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Abstract providing both performance and ease of programming for

The behavior of Distributed Shared Memory Systems is a large set of parallel/distributed applications.

dictated by the Memory Consistency Model. Several ~ There are basically two categories of memory
Memory Consistency Models have been proposed in the consistency models: uniform and hybrid models. A
literature and they fit basically in two categories: uniform model considers only read and write memory
uniform and hybrid models. To provide a better operations to define consistency conditions whereas a
understanding on the semantics of the memory models, hybrid model considers also synchronization operations in
researchers have proposed formalisms to define them. this definition.

Unfortunately, most of the work has been done in the ~ Memory consistency models, strong or relaxed ones,
definition of uniform memory models. In this paper, we have not been originally formally defined. In most cases,
propose a general, unified and formal framework where the semantics of memory behavior have to be induced
uniform and hybrid memory consistency models can be from the protocol that implements the memory model. The
defined. To prove the generality of the framework, we lack of a unique framework where memory models can be
use it to define the following Memory Models: Atomic formally defined makes it difficult to compare and
Consistency, Sequential Consistency, Causal understand the memory model semantics. This fact was
Consistency, PRAM Consistency, Slow Memory, Weak also observed by other researchers and some work was

Ordering, Release Consistency, Entry Consistency and indeed done in the sense of formal memory model
Scope Consistency. definitions. Unfortunately, much of the work has been

done to define uniform models formally while little
attention has been paid to hybrid models.

1. Introduction In this article, we describe a new formal framework
that can be used to define uniform and hybrid memory

In ord ke shared . bl consistency models. Basically, we identify the

_ Inorder to make shared memory programming possiblecy a4 cteristics that are inherent to all memory consistency
in complex parallel architectures, we must create a Share‘%odels and the characteristics that are model-specific. A
memory abstraction that parallel processes can acces

Rimple and general definition of memory consistenc
This abstraction is called Distributed Shared Memory mocli)el is propgosed y y
(DSM). The first DSM systems tried to give parallel '

h h had wh In order to prove the generality of our framework, we
programmers t € same guarantees they had Wnhefge it o define five uniform and four hybrid memory
programming uniprocessors.

. It has been observed thaI:onsistency models. The following uniform memory
providing such a strong memory model creates a hugeconsistency models are defined: dynamic atomic

coherence overhead, slowing down the parallel appl'cat'onconsistency, sequential consistency, causal consistency,

aznéj b;inging frelthugntly tﬂ.e sysu;:n into a thraﬁhing hStateprocessor consistency and slow memory. The following
[28] [27]. To alleviate this problem, researchers have hybrid memory models are defined: weak ordering,

propc_>sed to relax some consistency conditions., thusrelease consistency, entry consistency and scope
creating new shared memory behaviors that are d|fferentConsistency

from the traditional uniprocessor one. Many new memory
consistency modeishave been proposed in the literature ba
but, by now, none of them has achieved the goal of

The framework described in this paper was used as a
sis for the design of a multiple memory consistency
model DSM system that was presented in [6].

The rest of this paper is organized as follows. Section 2
describes our system model and framework. Using this
! The terms "memory model” and "memory consistency model" are used framework, we define some well-known uniform memory
interchangeably in this paper.
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models in section 3. Section 4 presents the definition ofassume that each processor executes only one process and
some hybrid memory models. Related work in the area ofthat two processors cannot write the same value to the
formal memory consistency model definition is presented same memory position. This second assumption may
in section 5. Finally, conclusions and future work are appear rather restrictive but it is necessary in some order

presented in section 6.

2. System Model

definitions. However, it can be easily overcome in a real
system by adding timestamps to the value

Each process running on a processas plescribed by
a local execution historyy,, that is an ordered sequence

To describe memory models in a formal way, we Of memory operations issued by p
propose a history-based system model that is related to the "€ €xecution history i is the union of alla,. A

models described in [2] and [19].
In our model, aparallel programis executed by a
system A systemis a finite set ofprocessors Each

processor executes aprocess that issues a set of

operationsonthe shared global memomwy.
The shared global memoryt is an abstract entity

composed by all addresses that can be accessed by a

program. Eaclprocessor phas its owrlocal memory m
Eachlocal memory nmcaches all memory addressesvof

A memory operatiom,(x)v is executed by processgr
on memory addresswith the valuev. There are two basic
types of operations omi: read ) and write (). Also,
there is a synchronization typsy(i9. A sync operation
can be of three subtypexcquire, releaser nsync.

