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Abstract
The behavior of Distributed Shared Memory Systems is
dictated by the Memory Consistency Model. Several
Memory Consistency Models have been proposed in the
literature and they fit basically in two categories:
uniform and  hybrid models. To provide a better
understanding on the semantics of the memory models,
researchers have proposed formalisms to define them.
Unfortunately, most of the work has been done in the
definition of uniform memory models. In this paper, we
propose a general, unified and formal framework where
uniform and hybrid memory consistency models can be
defined. To prove the generality of the framework, we
use it to define  the following Memory Models: Atomic
Consistency, Sequential Consistency, Causal
Consistency, PRAM Consistency, Slow Memory, Weak
Ordering, Release Consistency, Entry Consistency and
Scope Consistency.

1.  Introduction

In order to make shared memory programming possible
in complex parallel architectures, we must create a shared
memory abstraction that parallel processes can access.
This abstraction is called Distributed Shared Memory
(DSM). The first DSM systems tried to give parallel
programmers the same guarantees they had when
programming uniprocessors. It has been observed that
providing such a strong memory model creates a huge
coherence overhead, slowing down the parallel application
and bringing frequently the system into a thrashing state
[28] [27]. To alleviate this problem, researchers have
proposed to relax some consistency conditions, thus
creating new shared memory behaviors that are different
from the traditional uniprocessor one. Many new memory
consistency models1  have been proposed in the literature
but, by now, none of them has achieved the goal of

                                                          
1 The terms "memory model" and "memory consistency model" are used
interchangeably in this paper.

providing both performance and ease of programming for
a large set of parallel/distributed applications.

There are basically two categories of memory
consistency models: uniform and hybrid models. A
uniform model considers only read and write memory
operations to define consistency conditions whereas a
hybrid model considers also synchronization operations in
this definition.

Memory consistency models, strong or relaxed ones,
have not been originally formally defined. In most cases,
the semantics of memory behavior have to be induced
from the protocol that implements the memory model. The
lack of a unique framework where memory models can be
formally defined makes it difficult to compare and
understand the memory model semantics. This fact was
also observed by other researchers and some work was
indeed done in the sense of formal memory model
definitions. Unfortunately, much of the work has been
done to define uniform models formally while little
attention has been paid to hybrid models.

In this article, we describe a new formal framework
that can be used to define uniform and hybrid memory
consistency models. Basically, we identify the
characteristics that are inherent to all memory consistency
models and the characteristics that are model-specific. A
simple and general definition of memory consistency
model is proposed.

In order to prove the generality of our framework, we
use it to define five uniform and four hybrid memory
consistency models. The following uniform memory
consistency models are defined: dynamic atomic
consistency, sequential consistency, causal consistency,
processor consistency and slow memory. The following
hybrid memory models are defined: weak ordering,
release consistency, entry consistency and scope
consistency.

The framework described in this paper was used as a
basis for the design of a multiple memory consistency
model DSM system that was presented in [6].

The rest of this paper is organized as follows. Section 2
describes our system model and framework. Using this
framework, we define some well-known uniform memory
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models in section 3. Section 4 presents the definition of
some hybrid memory models. Related work in the area of
formal memory consistency model definition is presented
in section 5. Finally, conclusions and future work are
presented in section 6.

2.  System Model

To describe memory models in a formal way, we
propose a history-based system model that is related to the
models described in [2] and [19].

In our model, a parallel program is executed by a
system. A system is a finite set of processors. Each
processor executes a process that issues a set of
operations on the shared global memory 0.

The shared global memory 0 is an abstract entity
composed by all addresses that can be accessed by a
program. Each processor pi has its own local memory mi.
Each local memory mi caches all memory addresses of 0.

A memory operation opi(x)v is executed by processor pi

on memory address x with the value v. There are two basic
types of operations on 0: read (r) and write (w). Also,
there is a synchronization type (sync). A sync operation
can be of three subtypes: acquire, release or nsync.  

Table 1 shows the auxiliary functions related to
memory operations. These functions will be used in some
formal definitions.

