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Abstract

This paper describes Shasta, a system that supports a shared ad-
dress space in software on clusters of computers with physically
distributed memory. A unique aspect of Shasta compared to most
other software distributed shared memory systems is that shared
data can be kept coherent at a fine granularity. In addition, the
system allows the coherence granularity to vary across different
shared data structures in a single application. Shasta implements
the shared address space by transparently rewriting the application
executable to intercept loads and stores. For each shared load or
store, the inserted code checks to see if the data is available lo-
cally and communicates with other processors if necessary. The
system uses numerous techniques to reduce the run-time overhead
of these checks. Since Shastais implemented entirely in software,
it also provides tremendous flexibility in supporting different types
of cache coherence protocols. We have implemented an efficient
cache coherence protocol that incorporates a number of optimiza-
tions, including support for multiple communication granularities
and use of relaxed memory models. This system s fully functional
and runs on acluster of Alphaworkstations.

The primary focus of this paper is to describe the techniques
used in Shastato reduce the checking overhead for supporting fine
granularity sharing in software. These techniques include care-
ful layout of the shared address space, scheduling the checking
code for efficient execution on modern processors, using a simple
method that checksloads using only the value loaded, reducing the
extra cache misses caused by the checking code, and combining the
checks for multiple loads and stores. To characterize the effect of
these techniques, we present detailed performance results for the
SPLASH-2 applications running on an Alpha processor. Without
our optimizations, the checking overheads are excessively high, ex-
ceeding 100% for several applications. However, our techniques
are effective in reducing these overheads to a range of 5% to 35%
for almost al of the applications. We also describe our coherence
protocol and present some preliminary results onthe parallel perfor-
mance of several applications running on our workstation cluster.
Our experienceso far indicatesthat once the cost of checkingmem-
ory accessesis reduced using our techniques, the Shasta approach
is an attractive software solution for supporting a shared address
spacewith fine-grain accessto data.

Chandramohan A. Thekkath
Systems Research Center
Digital Equipment Corporation

1 Introduction

There has been much recent interest in supporting a shared ad-
dress spacein software across distributed-memory multiprocessors
or workstation clusters. A variety of such distributed shared mem-
ory (DSM) systems have been developed, using various techniques
to minimize the software overhead for supporting the shared ad-
dress space. For example, some systems require programmer an-
notations or explicit calls to access shared data [2, 11]. Another
approach, called Shared Virtual Memory (SVM), uses the virtual
memory hardware to detect accessto data that is not available lo-
cally [4, 13, 12]. In most such systems, the granularity at which
datais accessed and kept coherent is large, becauseit is related to
the size of an application data structure or the size of avirtual page.

Wehavedevelopedasystem called Shastato investigatethefea-
sibility of supporting fine-grain sharing of data entirely in software.
Fine-grain accessto shared datais important to reducefalse sharing
and the transmission of unneeded data, both of which are potential
problemsin systemswith large coherencegranularities. Shastauses
the basic approach of the Blizzard-S system from Wisconsin [18].
Shasta implements the shared address space by inserting checks
in an application executable at loads and stores. This inline code
checksif the data is available locally and sends out the necessary
messages to other processors if the operation cannot be serviced
locally.

Minimizing the cost of the access control checksis critical to
making the above approach viable. Without our optimizations,
overheads associated with these checks range from 50 to 150% in
many applications, evenfor carefully coded inline checksthat con-
sist of seven instructions. To address the above problem, we have
implemented a variety of techniques that greatly reduce checking
overhead and makeit feasible to support shared memory with fine-
grain accessin software. Thesetechniquesinclude (1) careful layout
of the addressspace, (2) instruction scheduling of the checking code
with respect to the application code, (3) using a novel techniqueto
do load checks based on the value loaded, (4) applying a method
to reduce extra cache misses caused by the checking code, and (5)
“batching” together checksfor multiple loads and stores.

Theaboveoptimizations are extremely effectivein loweringthe
overheads due to access checks. Our results show these overheads
can be reduced to a range of 5% to 35% on a single processor for
almost all of the SPLASH-2 applications. These results are encour-
aging for several reasons. First, there is still much room for more
aggressive compiler optimizations, including scheduling applica-
tion and checking instructions better and extending our techniques
to useinterprocedural analysis. Second, more of the checking over-
head may be hidden on more modern processors with dynamic
scheduling capability [10]. Finally, the relative effect of the check-
ing overhead is typically less on the parallel execution time due to
the overheads arising from communication and synchronization.

Since the shared address spaceis supported completely in soft-
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Figure 1: Shastacompilation process.

ware, Shasta provides a flexible framework for experimenting with
avariety of cache coherence protocol optimizationsto improve par-
allel performance. One of the unique aspectsof the cachecoherence
protocol that we have developed (relative to other software proto-
colsthat transparently support a shared address space) is its ability
to support different coherencegranularities for different shared data
structures within a single application. Our protocol also includes
optimizations, such as non-stalling stores, that exploit a relaxed
memory model.

We have implemented the Shasta system on clusters of Alpha
workstations connected by an ATM network or a Memory Channel
network [9]. We use a modified version of ATOM [20] that can
insert any Alpha instructions at any point in the executable. As
illustrated in Figure 1, our Shasta compiler automatically modifies
application executables developed for a hardware shared-memory
multiprocessor so that they run on a cluster of workstations.

The following section describes the implementation concepts
of the Shasta system, including the basic method of checking the
loads and stores. Section 3 describes in detail our techniques for
reducing the checking overheads. We discuss optimizations to the
basic cache coherence protocol in Section 4. Section 5 analyzes
the effectiveness of our techniques by presenting actual checking
overhead results for the SPLASH-2 applications. It also provides
some preliminary parallel performanceresults. Finally, we describe
related work and conclude.

2 Basic Design

Shasta divides the virtual address space of each processor into pri-
vate and shared regions. Data in the shared region may be cached
by multiple processors at the sametime, with copiesresiding at the
same virtual address on each processor. In the current Shasta sys-
tem, we have adopted the memory model of the original SPLASH
applications [19]: datathat is dynamically allocated is shared, but
all static and stack data is private. The use of this kind of model
reduces overhead by avoiding checks on loads and storesto private
data, such as the stack.