Table 1 shows the auxiliary functions related to
memory operations. These functions will be used in some

formal definitions.

Table 1. Functions Related to Memory Operations

1) processor(0pi(X)V) = pi
2) address  (0pi(X)V) = X
3) type (0pix)V) =0
4) subtype (0pi(X)v) = acquire, release, nsync

Each memory operation is firsissued and then
performedi. e., memory operations are non-atomic.

A memory operatiom,;(x)v is issuedwhen processagp;
executes the instructia(x)v.

A read operatiomr(x)v is performedwhen a write
operation on the same locatimrcannot modify the value
v returned tqp;. Read operations @ are always done on
the local memoryn.

A write operationwy(X)v is in fact a set of memory

n-1
operationsc = ZO Wpa(X)v wheren is the number of
a=

processors. A write operationy(x)v is performed with
respect toprocessor pwhen the value is written to the
address on the local memoryn of p;. A write operation

graphical representation efis shown in Figure 1.

PL w(x)2 w(x)1 w(y)l

P2 ry)l r(x)2

Figure 1. An Execution History

In Figure 1, the notatiomv(X)v represents the instant
where the write of the value on memory positiorx was
issued and(x)v represents the instant where the read of
value v on memory positionx was performed. Time
corresponds to the horizontal axis and increases from left
to right.

In our definitions, we use the notion dinear
sequenceslf @ is a history, alinear sequenceof Q
contains all operations im_ exactly once. A linear
sequence idegal if all read operations(x)v return the
value written by the most recent write operation on the
same address in the sequence.

In execution histories, we have some operation
orderings that are allowed and some orderings that are
forbidden . The decision of which orderings are valid is
made by thanemory consistency mod@&ihis observation
leads to our memory consistency model definition:

Definition 1. Memory Consistency Model: A
memory consistency modeéfines an order relation

(5 ) on a set of shared memory accesgsgs (

One execution history is valid on a memory
consistency model if it respects the order relation defined
by the model. In other words, a histaryis valid on a
memory consistency model if there is at least one legal

linear sequence am, that respect§ .
An order relation that is used in the definition of all
memory consistency models proposed until how in the

literature isprogram order(”’).

Wpi(X)v is performedwhen it is performed with respect to
all processors that compose the system.

At the beginning of the execution, we assume that all
memory locations are initialized to 0. At the end of the
execution, all memory operations must be performed. We

Program-order (po)An operation @is related to an

operation gby program-order (J° 0,) if:
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a) both operations are issued by the same procgssor €xecution order of _all shared memory accesses (legal
andqimmediate|y precedesmthe code Opi or linear sequence OfH[). In this order, all operations

b) Oos such that ¢”° o;and @™ o,. performed by a process must respect the program 8der
(). Also, non-overlapping memory accesses must respect
The program order used in our definitions is a total real-time order (ii). In this definition, issuing and
order onHy,; that relates operations according to the order performing memory accesses are seen as events.

in which they appear in the program code of each process. We do not have examples of distributed shared
memory systems that implement dynamic atomic

consistency. Preserving real time order for every shared
memory access is very time-consuming in systems where

. . . . ) ~no global physical clocks exists.
In this section, five uniform models are defined using

our framework and related to each other. The first two 5 5 Sequential Consistency
models are strong memory models because they impose an
order relation on all shared memory accesses, i.e, they

impose a total order om. The other three models are o .
P correctness criterion for shared memory multiprocessors.

re:aged mtlamory moﬂels b;ecr?useh th%y IMpose an Ordef\/lany early distributed shared memory systems proposed
relation only to a subset of the shared memory accesses, hq |iterature implement sequential consistency. Ivy

In the second case, every processor has its own view 025] Mirage [10] and KOAN [20] are examples of

the shared memory. sequentially consistent distributed shared memory
: : . systems.
3.1 Dynamic Atomic Consistency Our definition of sequential consistency is derived from