Table 1. Functions Related to Memory Operations

1) processor(opi(x)v) = pi

2) address   (opi(x)v) = x
3) type         (opi(x)v) = o
4) subtype   (opi(x)v) =  acquire, release, nsync

Each memory operation is first issued and then
performed, i. e., memory operations are non-atomic.

A memory operation opi(x)v is issued when processor pi

executes the instruction o(x)v.
A read operation rpi(x)v is performed when a write

operation on the same location x cannot modify the value
v returned to pi. Read operations of pi are always done on
the local memory mi.

A write operation wpi(x)v is in fact a set of memory

operations & =  
a=0
 Σ
n-1

  wpa(x)v where n is the number of

processors. A write operation wpi(x)v is performed with
respect to processor pj when the value v is written to the
address x on the local memory mj of pj. A write operation
wpi(x)v is performed when it is performed with respect to
all processors that compose the system.

At the beginning of the execution, we assume that all
memory locations are initialized to 0. At the end of the
execution, all memory operations must be performed. We

assume that each processor executes only one process and
that two processors cannot write the same value to the
same memory position. This second assumption may
appear rather restrictive but it is necessary in some order
definitions. However, it can be easily overcome in a real
system by adding timestamps to the value v.

Each process running on a processor pi is described by
a local execution history +pi, that is an ordered sequence
of memory operations issued by pi.

The execution history  + is the union of all +pi. A
graphical representation of + is shown in Figure 1.

P1:

P2:

w(x)2   w(x)1  w(y)1

r(y)1    r(x)2

Figure 1. An Execution History

In Figure 1, the notation w(x)v represents the instant
where the write of the value v on memory position x was
issued and r(x)v represents the instant where the read of
value v on memory position x was performed. Time
corresponds to the horizontal axis and increases from left
to right.

In our definitions, we use the notion of linear
sequences. If 4  is a history, a linear sequence of 4
contains all operations in 4 exactly once. A linear
sequence is legal if all read operations r(x)v return the
value written by the most recent write operation on the
same address in the sequence.

In execution histories, we have some operation
orderings that are allowed and some orderings that are
forbidden . The decision of which orderings are valid is
made by the memory consistency model. This observation
leads to our memory consistency model definition:

Definition 1. Memory Consistency Model: A
memory consistency model defines an order relation

(→
R

 ) on a set of shared memory accesses (+x).

One execution history is valid on a memory
consistency  model if it respects the order relation defined
by the model. In other words, a history + is valid on a
memory consistency model if there is at least one legal

linear sequence on +x that respects →
R

 .
An order relation that is used in the definition of all

memory consistency models proposed until now in the

literature is program order (→
po

 ).

Program-order (po). An operation o1 is related to an

operation o2 by program-order (o1 →
po

  o2) if:
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a)  both operations are issued by the same processor pi

and o1 immediately  precedes o2 in the code of pi or

 b) ∃ o3 such that o1 →
po

  o3 and o3 →
po

  o2.

The program order used in our definitions is a total
order on +pi that relates operations according to the order
in which they appear in the program code of each process.
 
3.  Defining Uniform Models

In this section, five uniform models are defined using
our framework and related to each other. The first two
models are strong memory models because they impose an
order relation on all shared memory accesses, i.e, they
impose a total order on +. The other three models are
relaxed memory models because they impose an order
relation only to  a subset of the shared memory accesses.
In the second case, every processor has its own view of
the shared memory.

3.1  Dynamic Atomic Consistency

Atomic consistency is the strongest and the oldest
memory consistency model. It defines a total order on all
shared memory accesses (+) and, besides, imposes that
real time order must be preserved. In order to define what
orderings are valid when more than one access occur in
the same real time, many variations of atomic consistency
have been proposed. Our definition refers to the model
known as dynamic atomic consistency [23].

Before defining dynamic atomic consistency, we must
define the global time function (gt):

Function gt:  The function gt(ξ) returns the value of a
global clock when the event ξ occurs.