2.1 Cache Coherence Protocol

The Shasta system requires a protocol to ensure coherence among
cached copies of shared data. Asin hardware cache-coherent mul-
tiprocessors, shared datain the Shastasystem hasthree basic states:

¢ invalid - the datais not valid on this processor.

e shared - the datais valid on this processor, and other proces-
sors have copies of the data aswell.

e exclusive - the data is valid on this processor, and no other
processors have copies of this data.

Data can be read on the local processor if the datais in the shared
or exclusive state; data can be written on the local processor only
if the dataiis in the exclusive state. Communicationis required if a
processor attemptsto read datathat isin theinvalid state, or attempts
to write data that is in the invalid or shared state. In this case, we
say that there is a shared miss. The checksthat Shasta inserts in
the application executables at each load and store are shared miss
checkson the data being referenced.

Asin hardware shared-memory systems, Shasta divides up the
shared address spaceinto ranges of memory, called blocks. All data
within a block is in the same state and is always fetched and kept
coherent as a unit. A unique aspect of the Shasta system s that the
block size can bedifferent for different rangesof the shared address
space(i.e., for different program data). To simplify the inline code,
Shasta divides up the address space further into fixed-size ranges
called lines and maintains state information for each linein a state
table. Theline sizeis configurable at compiletime and is typically
set to 64 or 128 bytes. The size of each block must be a multiple
of the fixed line size. The fixed size of lines makes it easy to
map from an address to the location of the state table entry for the
corresponding line. Furthermore, on each processor, al linesin a
given block have the same cache state becausedata is kept coherent
at the block granularity.

In our current implementation, coherence is maintained using
adirectory-based invalidation protocol. A home node is associated
with each virtual page of shared data. The homes for contiguous
virtual pages are allocated in a round-robin fashion by default. We
also allow the application to explicitly specify the home for indi-
vidual pages. The protocol supports three types of requests: read,
read-exclusive, and exclusive (or upgrade). Supporting exclusive
reguests is an important optimization since it reduces message la-
tency and overhead if the requesting processor already hasthe line
in shared state. We also currently support three types of synchro-
nization primitives in the protocol: locks, barriers, and event flags.
These primitives are sufficient for supporting the SPLASH-2 appli-
cations.

Each node maintains directory information for the shared data
pagesassignedto it. The protocol maintains the notion of an owner
node for each line, which corresponds to the last node that main-
tained an exclusive copy of the line. The directory information
consistsof two components: (i) apointer to the current owner node,
and (ii) afull bit vector of the nodesthat are sharing the data. Our
protocol supports dirty sharing, which allows the data to be shared
without requiring the home node to have an up-to-date copy. A
reguest that arrives at the home is always forwarded to the current
owner node; as an optimization, we avoid this forwarding if the
home node has a copy of the data.  Finally, our protocol depends
on point-to-point order for messages sent between any two nodes.

Given the relatively high overheads associated with handling
messagesin software DSM implementations, we have designed our
protocol to minimize extraneouscoherencemessages. For example,
because the current owner node specified by the directory guaran-
teesto service arequest that is forwarded to it, we can complete all
directory state changeswhen a request first reachesthe home. Our
protocol therefore eliminates extra messages(common in hardware
shared-memory protocols) sent back to the home to confirm that a
forwarded request was satisfied. In addition, the number of invali-
dation acknowledgementsthat are expected for an exclusiverequest
is piggybacked on one of the invalidation acknowledgementsto the
reguestor instead of being sent as a separate message.



2.2 Polling

Because of the high cost of handling messages via interrupts, mes-
sagesfrom remote nodes are serviced through a polling mechanism.
Our current implementation polls for incoming messageswhenever
the protocol waits for areply. To ensure reasonableresponsetimes,
we also insert polls either at every function call or at every loop
backedge. On both our ATM cluster and Memory Channel cluster,
polling is inexpensive (three instructions), because we have ar-
ranged for asingle cachablelocation that can be tested to determine
if amessage has arrived.

Our use of polling also simplifies the inline miss checks, since
the Shasta compiler ensures that there is no handling of messages
during a shared miss check. The miss checksare therefore executed
atomically with respect to the message handlers and do not require
extra instructions to disable message handling. Implementations
that handle messages via interrupts may incur a somewhat higher
overhead for miss checks due to extra instructions that are needed
for ensuring atomicity.

2.3 Deciding Which Loadsand Storesto I nstrument

We will refer to adding a shared miss check in the executable for
aload or store as instrumenting the load or store. Shasta does not
need to instrument accessesto non-shared (i.e., private) data, which
includes all stack and static data in our current implementation.
Therefore, we do not instrument aload or store that uses the stack
pointer (SP) asits baseregister. Similarly, since the global pointer
(GP) register on the Alpha always points into the static data area,
we do not instrument a load or store that uses the GP as its base
register. The Shastacompiler does dataflow analysisthat tracksthe
contentsof other processor registersduring aprocedureto determine
whether the value of a register was calculated using the value of
the SP or GP. Loads and stores that use a base register whose
current value was calculated using the contents of the SP or GP
are also not instrumented. Since our compiler does not currently
do the necessary interprocedural analysis, we conservatively treat a
register’s contents as undefined if the register is saved to the stack
and restored after a procedurecall.

24 Implementation of the Shared Miss Check

In the simplest implementation of the shared miss check, the inline
code must determine the line corresponding to the target address
and check the state of that line. As an optimization, the code may
first check if the target addressis in the shared memory range. The
advantage of doing the range check is that the miss check can finish
immediately if the addressis not in the shared memory range and
the system does not need to maintain state information for any of
the local, non-shared data.

Figure 2 shows Alpha assembly code that does a store miss
check. This code has already been optimized in a number of ways.
First, we have chosento make the exclusive state be represented by
azero, so we cantest for that state with asingleinstruction. Second,
the code doesnot save or restore any registers. The Shastacompiler
does live register analysis to determine which registers are unused
at the point where it inserts the miss check and uses those registers
(labeled r x and ry in the figure). Although it can insert code to
save registers as necessary, we have found that there are sufficient
free registers to use for the miss checksin virtualy all cases.