) _ ) the definition presented in [4]:
Atomic consistency is the strongest and the oldest

memory consistency model. It defines a total order on all  pefinition 3. Sequential ConsistencyA history H is
shared memory accesses) (and, besides, imposes that  goqentially consistenif there is a legal linear
real time order must be preserved. In order to define what
orderings are valid when more than one access occur in sequence ofi that respects the ord&f which is
the same real time, many variations of atomic consistency defined as follows:
have been proposed. Our definition refers to the model
known as dynamic atomic consistency [23].
Before defining dynamic atomic consistency, we must
define the global time function tjg For sequential consistency, we define a new otder
Like Dynamic Atomic Consistency, SC requires a total
Function gt: The function g) returns the value of a  order onm. The only difference between these two
global clock when the eveébccurs. models is that preserving real-time order is no longer
necessary in sequential consistency.

3. Defining Uniform Models

Sequential Consistency was proposed by [22] as a

) O oy, 0y if 0,” 0, then @ > 0,.

Our formal definition of dynamic atomic consistency is 3 3 Causal Consistency
derived from the definition in [29]:

Definiton 2. Dynamic Atomic Consistency: A Causal consistency is a relaxed memory model that is
history H isdynamic atomically consisteiftthere is a based on the potential causal order relation defined by

_ AT [21]. Causal consistency was implemented by the
legal linear sequence of that respects the order researchers that proposed it [3] and was also implemented
which is defined as follows: in the system Clouds [17].

Since the potential causal order relation is defined to be
the irreflexive transitive closure of two order relations
i) O oy, 0,: if gt(perform(q)) < gt(issue(g) then q AT (program order and read-by order) [3], we must define the
0, read-by order before presenting the definition of Causal

Consistency.

In this definition, we define a new order relation

) O oy, 0y if 0,” 0, then @™’ 0, and

AT .
( 2 ) where all processors must perceive the same
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Read-by Order (rb). A write operatiov(x)vis read by

a read operatior(x)v = (w(x)v ® r(x)v) if the operation
r(x)v, issued by processey, reads the value written by
the operatiow(x)vissued by processprand i# j.

Also, we must define a new execution history:

History Hpi.w. Let 1 be the global execution history and
pi be a processor. The histomy., is calledthe history

of writes with respect to processorgnd it is a sub-
history of m that contains all operations issued by
processop; and all write operations issued by the other
processors.

For the formal definition of causal consistency, we
define an order omiy,. Our definition is derived from

the one proposed by [17]:

Definition 4. Causal Consistency:A history H is
causally consistenf there is a legal linear sequence

of M+ that respects the ordé? which is defined
for each processqr as follows:

i) Doy, 0yif0,”° 0, thenq “* 0, and
ii) Doy, 0 ifo,™ 0,thenq “* 0, and

i) 0oy, 0, 03 if0, " 0, and @ " o3thenq
0s.

By this definition, we can see that it is no longer

Conference on System Sciences - 1999

The basic idea of these memory consistency models is to
relax some conditions imposed by sequential consistency
and to require only that write operations issued by the

same processare observed by all processors in the order

they were issued. In other words, among the operations
issued by other processors, only write operations must
obey the program order.

Many parallel machines implement processor-
consistency related models, such as the VAX8800 and the
SPARC V8. The most important models in the processor
consistency family are PRAM Consistency [26] and
Processor Consistency as defined by [12] (PCG). These
two models differ basically because the latter requires that
all processors must observe the writes to the same memory
location on the same ordewhereas the former does not.

In this article, we present the formal definition of PRAM
consistency. The formal definition of PCG can be found in

[5].

Definition 5. PRAM Consistency: A history H is
PRAM consistenif there is a legal linear sequence of

Hpi+w that respects the ordg?™ which is defined for
each processgr as follows:

PRAM

1) 0oy, 0:if0,” o,thenq =" 0,

By this definition, we can see that the PRAM order is
defined ondpisw. In this view, the program order must be
respected. That means that, for each procegsahe
program order ofp, and the program order of the writes
issued by the other processors must be respected (i).

necessary for all processors to agree on the order of alB.5 Slow Memory

shared memory operations. Instead of usingve use a
subset of it,H,... Every processor has its own view

(Hipi+w) Of the shared global memowy and the ordef” is
defined forHpisw. In this view, the program order B,
must be respected (i), the ordegad-by must be

respected (ii) and the transitivity of the new ordemust
be preserved (iii).