Our formal definition of dynamic atomic consistency is
derived from  the definition in [29]:

Definition 2. Dynamic Atomic Consistency: A
history H is dynamic atomically consistent if there is a

legal linear sequence of + that respects the order →
AT

which is defined as follows:

i) ∀ o1, o2: if o1 →
po

  o2 then o1 →
AT

  o2 and

ii) ∀ o1, o2: if gt(perform(o1)) < gt(issue(o2)) then o1  →
AT

 

o2.

In this definition, we define a new order relation

( →
AT

 ) where all processors must perceive the same

execution order of  all shared memory accesses (legal
linear sequence of +). In this order, all operations

performed by a process must respect the program order  →
po

 

(i). Also, non-overlapping memory accesses must respect
real-time order (ii). In this definition, issuing and
performing memory accesses are seen as events.

We do not have examples of distributed shared
memory systems that implement dynamic atomic
consistency. Preserving real time order for every shared
memory access is very time-consuming in systems where
no global physical clocks exists.

3.2  Sequential Consistency

Sequential Consistency was proposed by [22] as a
correctness criterion for shared memory multiprocessors.
Many early distributed shared memory systems proposed
in  the literature implement sequential consistency. Ivy
[25], Mirage [10] and KOAN [20] are examples of
sequentially consistent distributed shared memory
systems.

Our definition of sequential consistency is derived from
the definition presented in [4]:

Definition 3. Sequential Consistency: A history + is
sequentially consistent if there is a legal linear

sequence  of + that respects the order →
SC

  which is
defined as follows:

i) ∀ o1, o2: if o1 →
po

  o2 then o1  →
SC

  o2.

For sequential consistency, we define a new order →
SC

 .
Like Dynamic Atomic Consistency, SC requires a total
order on +. The only  difference between  these two
models is that preserving real-time order is no longer
necessary in sequential consistency.

3.3  Causal Consistency

Causal consistency is a relaxed memory model that is
based on the potential causal order relation defined by
[21]. Causal consistency was implemented by the
researchers that proposed it [3] and was also implemented
in the system Clouds [17].

Since the potential causal order relation is defined to be
the irreflexive transitive closure of two order relations
(program order and read-by order) [3], we must define the
read-by order before presenting the definition of Causal
Consistency.
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Read-by Order (rb). A write operation w(x)v is read by

a read operation r(x)v    (w(x)v  →
rb

  r(x)v) if the operation
r(x)v, issued by processor pi, reads the value written by
the operation w(x)v issued by processor pj and i ≠ j.

Also, we must define a new execution history:

History +pi+w. Let + be the global execution history and
pi be a processor. The history +pi+w is called the history
of writes with respect to processor pi and it is a sub-
history of + that contains all operations issued by
processor pi and all write operations issued by the other
processors.

For the formal definition of  causal consistency, we
define an order on +pi+w. Our definition is derived from
the one proposed by [17]:

Definition 4. Causal Consistency: A history + is
causally consistent if there is a legal linear sequence

of +pi+w that respects the order →
CA

   which is defined
for each processor pi as follows:

i)  ∀ o1, o2: if o1 →
po

  o2 then o1  →
CA

  o2 and

ii)  ∀ o1, o2: if o1 →
rb

  o2 then o1  →
CA

  o2 and

iii)  ∀ o1, o2, o3: if o1 →
CA

  o2  and o2 →
CA

  o3 then o1  →
CA

 

o3.

By this definition, we can see that it is no longer
necessary for all processors to agree on the order of all
shared memory operations. Instead of using +, we use a
subset of it, +pi+w. Every processor has its own view

(+pi+w) of the shared global memory 0 and the order →
CA

  is
defined for +pi+w. In this view,  the program order of +pi+w

must be respected (i), the order read-by  must be

respected (ii) and the transitivity of the new order →
CA

  must
be preserved (iii).