Finally, the code in Figure 2 has been simplified by using the
address space layout shown in Figure 3. In our current implemen-
tation, we place all shared data (and no private data) in each proces-

1. lda rx, offset(base)

2. srl rx, 39, ry

3. beq ry, noniss

4, srl rx, 6, rx

5. ldg_u ry, 0(rx)

6. extbl ry, rx, ry

7. beq ry, noniss

8. ... call function to handle store niss
9. nom ss:

10. ... original store instruction ...

Figure 2: Optimized codefor a store miss check.

shared data

0x8000000000

state table | 0x200000000
static data
0x140000000
text
0x120000000
stack
0x100000000

Figure 3: Shastamemory layout on Alphas.

sor’s address space above 02 8000000000. It istherefore possibleto
check if an addressis in the shared memory range by a simple shift.
We also place the state table such that shifting the target address
by a number of bits corresponding to the line size directly gives us
the address of the state table entry. For aline size of 64 bytes, we
placethe state table at address 028000000000/ 2% = 0x200000000.
Alpha’s 64-bit address space makes the layout of the address space
somewhat easier, but it should be possible to lay out memory in a
similar way in a 32-bit address space.

Inline 1 of Figure 2, we calculate the target address of the load
using the offset and base register of the original load instruction.
Line 1 can be eliminated if the offset of the storeis zero. Inlines 2
and 3, weskip to thenon-misscodeif theaddressisnot in the shared
memory range. Line4 determinesthe addressof the statetable entry
for the databeing referenced. Lines5 and 6 are theinstructions that
load and extract the byte-size state table entry (the Alpha 21064A
and 21164 processors do not have a direct byte-load instruction).
In the inline miss handling code, we load a register with the target
address of the store and call a software handler to serve the miss
for that address. The handler always saves all integer registers so
as not to interfere with the state of the application; no floating-
point operations occur in any of the handlers, so the floating-point
registers do not need to be saved.

3 Optimizationsto Reduce Check Overhead

In this section, we describe a variety of techniques that we have
used to further reduce the overhead of doing the miss checks. We
first describeinstruction scheduling techniquesthat reducethe cycle



1. Ida rx, offset(base)

2. srl rx, 39, ry

3. srl rx, 6, rx

4. beq ry, nomss

5. ldqg_u ry, 0(rx)

6. extbhl ry, rx, ry

7. beq ry, nomss

8. ... call function to handle store mss
9. nom ss:

10. ... store instruction ...

Figure 4: Rescheduled store miss check code.

overhead of the miss checks. We then describe a novel method of
doing the load miss check and a method of reducing cache misses
on stores. Finally, we describe amethod of combining the checking
for multiple loads and stores. Our emphasisis always on reducing
the cost of a check when there is no shared data miss, since that is
the common case.

3.1 Instruction Scheduling

Instruction scheduling techniques can be used to reduce the
overhead of the miss check code. Because most modern processors
are pipelined and superscalar, the added code should be arranged to
have minimum pipeline delays and maximum potential for multiple
issue. For example, on the Alpha 21064A processor, there is a
one-cycle delay before the result of a shift operation can be used.
Therefore, it is clearly beneficial to change the code to that shown
in Figure 4, so that the second shift occupiesthe delay slot of the
first shift and the stall between the second shift and thel dq_u is
eliminated.

The overhead of the added code can also potentially be reduced
by placing the extra instructions at points where there are pipeline
stalls or unused issue slots in the original application code. For
example, as long as registers r x and ry remain unused, the first
three instructions of the code in Figure 4 can be moved upward
from the instrumentation point within a basic block without affect-
ing the application code. Theseinstructions can therefore be moved
up among the application code to potentially hide their overhead.
We currently do alimited version of this optimization. The current
Shasta system requiresthat the store being instrumented is executed
before the store missroutine is called (if thereisamiss). Therefore
weplacethelines 1 through 3 of the miss check beforethe store (line
10) and the remaining instructions after the store. The advantageof
this placement is that there may be along-latency instruction im-
mediately preceding the storein the application code that calculates
the value being stored. The store instruction must stall until this
preceding instruction completes, so the overhead of the first three
instructions may therefore be partially or completely hidden.

3.2 Improving L oad Checks

We use another key techniquethat dramatically reducesthe overhead
for the load miss check. Whenever a line on a processor becomes
invalid, westoreaparticular “flag” valuein each longword (4 bytes)
of theline. Instead of doing the range check and looking at the state
table entry, the miss check codefor aload canjust comparethe value
loaded with theflag value. If theloaded valueisnot equal to theflag
value, thenthereisnomiss(i.e., thedataisvalid) and theapplication

code can continue immediately. If the loaded valueis equal to the
flag value, then a miss routine is called that first does the normal
range check and state table lookup. The state check distinguishes
an actual miss from a “false miss” (i.e., when the application data
actually contains the flag value), and simply returns back to the
application code in case of afalse miss. Since false misses almost
never occur in practice, the above technique can greatly reduce the
load miss check overhead.

The Alpha 21064A and 21164 support two granularities for
loads operations: longwords (4 bytes) and quadwords (8 bytes). By
storing the flag value in each longword of the line, we can handle
both cases using the code in Figure 5(a) In this code, line 1 isthe
original load instruction in the application and r x is afree register.
We chosethevalue-253 asour “flagvalue” so that we can determine
if theloaded value equalsthe flag with asingle add instruction. Line
2 in the figure is an add-long instruction that drops the top 32 bits
of the source register, thus handling the case of a quadword load.
We chose the value -253 without any experimentation and have
seen almost no matches to the flag value (i.e., false misses) in our
applications. It is likely that almost any constant that is not zero
and not a small positive integer would also work.

Besides reducing the instruction overhead greatly, the “flag”
technique has a number of other advantages. The main advantage
isthat we have eliminated the load of the state table entry. There-
fore, we do not cause any additional data cache misses beyondwhat
would occur in the application code. In addition, the flag technique
essentially combines the load of the data and the check of its state
into a single atomic event. This property can potentially simplify
other Shasta implementations that use interrupts for handling in-
coming messages or that use shared memory in SMP clusters to
allow more efficient sharing among processors on the same node.

