such as SP-
2 or MasPar.*

PIM array unit

A PIM array unit contains eight banks of PIM memory
spread over two boards. Each bank contains eight PIM

Computer

ach of eight

banks of PIM
memory contains
eight PIM chips—a
total of 64 chips
or 4,096 PIM
processors per
array unit.

chips—a total of 64 chips or 4,096 PIM
processors per array unit. In addition to
housing the 64 PIM chips, the array unit
performs extended global OR and parallel
prefix functions and provides a three-level
partitioned OR tree.

Terasys interface board

Read and write operations to PIM mem-
ory are sent to the Terasys interface board.
High-order bits of the address field tell the
interface logic whether the operation is a normal memory
operation or a PIM command pair. If they indicate PIM
command mode, the interface board splits the combined
commands into two individual commands. This command
pairing allows a doubling of the command transfer rate.
The Sparc-2 can transfer one command pair every 200
nanoseconds. The command issue rate to the PIM chips is
100 ns per command.

Each command is an index into a 4K lookup table. The
lookup table contains 25-bit microcode instructions. Thus,
out of a possible 2% instructions, each program can use up
to 4,096. The Twist (Terasys Workstation Interface
Software Tools) microcode assembler generates the
lookup table automatically. The table is loaded into the
interface board when a Terasys program is initiated.

This board also provides PIM timers, selects one of two
PIM commands based on the global OR signal’s current
value, and registers 31 bits of global OR history.

DATA-PARALLEL BIT C

The Terasys programming language dbC is an ANSI C
superset based on a tightly synchronous (variously called
data parallel, “single thread of control,” or SIMD) parallel
programming model. In dbC, arbitrary-length bit streams
are treated as first-class objects in the parallel domain.>¢
Our goals in designing dbC were to support

« asimple, easy-to-use programming model so that pro-
grammers can rapidly become productive on Terasys
and other PIM-based systems;

efficient data-parallel computation on SIMD machines;
and

computation on arbitrary bit-length integers in the par-
allel domain.

Data-parallel extensions
dbC data parallel extensions follow language conven-
tions set by C* and MPL.

PARALLEL DATA. dbC adds a new memory attribute to
C data declarations, the keyword “poly.” A poly variable
is instantiated on each processor, so that a reference to a
poly variable in an expression is an aggregate reference
that affects each active processor. dbC supports all the
standard C data types in the parallel domain. It also sup-
ports parallel pointers. Pointers can point between serial
and parallel domains and within the parallel domain, pro-
viding language support for indirect addressing. Pointers
may not point from the memory of one processor to the
memory of another; interprocessor communication intrin-
sics must be called to access data from another processor.



PARALLEL EXPRESSIONS. Polys can be
used in C expressions just as normal C
(mono) variables. An expression a op b is
parallel if either a or b is parallel. If the
other operand is serial, it is promoted to
parallel, and the operation is performed in
the parallel domain.

dbC has infix reduction operators such

poly unsigned x:4; /* 4-bit logical variable x */
typedef unsigned poly int33:33; /* 33-bit logical, user-defined type */
poly inty: 1000; /* arbitrarily large variables are supported */
typedef poly struct
{ int33 A[50];
int33 B;
charc;
} S; /* poly structure */

as | = (reduce with OR operator) that,

when applied to a parallel expression, yield a serial value.
Reductions are computed using the global OR and paral-
lel prefix networks.

PARALLEL CONTROL CONSTRUCTS. dbC extends the
standard C guarded control constructs (if, while, do, and
for) to the parallel domain. The <guard> controlling the
statement determines whether the statement is serial or
parallel. If the <guard > is parallel, the statement is par-
allel. The escape statements break, continue, and return
have parallel versions. A break or continue in a parallel
loop is parallel. A return from a function returning a par-
allel result (even poly void) has parallel semantics. Gotos
are not allowed in parallel constructs.