3.4  Processor Consistency

Processor Consistency is perhaps the most clear
example of the problems that can arise if we do not define
consistency models in a formal way. In fact, processor
consistency is a family of memory consistency models that
are based upon the same idea but have small differences.
These differences led to different memory behaviors and,
consequently, to different memory consistency models.

The basic idea of these memory consistency models is to
relax some conditions imposed by sequential consistency
and to require only that write operations issued by the
same processor are observed by all processors in the order
they were issued. In other words, among the operations
issued by other processors, only write operations must
obey the program order.

Many parallel machines implement processor-
consistency related models, such as the VAX8800 and the
SPARC V8. The most important models in the processor
consistency family are PRAM Consistency [26] and
Processor Consistency as defined by [12] (PCG). These
two models differ basically because the latter requires that
all processors must observe the writes to the same memory
location on the same order2 whereas the former does not.
In this article, we present the formal definition of PRAM
consistency. The formal definition of PCG can be found in
[5].

Definition 5. PRAM Consistency: A history + is
PRAM consistent if there is a legal linear sequence of

+pi+w  that respects the order →
PRAM

   which is defined for
each processor pi as follows:

i)  ∀ o1, o2: if o1 →
po

  o2 then o1  →
PRAM

  o2.

By this definition, we can see that the PRAM order is
defined on +pi+w. In this view, the program order must be
respected. That means that, for each processor pi, the
program order of  pi and the program order of the writes
issued by the other processors must be respected (i).

3.5  Slow Memory

Slow Memory was proposed by [15] and is one of the
most relaxed memory consistency models. Slow Memory
only requires that writes issued by the same processor on
the same memory location must be seen by the other
processors in program order. This is really a weak
condition. Nearly all traditional mutual exclusion
solutions fail on slow memory. In such a memory, the
history presented in Figure 1 would be valid.

Definition 6. Slow Memory: A history + is slow
consistent if there is a legal linear sequence of +pi+w

that respects the order →
SL

  which is defined for each
processor pi as follows:

                                                          
2 In the literature, this condition is often called cache coherence or data
coherence.
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i)  ∀ o1, o2: if processor(o1)=processor(o2)=pi and o1 →
po

 

o2 then o1  →
SL

  o2, and
 
ii)  ∀ o1, o2: if processor(o1) = processor (o2) and

address(o1) = address(o2) and o1 →
po

  o2 then o1  →
SL

  o2.

By the above definition, we can see that only the local
program order must be respected (i) and all processors
must agree about the processor write order on the same
memory location (ii). As in PRAM Consistency, all
processors must eventually see all write operations issued
by all processors since the order is defined on +pi+w.
However, it is no longer necessary to fully respect
program order on +pi+w.

3.6  Relating Uniform Memory Models

Defining Memory Consistency Models formally makes
it easier to compare and relate them. Figure 2 shows the
relation among the previously defined models. Each
rectangle represents the possible results that can be
produced under the named Memory Model.

 

Dynamic 
Atomic

Consistency

Sequential Consistency

Causal Consistency

PRAM Consistency

Slow Memory

Figure 2. Relating Uniform Models

In Figure 2, the strongest memory model is Dynamic
Atomic Consistency because it imposes a total order on +

and requires real time order to be preserved. Sequential
Consistency imposes only a total order on +. Henceforth,
Dynamic Atomic Consistency is strictly stronger than
Sequential Consistency. That means that every history
which obeys Dynamic Atomic Consistency also respects
Sequential Consistency. Causal Consistency is strictly
stronger than PRAM Consistency. Both Memory
Consistency Models require that program order on +pi+w

must be preserved. However, Causal Memory requires
also that all processors must respect the read-by order.
PRAM Consistency is strictly stronger than Slow Memory

since Slow Memory only requires program order on + pi+w

to be respected when some conditions are true.
By Figure 2, we can induce erroneously that memory

models are always comparable. However, many memory
models are incomparable. Causal Consistency and PCG
are an example of incomparable memory models.