The flag technique also applies to floating-point loads. The
straightforward option is to do a floating-point compare on the
loaded floating-point register. However, the latency of floating-
point comparesand branchesis much greater than the corresponding
integer operation (4-6 cyclesvs. 1 cycle) in current Alpha proces-
sors. Therefore, we instead insert an additional integer load to the
same target address as the floating-point load, and apply the flag
technique to the integer value, as shown in Figure 5(b) (line 2 is
the original floating-point load). Even with the additional load, the
flag techniqueis still much cheaper than a state table check. Other
processors and newer versions of the Alpha processor also support
byte- and word-level loads. The flag technique can be usedin these
cases in the same way as for the floating-point loads. We simply
add an extra instruction that loads in the longword which is then
used for the flag compare.

Instruction scheduling techniques apply to the code in Figure
5(a) (and (b)). In the current Shasta compiler, we attempt to move
the entire check (from line 2 on in Figure 5(a)) down in the ap-
plication code so asto avoid a pipeline stall on the load when the
add instruction is executed at line 2 (the processor stalls on use).
Thisoptimization isimportant sincethe Alphacompiler istypically
successful in scheduling the original application codeto avoid stalls
on loadsin the case of afirst-level cache hit.

3.3 Improving Store Checks

One potential source of high overhead for the store miss checksare
hardware cache misses incurred when loading the state table entry.
Applications with good spatial locality will likely not cause many
such hardware cache misses, since each byte-size state table entry
mapsthe state of awhole Shastaline. For example, given a 64-byte



1. |Idl rl, offset(base) 1.

or |ldq rl, offset(base) 2.
2. addl rl, 253, rx 3.
3. bne rx, nomss 4,
4, ... call function to handle | oad m ss 5.
5. nom ss: 6.
6. ... continue with application .. 7.

(€Y

| dl rx, offset(base)

| dt $f0, offset(base)
addl rx, 253, rx
bne rx, nomss

call function to handle |oad m ss

nom ss:

continue with application ...

(b)

Figure 5: Optimized load miss check code for (a) integer loads and (b) floating-point loads.

Shasta line, the memory for the state table is 1/64 of the memory
of the corresponding lines. However, applications that incur a lot
of cache misses due to poor spatial locality of the application data
will likely incur a correspondingly large number of cache misses
on the state table. To reduce the caches misses caused by the store
miss check code, Shasta maintains an additional table, called the
exclusive table, which has one-bit entries indicating whether the
corresponding lineisin exclusivestate or not. The store miss check
code can then check the exclusive table instead of the state table
to determine if the store succeeds. For a 64-byte Shasta line, the
memory for the exclusive table is 1/512 of the memory of the
corresponding lines. Therefore, the number of cache misses caused
by storemisschecksusing theexclusivetablecanbeaslittleas1/8th
of the cache misses that would be caused by store miss checksthat
use the state table. Note that with the use of the flag technique
and the exclusive table, accessesto the state table are completely
eliminated from the inline check code for both loads and stores.

3.4 Batching Miss Checks

A very important technique for reducing the overhead of misschecks
is to batch together checks for multiple loads and stores. Suppose
there are a sequence of loads and stores that are al relative to the
same (unmodified) base register and the offsets (with respect to the
base register) span arange whose length is lessthan or equal to the
Shasta line size. These loads and stores can collectively touch at
most two consecutive linesin memory. Therefore, if we verify that
the two lines that the loads and stores touch are in the correct state,
then all of the loads and stores can proceed without further checks.
We call this technique batching and refer to the set of instructions
that contain the loads and stores as the batched code. Batching is
also useful for eliminating and hiding communication latency in a
parallel execution, sinceit allows load and store missesto the same
line to be combined into a single store miss and misses on multiple
linesto be serviced at the sametime.

More generally, if wehaveaseguenceof loads and storeswhose
offsets span arange of at most » lines, then all the loads and stores
can proceed if we verify that al » or » + 1 lines covered by the
range are in the correct state. For simplicity, we always choose n
to be 2 in our implementation. This restriction does not have much
of animpact, sincemost of the loads and stores relative to the same
base register that can be batched have a small range of offsets.

One constraint on the batching techniqueis that the state of the
lines accessed by the batched loads and stores cannot be changed
within the batched code after the checks are done. We enforce this
restriction by not polling for messages in the batched code, and
by requiring that all loads and stores in the batched code (that are
potentially to shared data) are checked in the initial miss checks

for the batch. It is straightforward to do checks on multiple base
register ranges, if necessary, to cover al the loads and storesin the
batched code. Another more restrictive constraint is that a base
register cannot be modified during the batched code, since then
we may not have checked the correct lines during the initial batch
miss check. Our current system relaxes this restriction slightly by
allowing changesto a baseregister by a constant, since we can still
statically determine the range of the loads and stores.

Thebatching techniqueis alwaysuseful in reducing miss check-
ing overhead, but we find that it is especially useful for code where
the compiler has done loop unrolling. In this case, the resulting
loop body typically has many loads and stores with very little over-
head for managing the loop. Fortunately, the loads and stores are
usually all in asmall range of offsets relative to afew baseregisters
that are not modified during the loop body. Therefore, the batching
technique nearly always appliesand is very effective.

3.4.1 ChoosingL oadsand Storesto Batch

The Shasta compiler allows batching of loads and stores across ba-
sic blocks, but within a single procedure. There are typically many
ways to batch loads and stores in large procedures with multiple
basic blocks The Shasta compiler currently uses a simple greedy
algorithm. Instructions are scanned in execution order while at-
tempting to include as many loads and stores as possible in a batch.
When a conditional branch instruction that is not a backedge for
aloop is encountered, the algorithm continues its scan on each of
the two possible paths. The scanning of two pathsis merged again
if the execution of the two paths merge. If scanning along one
of the merging execution paths has already been terminated, then
scanning along the other path is also stopped. Similarly, scanning
along an execution path isterminated if it merges with an execution
path that is not part of the scan. The scanning along a given path is
terminated whenever an instruction is encountered that satisfiesone
of the following conditions:

e aload or store instruction that uses a base register that has
been modified by a non-constant since the beginning of the
batch, or

¢ aload or store instruction that makes the load/store range of
a base register more than the Shasta line size, or

e aprocedure call instruction, a branch that causesaloop, or a
procedure return instruction, or

e astoreinstruction whichisin one of the execution paths but
not in aparallel path.