3.4 Processor Consistency

Processor Consistency is perhaps the most clear
example of the problems that can arise if we do not define
consistency models in a formal way. In fact, processor
consistency is a family of memory consistency models that
are based upon the same idea but have small differences

Slow Memory was proposed by [15] and is one of the
most relaxed memory consistency models. Slow Memory
only requires that writes issued by the same processor on
the same memory location must be seen by the other
processors in program order. This is really a weak
condition. Nearly all traditional mutual exclusion
solutions fail on slow memory. In such a memory, the
history presented in Figure 1 would be valid.

Definition 6. Slow Memory: A history H is slow

consistentif there is a legal linear sequence ..,

that respects the ord8f which is defined for each
processop; as follows:

These differences |?d to different memory behaviors and? i, the literature, this condition is often called cache coherence or data
consequently, to different memory consistency models.coherence.
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since Slow Memory only requires program ordeniog.,

to be respected when some conditions are true.

o,then @ " 0,, and By Figure 2, we can induce erroneously that memory

models are always comparable. However, many memory
models are incomparable. Causal Consistency and PCG
are an example of incomparable memory models.

i) O oy, 0, if processor(g=processor(9=p, and "

i) O o), oy if processor(g = processor (@ and

address(g) = address( and @™ o, then @ °" 0,.
4. Defining Hybrid Memory Consistency

By the above definition, we can see that only the local Models
program order must be respected (i) and all processors
must agree about the processor write order on the same Even on uniprocessor systems, processes that use only

memory location (ii). As in PRAM Consistency, all the basic shared memory operations to communicate can
processors must eventually see all write operations issue@roduce unexpected results. For this reason,

by all processors since the order is defined mny. synchronization operations must be used every time
However, it is no longer necessary to fully respect processes want to restrict the order on which memory
program order Omip;y. operations should be performed. Using this fact, hybrid

Memory Consistency Models guarantee that processors
3.6 Relating Uniform Memory Models only have a consistent view of the shared memory at

synchronization time. This allows a great overlapping of
Defining Memory Consistency Models formally makes basic memory accesses that can potentially lead to
it easier to compare and relate them. Figure 2 shows th&€onsiderable performance gains.
relation among the previously defined models. Each Defining hybrid memory models is more complex than
rectangle represents the possible results that can béefining uniform ones. This is basically for three reasons.

produced under the named Memory Model. First, there are more types of operations that must be
considered. There is at least one more type of memory

operation:sync (synchronization type). Second, there are

at least two different orders: one order that relates basic
operations to synchronization operations and one order
that relates synchronization operations exclusively. Third,
and perhaps the most important reason, we do not

Slow Memory

PRAM Consistency
Causal Consistenc

equential Consistency consider program order anymore to relate operations. To
DKnan?ic order operations, we use a relaxation of program order
tomic

calledcomes-before order

Comes-Before Order (cb). An operatiog(x)v comes

before an operatiooy(X)v (01(X)v c 0x(X)V) if:

Figure 2. Relating Uniform Models )
i) (type(a) = sync and type@ # sync) or (type(9 #

sync and type( = sync) and 0" o,; or

i) type (@) = write and type(® = write and

In Figure 2, the strongest memory model is Dynamic
Atomic Consistency because it imposes a total ordet on
and requires real time order to be preserved. Sequential
Consistency imposes only a total orderrnnHenceforth, address(9 = address(@ and @ " o0, and 0 o0; such
Dynamic Atomic Consistency is strictly stronger than b0 po _

Sequential Consistency. That means that every history hata = 0,7 oswhere type(g) = sync.