4.  Defining Hybrid Memory Consistency
Models

Even on uniprocessor systems, processes that use only
the basic shared memory operations to communicate can
produce unexpected results. For this reason,
synchronization operations must be used every time
processes want to restrict the order on which memory
operations should be performed. Using this fact, hybrid
Memory Consistency Models guarantee that processors
only have a consistent view of the shared memory at
synchronization time. This allows a great overlapping of
basic memory accesses that can potentially lead to
considerable performance gains.

Defining hybrid memory models is more complex than
defining uniform ones. This is basically for three reasons.
First, there are more types of operations that must be
considered. There is at least one more type of memory
operation: sync (synchronization type). Second, there are
at least two different orders: one order that relates basic
operations to synchronization operations and one order
that relates synchronization operations exclusively. Third,
and perhaps the most important reason, we do not
consider program order anymore to relate operations. To
order operations, we use a relaxation of program order
called comes-before order.

Comes-Before Order (cb). An operation o1(x)v comes

before an operation o2(x)v (o1(x)v  →
cb

  o2(x)v) if:

i)  (type(o1) = sync and type(o2) ≠ sync) or (type(o1) ≠

sync and type(o2) = sync) and o1 →
po

  o2; or
ii)  type (o1) = write and type(o2) = write and

address(o1) = address(o2) and o1 →
po

  o2 and ∃ o3 such

that o1 →
po

  o2 →
po

  o3 where type(o3) = sync.

By this definition, only synchronization operations that
precede basic operations in the program code and vice-
versa are ordered (i). To preserve intraprocessor
dependencies, we order also all write operations issued by
the same processor on the same address according to
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program order if there is a synchronization operation that
follows the write operations (ii).

In the rest of this section, the formal definitions of four
hybrid memory models are presented.

4.1  Weak Ordering

Weak ordering was the first consistency model to make
the distinction between basic and synchronization
operations. It was originally defined by [9] and later
redefined by [1]. In the present paper, we will use the
original definition: A system is weakly ordered if (1)
accesses to global synchronizing variables are strongly
ordered; (2) no access to a synchronizing variable is
issued by a processor before all previous global data
accesses have been globally performed and if (3) no
access to global data is issued by a processor before a
previous access to a synchronization variable has been
globally performed. In [9], it is stated that intraprocessor
dependencies and local program order must be respected.
We assume also that conditions (2) and (3) refer to all
global data accesses issued by the same processor that
issues a synchronizing access.

In weak ordering, there are three operation types: read
(r), write (w) and synchronization (sync). There is also a
new execution history:

History +pi+w+sync. Let + be the global execution history
and pi be a processor. The history +pi+w+sync is called
the history of writes and synchronization operations
with respect to processor pi and it is a sub-history of +
that contains all operations issued by processor pi and
all write and sync operations issued by the other
processors.

Definition 7.  Weak Ordering: A history + is weakly
ordered if there is a legal linear sequence of +pi+w+sync

that respects the order →
WO

  which is defined for each
processor pi as follows:

i)  ∀ o1, o2: if type(o1)=type(o2)=sync and ∃ +pj+w+sync

where o1 →
Hpj+w+sync

 o2 then o1 →
WO

 o2 and

ii)  ∀ o1, o2: if o1 →
cb

  o2 then o1  →
WO

  o2 and
iii)  ∀ o1, o2: if processor(o1)=processor(o2)=pi and o1

→
po

  o2 then o1  →
WO

  o2 and

iv)  ∀ o1, o2, o3: if o1 →
WO

  o2  and o2 →
WO

  o3 then →
WO

  o3.

In this definition, we state that synchronization
operations must be seen on the same order by all
processors, i.e, they must be sequentially consistent (i), the
comes-before order must be respected (ii), the local
program order must be respected (iii) and the transitivity

of  →
WO

  must be guaranteed (iv).

4.2  Release Consistency

Release consistency was defined by [11] and it is one
of the most popular hybrid memory models. Release
Consistency is a relaxation of weak ordering where
competing accesses are called special accesses. Special
accesses are divided into synchronization operations and
non-synchronization operations. There are two subtypes of
synchronization operations: acquire accesses and release
accesses.