The reason for the last condition is a requirement of our cache
coherence protocol that the batch miss handling code know exactly



1. |Idl rx, 0(r1l)

2. 1dl ry, 44(r1l)

3. addl rx, 253, rx

4, addl ry, 253, ry

5. beq rx, mss

6. bne ry, nomss

7. mss:

8. |l oad argunents for batch ranges and
call function to handle batch m ss

9. nom ss:

10 ... continue with the batched code ...

Figure 6: Optimized miss check code for batched loads.

which stores will be will be executed during the batched code. The
algorithm terminates when scanning along all execution paths has
been terminated.

The compiler then generates the proper checking code for all
base registers which have loads or storesin the batch. The normal
shared miss checksare used if thereis only asingle load or store for
each base register, since batching can actually increase overhead
in this case. The scanning process starts again with the earliest
instruction in the current procedurethat has not yet been scanned.

3.4.2 Codefor Batch Miss Checks

As described in the previous section, our current implementation
restricts batching to loads and stores via a particular base register
that span at most two cachelines. One convenientway to check both

linesis to do a normal shared miss check on the beginning address
and ending addressof the range. Fortunately, the checking codefor

thetwo endpoints can beinterleaved effectively to eliminate pipeline
stalls; therefore, the cycle count is less than double the cycle count
of normal checks(see Table1). For example, Figure 6 showssample
code for checking a range of quadword loads via base register r 1

with offsets 0 to 40 (rx and ry are free registers). We generate
store check code for a range if any of the memory operations in

that range are stores. When there are multiple base registers in

the batch, the checks for the registers can also be scheduled in an

interleaved manner to further reduce the total cycle count. The
check is simplified in the case of loads and stores via a particular

base register that are to the same location, since only asingle cache
lineneedsto be checked. Thebatch misscodeisexecuted if thereisa
misson any line of any baseregister range. Thereispossiblealiasing
between loads and stores via different base registers; however, the
batch checking code correctly detects a miss even if different base
register ranges have overlapping lines. We discussthe inline batch
miss code and the handling of a batch missin Section 4.3.

4 Protocol Optimizations

This section describes a number of the optimizations in the Shasta
coherence protocol that attempt to reduce the effect of the long la-
tencies and large message overheads that are typical in software
DSM systems. The optimizations include exploiting relaxed mem-
ory models, supporting coherence and communication at multiple
granularities, and batching together requestsfor multiple misses.

4.1 Exploiting Relaxed Memory Models

Our protocol aggressively exploitstherelease consistency model [8]
by emulating the behavior of a processor with non-blocking loads
and stores and a lockup-free cache. Because of our non-blocking
load and store operations, a line may be in one of two pending
states, pending-invalid and pending-shared. The pending-invalid
state corresponds to an outstanding read or read-exclusive request
on that line; pending-shared signifies an outstanding exclusive re-
quest. The protocol supports hon-blocking stores by simply issuing
a read-exclusive or exclusive request, recording where the store
occurred, and continuing. This information allows the protocol to
appropriately merge the reply data with the newly written data that
isalready in memory. Our protocol also exhibits non-blocking load
behavior due to the batching optimization, since batching can lead
to multiple outstanding loads (as described in Section 4.3).

We also support aggressive lockup-free behavior for lines that
areinapending state. Writesto apending lineareallowedto proceed
by storing the newly written data into memory and recording the
location of the storesin the miss handler (invoked dueto the pending
state). Loads from aline in pending-shared state are allowed to
proceed immediately, since the node already has a copy of the
data. Loadsfrom aline in pending-invalid state are also allowed to
proceed as long as the load is from avalid section of the line. The
above two cases are well-suited to the “flag” check for loads since
this technique can efficiently detect a “hit” in both cases without
actually checking the state for the line. Finally, in the case of a
pending read-exclusive request, we allow the requesting processor
to usethereply dataas soon asit arrives (by immediately setting the
local state to exclusive), even thoughrequestsfrom other processors
aredelayed until all pending invalidations are acknowledged.

4.2 Multiple Coherence Granularity

The most novel aspect of our protocol is its ability to support mul-
tiple granularities for communication and coherence, even within
asingle application. The fact that the basic granularity for access
control is software configurable already gives us the ability to use
different granularities for different applications. Nevertheless, the
ability to further vary the communication and coherencegranularity
within a single application can provide a significant performance
boost in a software DSM system, since data with good spatial lo-
cality can be communicated at a coarse grain to amortize large
communication overheads, while data prone to false sharing can
use a finer sharing granularity.

Our current implementation automatically choosesa block size
based on the allocated size of a data structure. Our basic heuristic
is to choose a block size equal to the object size up to a certain
threshold; the block size for objects larger than a given threshold
is simply set to the base Shasta line size. The rationale for the
heuristic is that small objects should be transferred as a single unit,
while larger objects (e.g., large arrays) should be communicated
at a fine granularity to avoid false sharing. We also alow the
programmer to override this heuristic by providing aspecial version
of mal | oc that takesablock size asan argument. Sincethe choice
of the block size does not affect the correctness of the program,
the programmer can freely experiment with various block sizes (for
the key data structures) to tune the performance of an application.
Controlling the coherencegranularity in this manner is simpler than
approaches adopted by object- or region-based DSM systems [2,
11, 14, 16], since the latter approaches can affect correctness and
typically require a more substantial changeto the application.

We currently associatedifferent granularitiesto different virtual



pages and place newly allocated data on the appropriate page. The
block size for each pageis communicatedto all the nodesat thetime
the pool of shared pages are allocated. To determine the block size
of dataat a particular address, arequesting processor simply checks
the block size for the associated page. The above mechanism is
simple yet effective for most applications.