which obeys Dynamic Atomic Consistency also respects

Sequential Consistency. Causal Consistency is strictly _ . L _

stronger than PRAM Consistency. Both Memory  BY this definition, only synchronization operations that
Consistency Models require that program ordergn, precede basic operations in the program code and vice-

must be preserved. However, Causal Memory requiresVersa are ordered (i). To preserve intraprocessor

also that all processors must respect red-by order. ?hependenmes, we order altzo all write %[:jeratlons ISSL(;(_:‘,‘d b%/
PRAM Consistency is strictly stronger than Slow Memory € same processor on the same address according to
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program order if there is a synchronization operation that In this definition, we state that synchronization

follows the write operations (ii). operations must be seen on the same order by all
In the rest of this section, the formal definitions of four processors, i.e, they must be sequentially consistent (i), the
hybrid memory models are presented. comes-before order must be respected (ii), the local

program order must be respected (iii) and the transitivity

4.1 Weak Ordering of ° must be guaranteed (iv).

Weak ordering was the first consistency model to make
the distinction between basic and synchronization
operations. It was originally defined by [9] and later _ _ o
redefined by [1]. In the present paper, we will use the Release consistency was defined by [11] and it is one
original definition: A system is weakly ordered if (1) ©f the most popular hybrid memory models. Release
accesses to global synchronizing variables are stronglyConsistency is a relaxation of weak ordering where
ordered: (2) no access to a synchronizing variable is competing accesses are called special accesses. Special
issued by a processor before all previous global data 8CC€sses are divided into synchronization operations and
accesses have been globally performed and if (3) nc,non-sync'hronization op.erations.. There are two subtypes of
access to global data is issued by a processor before @ynchronization operationscquire accesses anetlease
previous access to a synchronization variable has beerPCC€SSes. _ .
globally performedin [9], it is stated that intraprocessor ~ Informally, in release consistent systems, it must be
dependencies and local program order must be respecte@uaranteed thabefore an ordinary access performs, all
We assume also that conditions (2) and (3) refer to allPrévious acquire accesses must be performed; and before
global data accesses issued by the same processor thairelease performs with respect to any other processor, all
issues a synchronizing access. previous ordinary accesses must be perfornideere is

In weak ordering, there are three operation types: readf!so a third condition that requires special accesses to be

(), write @) and synchronizationsyng. There is also a  Processor consistent. We find in the literature many
new execution history: systems that implement release consistency: Munin [8]

and TreadMarks[18] are examples of release consistent

History Hyirwssyne LELH be the global execution history distributed shared memory systems. DASH [24] is a
and p; be a processor. The hiStom.w+sync IS called rellease gonstlstedntfparallell archltecture£ ‘ I
the history of writes and synchronization operations n order o deline release consistency formafly, we
with respect to processor and it is a sub-history af must before define the synchronization order (proposed by

. . . 1]):
that contains all operations issued by procepsand (L)
all write and sync operations issued by the other

4.2 Release Consistency

Synchronization Order (so). An operati@a(X)v is

Processors. ordered beforeoy(x)v by the synchronization order
(0:(X)V *? 0x(X)V) if :

Definition 7. Weak Ordering: A history H is weakly i) type(@,) = typep,) = syncand

orderedif there is a legal linear sequencerfy.sync ii) gt(performp,)) < gt(perform@.)).

that respects the ordéf” which is defined for each Our definition of release consistency is derived from

processop; as follows: the one presented by [19]. In this definition, release

_ accesses are seen as special write accesses. Similarly,
|) 0 0y, 0y if type(o)=type(a)=syncand [ Hpjrw+sync acquire accesses are treated as special read accesses. For

Hpjsw+sync this reason, we use a new execution history:

whereq - o,then qmio 0, and
History Hipiswsrelease L€t H be the global execution
history andp; be a processor. The histafi.wreleaselS
calledthe history of writes and release operations with
P o, then q " 0, and respect to processor, @nd it is a sub-history o that
contains all operations issued by procegsaand all
write and release operations issued by the other
processors.

i) 0oy 05if0,” 0,thenq **° 0, and
iii) O oy, o, if processor(g=processor(®=p; and qQ

iV) O 0y, 0y, 051 if 0, 0, and @"° o5 then'*® o,
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Definition 8. Release ConsistencyA history H is
release consisterit there is a legal linear sequence of

Hpi+w+release that respects the orde¥ which is defined
for each processq as follows:

i) Doy, 0,050, 0, ® 0g0nmand subtype =

releaseand subtype(® = acquire and type(g O

{r,w} then o, Rf oz and
i) 00y, 0y if 0,% 0 ON Hyjusreicase and type(g) 0

{r,w} and subtype(g) =releasehen q R¢ 0, and
iii) O o, 0, if processor(g=processor(d=p, and q

RC
P0,thenq "~ 0,.