Informally, in release consistent systems, it must be
guaranteed that: before an ordinary access performs, all
previous acquire accesses must be performed; and before
a release performs with respect to any other processor, all
previous ordinary accesses must be performed. There is
also a third condition that requires special accesses to be
processor consistent. We find in the literature many
systems that implement release consistency: Munin [8]
and TreadMarks[18] are examples of release consistent
distributed shared memory systems. DASH [24] is a
release consistent parallel architecture.

In order to define release consistency formally, we
must before define the synchronization order (proposed by
[1]):

Synchronization Order (so). An operation o1(x)v is
ordered before o2(x)v by the synchronization order

(o1(x)v  →
so

  o2(x)v) if :
i)  type(o1) = type(o2) = sync and
ii)  gt(perform(o1)) < gt(perform(o2)).

Our definition of release consistency is derived from
the one presented by [19]. In this definition, release
accesses are seen as special write accesses. Similarly,
acquire accesses are treated as special read accesses. For
this reason, we use a new execution history:

History +pi+w+release. Let + be the global execution
history and pi be a processor. The history +pi+w+release is
called the history of writes and release operations with
respect to processor pi and it is a sub-history of + that
contains all operations issued by processor pi and all
write and release operations issued by the other
processors.
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Definition 8. Release Consistency: A history + is
release consistent if there is a  legal linear sequence of

+pi+w+release  that respects the order →
RC

  which is defined
for each processor pi as follows:

i)  ∀ o1, o2, o3: if o1 →
so

  o2  →
cb

  o3 on + and  subtype(o1) =
release and  subtype(o2) = acquire and  type(o3) ∈

{r,w} then o1  →
RC

  o3 and

ii)  ∀ o1, o2: if o1 →
cb

  o2 on +pi+w+release  and type(o1) ∈

{r,w} and  subtype(o2) = release then o1  →
RC

  o2 and
iii)  ∀ o1, o2: if  processor(o1)=processor(o2)=pi and o1

→
po

 o2 then o1 →
RC

  o2.

In short, the definition of  →
RC

  imposes that

synchronization order →
so

  must be preserved. In addition,
all basic memory operations that follow the acquire must
be ordered after the acquire (i) and all basic memory
operations must be performed before the release is issued
(ii). Condition (iii) simply states that program order of pi

must be preserved in pi's view.

4.3  Entry Consistency

Entry Consistency is a hybrid memory consistency
model proposed by [7] that establishes a relation between
synchronization variables used to enter a critical section
and the shared variables guarded by this critical section.
Under entry consistency, a consistent view of part of the
memory is only guaranteed at the moment a processor
acquires a lock and enters a critical section.

According to the informal definition, a system is entry
consistent if an acquire access on lock s is not allowed to
perform with respect to processor pi until all (previous)
updates to the shared data guarded by s have been
performed with respect to processor pi. Entry consistency
defines the set Ds as the set of shared variables that are
guarded by synchronization variable s. The function
associate(s, d) includes the shared data d on the set Ds.
Entry consistency allows a synchronization access to be
exclusive or non-exclusive. In our definition, we will
consider only exclusive-mode synchronization accesses.

For the formal definition of Entry Consistency, we
must define  the data_guarded function:

Function data_guarded: data_guarded(x) = {y | y is an
address guarded by x}

Two new orders must also be defined: synchronization-
order-1 and a data-guarded-comes-before order.

Synchronization-Order-1 (so1). An operation o1(x)v is
ordered before o2(x)v by the synchronization order-1

(o1(x)v  →
so1

  o2(x)v) if

 i)  o1(x)v  →
so

  o2(x)v and
 ii) address(o1) = address (o2).