We are also working on a more general mechanism that main-
tainsthe block sizeinformation permanently only at the home along
with thedirectory information for eachline. Other processorsmain-
tain the block size for a piece of data only while they are caching
parts of the data. When a request for a particular addressis served
by the home node, the home obtains the block size information for
the data as part of the directory lookup. The request is then pro-
cessed for al the lines in the associated block. For example, for
aread request to a block with four lines, the home sends back the
appropriate four lines of datato the requesting processor. The block
size of the data is transmitted with all protocol messages except
theinitial request, so al protocol operations affect the entire block.
This method allows different block sizes for data on the same page.
In addition, it is possible to dynamically change the granularity of
adata structure by invalidating all copies of the data (except at the
home) and then changing the block size information at the home.

The mechanism described above introduces some complexities
in the protocol, because a node is not aware of the block size for
a piece of data when it is requesting the data. For example, if
a node issues several (non-stalling) stores to different lines of the
same invalid block, it may issue duplicate read-exclusive requests
becauseit does not know that the stores are to the sameblock. Such
duplicate requests can causeincorrect protocol behavior if they are
not detected. One solution is for the requester to communicate its
set of outstanding misses to “nearby” lines (which will often be
empty) with every request; the home can then detect and drop all
duplicate requests when any of the outstanding misses fall within
the same block boundary. Another approach depends on the fact
that the home usually knows from the directory information that it
has already serviced arequest from a given node, and can therefore
detect and ignore duplicate requests in most cases; however, this
latter approach reguires the protocol to robustly deal with some
duplicate requests, since intervening accesses by other nodes can
alter the directory information and prevent the home from filtering
all duplicates.

4.3 Batching

The batching technique of Section 3.4 can reduce communication
overhead by merging load and store missesto the same line and by
issuing requests for multiple lines at the same time. Our protocol
handles a miss associated with the batching of loads and stores as
follows. The batch checking code jumps to the inline batch miss
code if there is a miss on any line of any base register range of
the batch. The inline code repeatedly calls a routine to record the
starting address and length of each base register range; for ranges
with stores, it aso includes a bitmap indicating where the stores
will occur. The inline code then calls a batch miss handler that
issues all the necessary miss requests. We implement non-stalling
stores by requiring the handler to wait only for outstanding read and
read-exclusive replies and not for invalidation acknowledgements.
The protocol correctly handles the case where base register ranges
overlap, by issuing only one request for a line in more than one
range and recognizing that the reply appliesto both ranges.
Although the batch miss handler brings in all the necessary
lines, it cannot guaranteethat all the lines will be in the appropriate
state once al the replies have come back. The reason is that while

the handler is waiting for the replies, requests from other processes
must be served to avoid deadlock; these requests can in turn change
the state of the lines within the batch. Even though a line may
not be in the right state, loads to the line will still get the correct
value (under release consistency) as long as the original contents
of the line remain in memory. We therefore delay storing the flag
value into memory for invalidated lines until after the end of the
batch. After the batch code has been executed, we complete the
invalidation of any suchlines. We may also haveto reissuestoresto
lines which were not in the exclusive or pending-shared state when
we started the batch code. We do these invalidations and reissues
at the time of the next entry into the protocol code (due to polls,
misses, or synchronization).

The batching optimizations can be done even under sequential
consistency, aslong as the handler waits for all requests (including
exclusiverequests) to complete and ensuresthat all lines arein the
correct state. The case when all lines are not in the right state is
significantly more complex to handle under sequential consistency.
In addition, performance is lower because the handler must wait
for all invalidation acknowledgements before proceeding with the
batched code.

5 Performance Results

This section presents performanceresults for our current Shastaim-
plementation. We primarily focus on characterizing the overhead
of miss checks by presenting the static overheads for individual
miss checks, the dynamic overheads for all of the SPLASH-2 ap-
plications[22], and the frequency of instrumented accessesin these
applications. In addition, we present preliminary parallel perfor-
mance results for some of the SPLASH-2 applications running on
a cluster of Alpha workstations connected by Digital’s Memory
Channel network [9].

5.1 Instruction and Cycle Overhead of Miss Checks

Table 1 gives the static overheads for our optimized load and store
miss checks, when using the flag technique and exclusive table,
in the case that there is no shared data miss. We have shown
instruction countsand cyclecountsfor the Alpha21064A and 21164
processors. The cycle overheads may be less than shown if our
instruction scheduling techniquesare successful in placing the extra
instructions at points where application instructions stall. Thecycle
counts on the Alpha 21164 are lower because of fewer pipeline
stalls and dual-issue of some of the checking code. The store
overheads vary depending on whether the offsets of the stores are
zero or not. The overhead for non-batched store checks would
be lower (3-4 instructions) if we eliminated the range check and
accessed word-sized state table entries. Clearly, because of the use
of the flag for loads, store checks are quite a bit more expensive
than load checks. The batch load and store overheads are for a
single base register range; they are higher than for normal load
and store checks because they must do checks on both ends of the
range. For comparison, we also show the cycle latency for loads
(assuming first-level cache hits), integer operations, and floating
point operations on the 21064A and 21164.

Theinline miss check code may also have some dynamic over-
head. Theload of the exclusivetable entry during astore miss check
may cause extra hardware cache misses, TLB misses, or even page
faults. Similarly, becauseof the additional inline code, the modified
executable may have more instruction cache misses or instruction
TLB faultsthan would have occurred in the unmodified application.



Miss Checks Processor
No Batching Batching Operations
Integer | FP | Integer/FP || Batch | Batch || Integer/FP | Integer | FP
Load | Load Store Load | Store Load Op. Op.
Instructions 2 3 6-7 6 10-12 1 1 1
Cycles (21064A) 4 4 10-11 7 11-13 3 1-2 6
Cycles(21164) 2-3 2 6 4 7-8 2 1 4

Table 1: Instruction and cycle counts for miss checks.

Finally, the branchesin the miss check code may cause additional
delaysif they are mispredicted, but the processor’s branch predic-
tion should be fairly effective in the common casewhen there is no
shared data miss.