In addition to the C control constructs, dbC provides a
masked where construct and an all block. Parallel code in
an all block is executed by all processors regardless of pre-
vious processor activity. An all block may contain any ser-
ial or parallel code, including parallel if/where and
parallel loops.

Bit extensions
The generality of dbC’s bit constructs facilitates com-
putation over arbitrarily sized data.

BIT-LENGTH SPECIFIERS. dbC extends C’s bit-field fea-
ture to allow any parallel integer variable (or integer com-
ponent of a structured variable) to specify a length.
Although the syntax of the bit-length specifier is identical
to the C bit field, the semantics are quite different. The C
bit field represents a compromise between the desire to
access bits and the difficulty of supporting efficient bit
access in the word-oriented domain. A bit field declared
to be 6 bits long in C might really occupy a full memory
word (32 or 64 bits). A variable or structure component
declared as “poly int:6” in dbC is guaranteed to use exactly
6 bits of parallel memory.

When two parallel operands are used in a binary opet-
ation, their bit lengths determine the number of bit oper-
ations required to compute the result. Thus, the user
controls both

storage allocation at the bit level (particularly useful on
Terasys, where each processor has only 2,048 bits of
memory) and

the bit-serial complexity of operations, since the bit
lengths of the operands determine the number of sub-
operations required to perform an operation.

Figure 4 illustrates poly declarations with bit lengths.

BIT EXTRACTION AND INSERTION. dbC also has two
bit-oriented operators, bit insertion and bit extraction,

Figure 4. Parallel variables in dbC (data-paraliel bit
C), the Terasys high-level programming language.

poly x:10, y:11
x[4:8] = y[0:4];
x[4+:5] = y[0+:5];

/* start/end index */
/* bit length notation */

Figure 5. Bit insertion and extraction in dbC.

void func(poly x:?)
)

.;;Eﬂy y_5:5,2_7.7;
funcly_5);
func(z_7);

/* pass 5 bits to func */
/* pass 7 bits to func */

Figure 6. Generic bit-length parameters.

illustrated in Figure 5. A parallel variable x may be
indexed x[a:b], where a indicates the starting bit posi-
tion and b the ending bit position, inclusive. On the right-
hand side of an assignment, this notation means that b
—a + 1 bits are extracted from x starting at bit offset a.
When this “slice” notation is used to index a variable on
the left-hand side, bit insertion is performed. As a short-
hand, x[a:] is equivalent to x[a:a], meaning one bit at
offset a is accessed. An alternative notation is also illus-
trated in the figure. The +: infix operator in an index
expression a+:b means that the starting index is a and
the bit length is b.

GENERIC BIT LENGTHS. To make it easier to write sub-
routines that can operate on parameters of any bit length,
dbC provides a generic bit-length construct. The bit length
of a parameter to a function may be “?,” indicating that
the length is to be determined at runtime at each invoca-
tion of the function. Figure 6 illustrates the use of generic
bit length in the parameter x to function func. The func-
tion is called twice, first with a parameter of bit length 5,
and the second time with a parameter of bit length 7.

COMMUNICATION. The interprocessor communication
intrinsic DBC_net_send transfers data between nearest
neighbors in a linear topology at level 0 in the parallel pre-
fix network. In addition, the DBC_send intrinsic can be
used for any-to-any communication; this general data
movement between processors is done through the Sparc
conventional memory.

Intrinsics are also provided to transfer data between ser-
ial and parallel domains, both one processor at a time and
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with block transfer. The intrinsics are overloaded, so the
same name is used (for example, DBC_read_from_proc(x,
pe_number)) regardless of the data type of x.

Example

Figure 7 illustrates both the data-parallel and the bit-
oriented extensions to dbC. This function computes the
greatest common divisor of two 68-bit parallel variables.
The algorithm uses a parallel while loop to iteratively
divide int2 by int1. As int1 and int2 become smaller at each
iteration, the number of bits required for time-consuming
bit-serial division is also reduced.