Data-Guarded-Comes-Before (dgcb). An operation
o1(x)v is ordered before o2(x)v by the data-guarded-

comes-before order (o1(x)v  →
dgcb

  o2(x)v) if   o1(x)v  →
cb

 

o2(x)v and
i)  subtype(o1) = acquire and type(o2) ∈ {r,w}  and

address(o2) ∈ data_guarded( address(o1)) or
ii)  type(o1) ∈ {r,w}  and subtype(o2) = release and

address(o1) ∈�data_guarded( address(o2));

By synchronization-order-1, only synchronization
operations to the same address are related. Also, data-
guarded-comes-before relates only synchronization
operations to shared data operations that are guarded by
them.

Definition 9. Entry Consistency: A history +�is entry
consistent if there is a  legal linear sequence of

+pi+w+release  that respects the order →
EC

  which is defined
for each processor pi as follows:

i)  ∀ o1, o2, o3: if o1 →
so1

  o2  →
dgcb

  o3  in + and
subtype(o1) = release and  subtype(o2) = acquire and

type(o3) ∈ {r,w} then o1  →
EC

 o3 and

ii)  ∀ o1, o2: if o1 →
dgcb

  o2 on +pi+w+release  and type(o1) ∈

{r,w} and  subtype(o2) = release then o1  →
EC

 o2 and

iii)  ∀ o1, o2, o3: if o1 →
EC

  o2  and o2 →
EC

  o3 then o1  →
EC

 o3

and
iv)  ∀ o1, o2: if processor(o1)=processor(o2)=pi and o1

→
po

  o2 then o1  →
EC

 o2.

The definition of  →
EC

  states that (i) a release
synchronization access on lock x must be ordered before
all shared data accesses guarded by x that occurs after the
next acquire to x. This is exactly what states the informal
definition of Entry Consistency. However, it is also
necessary (ii) to order accesses to shared data guarded by
a lock x before the release on lock x. This relation and
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transitivity of EC (iii) guarantee that all previous accesses
to shared data guarded by x will be performed before the
next acquire on x is performed. Also, local program order
must be preserved (iv).

4.4  Scope Consistency

The goal of Scope Consistency is to take advantage of
the association between synchronization variables and
ordinary shared variables they protect in a reasonably easy
programming model. It was proposed by [16]. In scope
consistency, executions are divided into consistency
scopes that are defined in a per lock basis. Just like Entry
Consistency, Scope Consistency orders only
synchronization and data accesses that are related to the
same synchronization variable. However, the association
between shared data and the synchronization variable that
guards them is implicit and depends on program order.
Informally, a system is scope consistent if (1) before a
new section of a consistency scope is allowed to open at
process P, any write previously performed with respect to
that consistency scope must be performed with respect to
P; and (2) A memory access is allowed to perform with
respect to a process P only after all consistency scope
sessions previously entered by P (in program order) have
been successfully opened.

As it can be easily seen, Scope Consistency and Entry
Consistency are very similar memory models. The
difference is that Scope Consistency considers that data
inside a critical section guarded by lock l are
automatically associated with l whereas Entry Consistency
requires this association to be provided by the
programmer.

In order to define scope consistency formally, we will
define a new comes-before related order:

Scope-Comes-Before (scopcb). An operation o1(x)v is
ordered before o2(x)v by the scope-comes-before order

(o1(x)v  →
scopcb

  o2(x)v) if :

i) ∃ o3 such that o3 →
cb

  o1 →
cb

  o2 and subtype(o3) = acquire
and type(o1) ∈ {r,w}  and subtype(o2) = release and
address(o3) = address(o2), or

ii) subtype(o1) = acquire and type(o2) ∈ {r,w} and  ∃/  

o3 such that o1 →
cb

  o3 →
cb

  o2 where subtype(o3) = release
and address(o1)= address(o3).