5.2 MissCheck Overhead for SPLASH-2 Applications

For our measurements, we compile the SPLASH-2 codes with full
optimization and with their synchronization macros converted to
callsthat Shastacan recognize.! The Shastacompiler then automat-
ically transforms the application executable into a new executable
that includes all the proper load and store checks and can run on
a cluster of workstations. This section analyzes the overhead due
to the checking code on a single processor (hence, with no shared
misses). We report on the parallel performance of some of these
applicationsin Section 5.4.

Table 2 reports the factor by which run time increases with
respect to the original sequential executable when the miss checks
(and polling) are added. The measured run time is the wall-clock
time for each application to complete after the initialization period
defined in each SPLASH-2 application. We show the changesin
the overheads as various techniques for reducing the overhead are
added. Our resultsare for a275 MHz 21064A dual-issue processor,
which hasa 16 Kbyte on-chipinstruction cache, a 16 Kbyte on-chip
data cache, and a 4 Mbyte second-level off-chip data cache. We
use the standard SPLASH-2 problem sizes for each of the applica-
tions [22], except for Radiosity and Raytrace, wherewe use smaller
test sets so as to avoid running out of swap space on some of our
systems. The line size of the Shasta system is configured as 64
bytes.

Thefourth columnin Table 2 reports the overhead for the basic
inline checks shown in Figure 2 and only instrumenting loads and
storesthat are not known to beto the stack or static data. Obviously,
the basic overhead is quite high, even though the inline code has
already been well optimized by laying out memory properly and
making use of free registers. Barnes and Volrend have lower over-
heads than the other applications, because much of the frequently
executed code uses data that is temporarily stored in the stack or
static area.  The next column gives the results when scheduling
techniques are used to reduce the overhead for store checks. The
sixth column givesthe overheadswhen the flag techniqueis used for
loads. The flag technique is highly effective in reducing the over-
head of load miss checks. The seventh column gives the overheads
when the exclusivetable is used for store checks. The overheadin
Radix goesdown significantly, because Radix has very poor spatial
locality and therefore causes a lot of cache misses on state table
lookups as well. The eighth (bold) column gives the overheads
when batching is used. Batching across basic blocksis particularly
effective in Raytrace, because it has many conditionalsin its most

1We currently make a one-linechangeto the CREATE macro that makesit simpler
for Shastato initialize static data properly when anew processis spawned.

frequently executed functions; batching within basic blocks only
reducesthe overhead to 1.39.

The overall decrease in overhead from the fourth column to
the eighth column is quite dramatic, ranging from a three- to six-
fold decreasefor all applications. As shown by the final overhead
numbers in the eighth column, the techniques we have described
are successful in reducing the overhead of the Shasta system to a
reasonable level. It isimportant to note that the effect on parallel
performance will not be as large as the effect shown for a single
processor. In a parallel execution, each processor’s time is spent
doing useful work plus doing things related to the parallel execu-
tion, such as sending messages, waiting for replies, or waiting at
synchronization points. The overheads measured in Table 2 only
increase the time of the “useful” work component. The effective
overheadin aparallel runistherefore roughly equal to the overhead
effect on one processor multiplied by the parallel efficiency of the
application run (the average percentage of each processor’s time
spent doing useful work). For example, consider an application
run that achievesa parallel efficiency of 50% without any checking
overhead. Given a checking overhead of 20% on a uniprocessor
run, the effective overhead on the parallel executiontimeis reduced
to 10%. The overhead may also be reduced because each processor
in a parallel execution touches only a part of the whole data set,
so the number of data cache misses on the state table (or exclusive
table) is smaller.

In the aboveresults, polling is doneonly when the local process
has a miss. The ninth and tenth columns indicate the increase
in overhead when polling is also done either at the entry to each
function or at each loop backedge, respectively. Loop polling is
usually more expensive than polling at each function entry, but
the use of loop polling should cause an application to poll more
regularly and potentially reduce the average latency for servicing
messages. Polls involve three instructions: setup of the polling
address, load of the poll location, and aconditional branch. For loop
polling, the Shasta compiler can often reduce the polling overhead
from three to two instructions by hoisting the address setup outside
of the loop. The Shasta compiler also attempts to schedule the
polling instructions so asto avoid pipeline stalls on the load of the
pollinglocation. In addition, no polling isinserted for “small” loops
(loops that have no function calls and do not execute more than 15
instructions per iteration). Except for Raytrace, the overhead of
polling by either method is 5% or less.

Thelast column shows the overhead when range checks are not
used (but all other optimizations as well as loop polling are used).
The overhead increases for Barnes, Radiosity, and Water because
there are many loads and stores in these applications which are
instrumented, but are actually to non-shared data. The quick range
check reducesthe dynamic overhead for the store check in this case.
In all the other applications, the removal of the range checks tends
to reduce the overhead slightly. We have chosen to use the range
check in the basic Shasta system, since it can significantly reduce



Problem Seq. Inline Split Flag Exclusive Batch Func. L oop No

Size Time Checks Store L oad Store Checks Palling | Polling || Range

(secs) Checks Checks Checks Checks

(Sec. 24) | (Sec. 3.1) | (Sec. 3.2) | (Sec. 3.3) | (Sec. 3.4)

Barnes 16K part. | 13.78s 1.26 1.26 114 114 1.08 1.10 1.08 112
Cholesky tk15.0 2.173s 2.66 2.56 1.80 1.78 141 141 141 141
FFT 64K points | 0.195s 221 212 171 1.66 1.29 1.27 134 1.33
FMM 16K part. | 9.635s 1.40 1.39 117 114 111 113 1.15 1.15
LU 512x512 | 3.607s 234 217 1.67 1.65 1.25 1.26 1.27 127
LU-Contig 512x512 | 3.041s 2.65 245 1.70 1.68 1.29 131 132 1.33
Ocean 258x258 | 4.245s 1.76 171 1.25 1.26 112 112 114 1.13
Radiosity test 5.623s 1.73 1.70 1.39 1.30 1.19 1.20 1.20 1.26
Radix IM ints. 0.815s 1.95 1.95 2.02 1.36 1.33 1.33 137 1.36
Raytrace teapot 2.954s 2.26 2.25 1.63 1.62 1.29 1.38 1.36 137
Volrend head 2.764s 1.19 1.19 1.05 1.05 1.05 1.05 1.07 1.08
Water-Nsq || 512 molec. | 3.292s 1.65 157 121 1.22 114 1.16 1.19 1.23
Water-Sp 512 molec. | 3.934s 154 148 1.23 1.23 1.18 1.18 1.19 122

Table 2: Factor increase in execution time with miss checks over sequential time (on a 275 MHz 21064A Alpha).

the overhead for some applications, while not greatly increasing the
overhead for the rest.