In short, the definition of imposes that

—

synchronization ordef” must be preserved. In addition,
all basic memory operations that follow the acquire must

be ordered after the acquire (i) and all basic memory BY synchronization-order-1,

Synchronization-Order-1 (sol). An operatiofx)v is
ordered beforen,(x)v by the synchronization order-1

(01(X)V > 0,(x)V) if

i) 0:(X)Vv *° ox(x)vand
i) addressg;) = addressd;).

Data-Guarded-Comes-Before (dgcb). An operation
01(X)v is ordered before,(x)v by the data-guarded-

dgcb

cb

comes-before orde{(x)v

0,(x)vand

i) subtype6;) = acquire and typef) O {r,w} and
address(g [ data_guarded( addresgfoor

i) type(o,) O {r,w} and subtypet,) = release and
address(g 0 data_guarded( addresgo

o,(X)V) if  o;(X)v

only synchronization

operations must be performed before the release is issue@Perations to the same address are related. Also, data-

(ii). Condition (iii) simply states that program order of p
must be preserved in'pview.

4.3 Entry Consistency

Entry Consistency is a hybrid memory consistency

model proposed by [7] that establishes a relation between
synchronization variables used to enter a critical section

and the shared variables guarded by this critical section
Under entry consistency, a consistent view of part of the
memory is only guaranteed at the moment a processo
acquires a lock and enters a critical section.

According to the informal definitiora system is entry
consistent if an acquire access on Iadk not allowed to
perform with respect to processoy ymtil all (previous)
updates to the shared data guarded $&yhave been
performed with respect to processor pntry consistency
defines the set Das the set of shared variables that are
guarded by synchronization variable s. The function
associate(s, djncludes the shared dathon the set D

Entry consistency allows a synchronization access to be

exclusive or non-exclusive. In our definition, we will
consider only exclusive-mode synchronization accesses.

For the formal definition of Entry Consistency, we
must define théata_guardedunction

Function data_guardedata_guarded(x) = {y | y is an
address guarded by x}

Two new orders must also be definsgnchronization-
order-1and adata-guarded-comes-before order.

0-7695-0001-3/99 $10.

guarded-comes-before relates only synchronization
operations to shared data operations that are guarded by
them.

Definition 9. Entry Consistency: A history H is entry
consistentif there is a legal linear sequence of

Hpi+w+release that respects the order which is defined
for each processq as follows:

dgcb
r -

) 0o, 0, 05 if 0 " 0 0; in H and
subtype(q) = releaseand subtype(® = acquireand

type(a) O {r,w} then o, *¢0sand
dgc

i) O oy, 0y if 0, %% 0, ON Hpiswsrelease ad type(g) O

{r,w} and subtype(g) = releasehen q €0, and
jii) 0oy, 0, 05 if0;C 0, and @ o5 then @ ““o,
and

IV) O 0y, 0, if processor(g=processor(9=p; and q

P o, thenq o,

The definition of ¢ states that (i) a release

synchronization access on logkmust be ordered before
all shared data accesses guarded that occurs after the

next acquire to. This is exactly what states the informal
definition of Entry Consistency. However, it is also

necessary (ii) to order accesses to shared data guarded by

a lock x before the release on lock This relation and

00 (c) 1999 IEEE
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transitivity of EC (iii) guarantee that all previous accesses