The outer while loop is a parallel loop. This loop iter-
ates until int1 is O on every processor; processors fall out
of the loop, becoming inactive, as their int1 values become
0. The inner for loop is serial because the test expression
bits_per_divide > 0 is serial. The inner loop determines
the minimum number of bits required for the next divide.
As the algorithm proceeds, fewer and fewer bits are used
for each divide operation.

Thus, as soon as a processor finds a nonzero bitin either
int1 or int2 (the OR-reduce expressions), the for loop ter-
minates. The intrinsic DBC_Divmod computes the quo-
tient and remainder of int2 divided by int1. In this call,
only the minimum number of bits is used for the division
(real_isize + 1 bit).

The assignments into int1 and int2 illustrate both bit

extraction and bit insertion. Real_isize number of bits are
extracted from int1 and rem and inserted into int2 and int1.

Twist microcode library

dbC translates all code involving parallel operands into
a generic three-address memory-to-memory SIMD assem-
bly code. The generic SIMD is then mapped to the various
platforms on which dbC programs run, including the CM-
2, Splash-2,%® and workstation clusters, in addition to
Terasys. The Terasys Workstation Inter-face Software Tools
(Twist) microcode library maps the generic SIMD instruc-
tion set to Terasys.

This subroutine library? performs basic operations such
as

» parallel memory allocation and release,

basic arithmetic and logical operations on poly
operands of arbitrary bit length,

 random parallel-number generation,

indexed address calculation and indirect addressing,
global combining and broadcasts,

parallel prefix operations such as scans and segmented
scans,

nearest-neighbor communication and generalized com-
munication, and

« data transfer between host memory and PIM memory.

So that knowledge available to the com-
piler about operands can be passed to the

#define ISIZE 68
typedef poly unsigned wide_int:ISIZE;
wide_int GCD(wide_int int1, wide_int int2)
{ wide_int result, rem;
int bits_per_divide, real_isize;

while (int1 !=0)

for (bits_per_divide = ISIZE-1; bits_per_divide>=0; bits_per_divide—)
{

/* position past leading zeros of int1 and int2 to
reduce the complexity of divide. */

real_isize = bits_per_divide;
if (I=(int1[bits_per_divide:]) != 0) break;
if (I=(int2[bits_per_divide:]) I= 0) break;

DBC_Divmod(&result, &rem, int2[0:real_isize-1], int1[0:real_isize-1]);

/* clear top bits of int2 and int1 */
if (real_isize < ISIZE)
{

int2[real_isize:ISIZE-1] = 0;
int1[real_isize:ISIZE-1] = 0;
}

int2[0:real_isize-1] = int1[0:real_isize-1];

int1[0:real_isize-1] = rem[0:real_isize-1};

return result;

}

/* OR-reduce across ... */
/* ... active processors */

runtime system, there are often several
forms of an instruction. For example, there
are eight variations to the add instruction
for each of the basic data types (unsigned
integer, signed integer, and floating point).
This allows the microcode library to opti-
mize for such properties as

» number of operands, because if the des-
tination is the same as one source, only
two operands are required in a binary
operation;

* the number of bit lengths being passed,
either 1, 2, or 3;

» whether or not an operand is a constant
being broadcast as part of the instruc-
tion; and

« whether the instruction is to be masked
or performed unconditionally, since
unmasked instructions are faster. (If a
store instruction is conditional, the
microcode must load and save the orig-
inal value at the store address, so that
when a value is ready to be stored, inac-
tive processors will store the original
value back. This is a slower sequence
than an unconditional store, in which
the original value does not have to be
read.)

The Twist microcode assembler extracts
those microinstructions required by the

| Figure 7. A greatest-common-divisor function in dbC.
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program and builds the instruction lookup



table. The lookup table is downloaded to the Terasys intet-
face board upon program initiation. In addition to the
microcode library, we provide a

* dbC simulator

* microcode emulator, and

* Fortran-based development system with the same func-
tionality as Twist, the Parallel SIMD Simulation
Workbench (Passwork).31©

APPLICATIONS AND PERFORMANCE

The Terasys workstation—fully populated with 32K
processors and assuming an instruction issue rate of 100
ns—delivers 3.2 x 101 peak bit operations per second.
Microcoded applications have achieved and, in one case,
surpassed this theoretical peak. (The program surpassing
the peak uses superscalar techniques that do two bit oper-
ations in one tick by using both the upper and lower parts
of the processor.)