Definition 10. Scope Consistency: A history + is
scope consistent if there is a  legal linear sequence of

Hpi+w+release that respects the order →
SCOP

 which is defined
for each processor pi as follows:

i)  ∀ o1, o2, o3: if o1 →
so1

  o2  →
scopcb

  o3  in + and
subtype(o1) = release and  subtype(o2) = acquire

and  type(o3) ∈ {r,w} then o1  →
SCOP

 o3 and

ii)  ∀ o1, o2: if o1 →
scopcb

  o2 on +pi+w+release  and type(o1) ∈

{r,w} and  subtype(o2) = release then o1  →
SCOP

  o2

and

iii)   ∀ o1, o2, o3: if o1 →
SCOP

  o2  and o2 →
SCOP

  o3 then o1

→
SCOP

  o3 and

iv)  ∀ o1, o2: if processor(o1)=processor(o2)=pi and o1 →
po

 

o2 then o1  →
SCOP

  o2.

As stated before, the only difference between Entry
Consistency and Scope Consistency is the order used to
establish the operations that are guarded by critical
sections. In the case of Scope Consistency, we use the
Scope-Comes-Before order while Data-Guarded-Comes-
Before is used in Entry Consistency.

4.5  Relating Hybrid Models

The same Venn Diagram-like representation presented
in section 3.6 is used in figure 3 in order to relate the
previously defined hybrid memory consistency models.

Weak
Ordering

Release Consistency

Entry 
Consistency

Scope 
Consistency

Figure 3 - Relation among hybrid models

By the formal definitions, it is quite clear that, among
the hybrid models, weak ordering is the strongest one. It
imposes that all shared memory accesses previous to a
synchronization access must be performed before the
synchronization access performs and that no shared data
access must be issued until all previous synchronization
accesses are performed. Release Consistency is a model
that divides the unique synchronization access of weak
ordering into two distinct accesses: release and acquire.
The first condition of weak consistency refers only to
release accesses in release consistency while the second
one refers only to acquire accesses. That is why Weak
Ordering is strictly stronger than Release Consistency.
While both Entry Consistency and Scope Consistency are
strictly weaker than Release Consistency, they are not
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comparable. Depending on the association made between
locks and shared data by the programmer, Entry
Consistency can produce histories that are not valid in
Scope Consistency and vice-versa.

5 Related Work

Adve [2] has proposed a quite complete methodology
to specify memory models. A great number of memory
models were considered. The aim of her work, however,
was to define relaxed models in terms of sequential
consistency. The central hypothesis of this study is that all
parallel programmers would prefer to reason as if they
were programming a time-sharing uniprocessor.

A set of formal definitions was also proposed in [29].
The objective of this study was to understand memory
models and compare them. The following memory models
were defined using the proposed notation: atomic
consistency, sequential consistency, causal consistency
and PRAM consistency.

Kohli et al. [19] also proposed a formal framework to
relate memory models  where  sequential consistency,
TSO3, processor consistency and release consistency were
defined.

Heddaya and Sinha [13] proposed a formalism and a
system - Mermera - that permits multiple memory models
in a single execution. Shared memory is accessed by read
and write primitives. Reads are always local. The
following memory models were formally defined:
sequential consistency, PRAM consistency, slow memory
and local consistency.

Recently, Higham et al. [14] proposed a new
framework to describe memory consistency models. The
authors defined atomic consistency, sequential
consistency, data coherence, PRAM consistency,
processor consistency, weak ordering, TSO and PSO.

Our work has some similarities with [14] and [29].
However, we propose more generic function-based
definitions that permit very relaxed models to be
described in a simple way. As far as we know, our work is
the first one to propose a unified framework where per-
lock basis relaxed hybrid memory models are formally
defined.

6 Conclusion and Future Work

In this article, we presented a unified framework to
describe memory consistency models in a formal way. A
large set of well-known uniform and hybrid Memory

                                                          
3 TSO and PSO are memory models where ordinary accesses are ordered
by processor-consistent related models and synchronization operations
are similar to the sync operation on weak ordering.

Consistency Models were defined. We also related
memory models to each other. We claim that this task is
much easier when memory models are defined formally.

As future work, we intend to propose a unified
framework where memory coherence protocols can be
specified. Having memory consistency models and
memory coherence protocols definitions on unified
frameworks, we will investigate the semi-automatic
generation of DSM systems when a pair (memory
consistency model, memory coherence protocol) is
chosen.
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