. .o sol scopch ;

to shared data guarded ®ywill be performed before the ) 0oy, 0 O if 0, =0 0, U 0 nu and

next acquire ox is performed. Also, local program order subtype(@) = releaseand subtype() = acquire

must be preserved (iv). and type(g) 0 {r,w} then o, SCOPy, and

4.4 Scope Consistency i) 00y, 0 if 01 % 0, ON Hiiswsreiease and type( O
{r,w} and subtype(¢) = releasethen q scop 0,

The goal of Scope Consistency is to take advantage of
the association between synchronization variables and
ordinary shared variables they protect in a reasonably easy iii) 0 0y, 0, 03 if 01 scop 0, and 9 Scop 0; then q
programming model. It was proposed by [16]. In scope scop
consistency, executions are divided into consistency - 0sand
scopes that are defined in a per lock basis. Just like Entry iv) O o,, 0,: if processor(g=processor(=p; and q"°
Consistency, Scope  Consistency orders  only scop
synchronization and data accesses that are related to the ~ C2thena “27 0..
same synchronization variable. However, the association _
between shared data and the synchronization variable that AS Stated before, the only difference between Entry
guards them is implicit and depends on program orc|er_ConS|$tency and Scope Consistency is the order us_e_d to
Informally, a system is scope consisten(lj before a estaphsh the operations that are g.uarded by critical
new section of a consistency scope is allowed to open af€ctions. In the case of Scope Consistency, we use the
process P, any write previously performed with respect toScoPe-Comes-Before order while Data-Guarded-Comes-
that consistency scope must be performed with respect t&€fore is used in Entry Consistency.
P; and (2) A memory access is allowed to perform with ) )
respect to a process P only after all consistency scope#-5 Relating Hybrid Models
sessions previously entered by P (in program order) have
been successfully opened. The same Venn Diagram-like representation presented
As it can be easny seen, Scope Consistency and Entr&lbn section 3.6 is used in figure 3 in order to relate the
Consistency are very similar memory models. The Previously defined hybrid memory consistency models.
difference is that Scope Consistency considers that data

and

inside a critical section guarded by lock are Entry Scope
automatically associated witlwhereas Entry Consistency Consistency Consistency|
requires this association to be provided by the Release Consistenc
programmer. Weak
In order to define scope consistency formally, we will Ordering
define a new comes-before related order:
Scope-Comes-Before (scopcb). An operatigfx)v is Figure 3 - Relation among hybrid models
ordered befor®,(x)v by the scope-comes-before order
(010)V sctipcboz(x)v) if - By the formal definitions, it is quite clear that, among

the hybrid models, weak ordering is the strongest one. It
i) Oozsuch that %° 0, ® 0, and subtypeg) = acquire  imposes that all shared memory accesses previous to a
and type¢,) O {rw} and subtype® = release and synchronization access must be performed before the

address(g) = address(), or synchronization access performs and that no shared data
access must be issued until all previous synchronization
i) subtype(q) = acquire and typeg) O {r,w} and [] accesses are performed. Release Consistency is a model

& b that divides the unique synchronization access of weak
03 such that 0~ 03 °" 0, where subtypeg) = release  ordering into two distinct accesses: release and acquire.
and addressyp= address(s). The first condition of weak consistency refers only to
release accesses in release consistency while the second
Definition 10. Scope ConsistencyA history H is  one refers only to acquire accesses. That is why Weak
scope consisterif there is a legal linear sequence of Ordering is strictly stronger than Release Consistency.
While both Entry Consistency and Scope Consistency are

OP . . . .
Hissueroisasothat respects the ord&r"which is defined strictly weaker than Release Consistency, they are not

for each processq as follows:
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comparable. Depending on the association made betwee@onsistency Models were defined. We also related
locks and shared data by the programmer, Entrymemory models to each other. We claim that this task is
Consistency can produce histories that are not valid inmuch easier when memory models are defined formally.

Scope Consistency and vice-versa. As future work, we intend to propose a unified
framework where memory coherence protocols can be
5 Related Work specified. Having memory consistency models and

memory coherence protocols definitions on unified
frameworks, we will investigate the semi-automatic
generation of DSM systems when a pair (memory
consistency model, memory coherence protocol) is

Adve [2] has proposed a quite complete methodology
to specify memory models. A great number of memory
models were considered. The aim of her work, however, h
was to define relaxed models in terms of sequentialC osen.
consistency. The central hypothesis of this study is that all
parallel programmers would prefer to reason as if they / References
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