Applications profile

Applications such as DNA sequence match, low-level
image processing, and tridiagonal solvers and other matrix
algorithms are well suited to the Terasys workstation. In
general, problems having

* largely independent computation,

* primarily linear nearest-neighbor communication,
* global data-parallel operations, and

* data of nonstandard integer sizes

are especially well suited to the Terasys architecture.

At SRC, we’ve written approximately 20 applications
for Terasys, and we’ve observed a performance range of
five to 50 Cray-YMP single processor equivalents on these
applications. A representative tree-search application writ-
ten in the high-level dbC language ran at eight YMP equiv-
alents with no performance tuning. A
pseudorandom number generator written
in Passwork produced 2 x 10* pseudoran-

interactive environment that provides near real-time
manipulation of medical imaging data.

Typically, radiologists view pairs of magnetic resonance
images (MRIs) taken at different frequencies side by side
to find diagnostic information. One image usually has bet-
ter contrast, while the other has better shape and fine
detail information. Both images contribute to the diag-
nostic process. The goal of the medical imaging applica-
tion written for Terasys is to integrate the images into a
single picture, in which all diagnostic information is clearly
and immediately visible. Further, the system lets the user
modify viewing parameters dynamically and watch the
display change in response.

COLOR ICON. In geometric coding, each datum is rep-
resented by a small graphical element or icon, whose
visual features are controlled by the data. For this project,
the group developed a general color icon to integrate data
from multiple images. Information in multiple images can
be combined into a single display by having the pixel val-
ues in the separate images control the three color coordi-
nates of the corresponding pixel in the integrated display.

The color icon is represented by a square box of pixels.
In the RGB color model, each corner of the box may have
up to three associated parameters, one for each of the red,
green, and blue components. The three parameters deter-
mine the color of that corner. Intermediate pixels have val-
ues interpolated from the corner points. This allows
merging up to 12 data-set parameters. The single image
is represented, then, by a square display of icons, where
each icon is typically a 5 x 5 pixel matrix.

For the MRI application, the input data consists of a pair
of gray-scale images with values at each pixel position rang-
ing from O (black) to 255 (white). The values are normal-
ized to the range (0, 1). The images are combined by
associating each image with one of the three parameters
of the Generalized Lightness, Hue, and Saturation (GLHS)
color model. Since there are only two images in this appli-

dom bits per second or about 20 Cray-YMP
equivalents. For these applications, per-
formance of the YMP version is either an
actual measured figure or a best-case esti-
mate of bit operations, assuming no mem-
ory access delays.

In addition to running SRC applications,
Terasys has been used for image-process-
ing applications by researchers at the
University of Massachusetts at Lowell. We
report on one of their applications below.

Real-time color imaging and visu-
alization

Researchers at the Institute for
Visualization and Perception Research and
the Computer Science Department at the
University of Massachusetts at Lowell have
used Terasys to investigate applications of
real-time color imaging and visualization.!?
A particularly interesting application is an

Cost estiunates

The Terasys prototype, including hardware and system soft-
ware, was assembled by a team of about 10 people over two
years. The Terasys interface board was designed and built in-
house, as were the array unit boards. The chips were fabricated
at a silicon foundry.

Since Terasys is a research prototype, it’s difficult to estimate
costs. The cost of the PIM chip is particularly hard to estimate,
since SRAM prices are so sensitive to production volume. A 16-
Kbit SRAM, configured as 4K x 4 bits with 25-ns access time, can
be purchased in quantities of 1,000 for $3.67. A 256-Kbit device,
configured as 32K x 8 bits at 25 ns, costs $7.00. The PIM SRAM,
with 128 Kbits (64 x 2,048) and a 30-ns access time, falls between
these two parts in density. However, the PIM chip package is more
expensive than the DIP packaging of standard SRAMs. Factoring
in all these variables, and especially the fact that we cannot
expect chip volume to be anything close to that of standard
SRAMS, a conservative per-chip cost estimate would be around
$100 or $32,000 for 32K processors. We price the host worksta-
tion and PIM cabinet at approximately $10,000.
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cation, the third parameter
is set to an arbitrary value
chosen by the user. The
GLHS parameters are trans-
formed into (red, green,
blue) triples required by the
display hardware.

additional memory.

INTERACTIVE DISPLAY. A unique feature is that the user
can modify display parameters (controls) interactively. The
simplest control is the “region of interest.” Since the entire
image cannot be displayed at once, only a portion is dis-
played. The user may drag the region selector over a small
representation of the image to view other areas of interest.

The size of the icon box—that is, the number of pixels
in the icon’s height and width—can also be changed inter-
actively. The color model used to calculate display colors
can also be modified. The user can switch between the
RGB and GLHS color models. While using the GLHS color
model, the user can set values for each of the three vari-
ables (which determine how much of that component will
appear in the displayed color) by dragging a point around

! atriangle, with one variable being maximized at each cor-

ner. The display is updated as the point moves within the
triangle. Sliding bars can be used to dynamically change
the input data’s minimum and maximum thresholds. Once
again, the display changes as the sliders change, letting
the user adjust the parameters to extract the maximum
information from the display.

MAPPING TO TERASYS PROCESSORS. A straightforward
mapping of icon rendering to processors would associate
an M x N icon with each processor, letting the processors

. compute independently without interprocessor commu-

nication. However, this approach was not used because
with this mapping, the data is not arranged correctly for
display and must be reshuffled in the Sparc memory before
it can go to the frame buffer. Since the display time rather
than the calculation time is the dominant factor, the
method used is to load the data in the order required by
the display hardware, and to use the linear nearest-neigh-
bor network to exchange values needed to render an icon.

Using the latter method, a 4K Terasys can render 64 x 64
icons (a 320 x 320 pixel window) at a frame rate of 20
frames/second. The current implementation—which
copies data from PIM memory into Sparc memory, from
Sparc memory into a frame buffer; and then uses X-based
display software to display the image—can display data
at five frames per second. Alternatives to more closely
match the display rate to the generation rate inciude
bypassing the X display code to write directly into the
frame buffer, and perhaps incorporating the frame buffer
directly onto the Terasys hardware, thus eliminating the
need to transfer displays over the Sbus.

THE PIM CHIP EMBODIES THE CONCEPT OF SIMD PROCESSING
within the memory subsystem of conventional computers.
We have built a system at one data point within that space,
the Terasys workstation, which incorporates PIM proces-
sors in a Sparc-2. Programmed in the high-level dbC lan-
guage, the Terasys workstation can deliver supercomputer

Computer

PIM array within a vector
supercomputer would create a
vector/parallel/SIMD hybrid, where the

SIMD array could also function as

performance at a very rea-
sonable cost.

We are now exploring
with Cray Computer the
design of a PIM array within
a vector supercomputer,
the Cray-3/ SuperScalable
System. This configuration
would create a vector/parallel/SIMD hybrid, where the
SIMD array could also function as additional memory. With
the faster CPU cycle time of the vector supercomputer, issu-
ing instructions to the PIM chips would not be a dominant
factor, as it has been with the Sparc-2 and SBus on Terasys.
This hybrid machine uses the supercomputer’s gather-scat-
ter hardware for efficient communication among the PIM
processors. In the current design, the PIM memory will
replace two octants of a Cray-3 memory system, serving as
512K processors, or 16 megawords of memory. Future gen-
erations of such a machine with 1K processors per PIM chip
will be capable of 10 bit operations per second, that is, a
peta bitop supercomputer. I
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