We have also measured the Shasta overheads on a number of
other Alpha processors. Relative overheads are larger for some
applications and smaller for others in comparison to the overheads
in Table 2, but overall the results are similar in each case. For
example, for a 350 MHz 21164 quad-issue processor (which has
8K Bytefirst-level dataand instruction caches, a 96K byte combined
second-level cache, and a4 Mbyte third-level off-chip data cache),
overheads corresponding to the seventh column range from 1.04 to
1.36, except for radix, whose overhead is 1.54.

5.3 Freguency of Instrumented Accesses

Table 3 showsthe code sizeincrease dueto instrumentation and the
percentage of loads and stores that are checked. The first column
showstheincreasein the number of instructionswhen the sequential
executable is instrumented, including all optimizations above and
loop polling. These numbers could be reduced by optimizing the
inline code for calling the miss routines, especially the batch miss
routines. The second and third columns are static measures which
give the percentages of all loads and stores in the executable (in-
cludingin all standard library routines) which must beinstrumented
because they might reference shared data. The next two columns
are dynamic figures which give the percentage of loads and stores
that are checked during the execution of the application on one
processor, when batching is not used. In parentheses, we give the
percentages when loads and stores that are known to be relative
to the GP are instrumented. These figures indicate the expected
increasein overhead if Shastaused amemory model in which static
data was shared as well as dynamically allocated data. The final
two columns give the same percentageswhen batching is used. For
these figures, we count the check for each base register range in
a batch as a single store or load check, depending on whether the
range has any stores or not.

We see that, for many applications, most loads and store op-
erations are checked, because the most frequently executed code
mainly accesses shared data. Batching is highly effective in reduc-
ing the number of checksin most cases. The applications that have
the highest overall overheadtend to be the onesin which ahigh per-

centage of the stores are checked, because of the asymmetry in the
overheadsof theload and store checks. We also seethat the dynamic
percentage of loads and stores that are checked does not increase
much when loads and storesto the static data areaare checked. The
biggest increasein the percentagesoccurs for Barnes; however, the
actual run-time overhead for Barnes (when range checks are not
used) only increasesfrom 1.12 to 1.29. FMM, Radiosity, and Ray-
trace have significant but smaller run-time increases, while there is
almost no increase for the rest of the other applications.

54 Preliminary Parallel Performance Results

This section presents results of parallel execution of several
SPLASH-2 applications using Shasta on two different platforms.
The two platforms differ substantially in both processor and mes-
sage passing performance. The first platform is a collection of
eight 190 MHz 21064 Alpha processors connected by a Memory
Channel network. This configuration consists of four AlphaServer
2100 servers each with 2 processors; however, all communication
isviaMemory Channel, even if processorsare located on the same
server. The minimum round-trip latency in Shasta for a 2-hop read
miss on a 64-byte line is 37 microseconds, with a 21 MB/s incre-
mental bandwidth for larger lines. These numbers degrade to 42
microsecondsand 15 MB/s for processors on the same server since
they share the same link to the network. Theindividual processors
have ratings of 132 SPECint92 and 161 SPECfp92. Our second
platform is an AlphaServer 8400 with eight 300 MHz 21164 Alpha
processorson a shared bus. The Shastaimplementation onthis sys-
temisidentical to the Memory Channel implementation, except that
processes communicate via a message-passing layer implemented
on top of the shared memory. This allows us to study the effects of
an improved message passing medium. The minimum round-trip
latency in Shasta to fetch a 64-byte line is 14 microseconds, with
around 40 MB/s incremental bandwidth for larger lines. Finally,
the individual processors have ratings of 341 SPECint92 and 513
SPECfp92.

Figure 7 shows speedup curves for both the Memory Channel
and the AlphaServer 8400 platforms. The speedups shown are the
ratio of the execution time of the application running via Shasta
on 1, 2, 4, and 8 processors to the execution time of the original
sequential application (with no miss checks). For these results,



code static checks dynamic checks
size no batching batching
increase | loads | stores loads stores loads stores
Barnes 74% 39% | 34% 33% (64%) 15% (35%) 10% (31%) 6% (16%)
Cholesky 83% 41% | 3% 89% (89%) 84% (84%) 24% (24%) 34% (34%)
FFT 64% 33% | 33% 93% (96%) 94% (94%) 7% (10%) 26% (26%)
FMM 64% 33% | 29% 32% (53%) 20% (20%) 15% (36%0) 13% (14%)
LU 68% 32% | 31% 88% (90%) 98% (98%) 13% (16%) 25% (25%)
LU-Contig 67% 31% | 31% 85% (88%) 98% (98%) 13% (16%) 25% (25%)
Ocean 107% 51% | 52% 85% (96%) 98% (98%) 25% (32%) 44% (44%)
Radiosity 76% 40% | 3% 57% (69%) 19% (19%) 22% (33%) 11% (11%)
Radix 71% 31% | 33% | 100% (100%) | 100% (100%) | 60% (60%) | 100% (100%)
Raytrace 70% 40% | 35% 73% (81%) 30% (30%) 39% (46%) 20% (20%)
Volrend 78% 36% | 32% 14% (38%) 0.1% (0.1%) | 14% (36%) | 0.1% (0.1%)
Water-Nsq 66% 36% | 33% 56% (69%) 53% (53%) 31% (42%) 17% (17%)
Water-Sp 66% 36% | 32% 51% (66%) 46% (46%) 27% (38%) 12% (12%)
Table 3: Code size increase and percentage of accessesthat are checked (in parentheses, including accessesrelative to the GP).
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Figure 7: Shasta speedupsfor SPLASH-2 applications on Memory Channel cluster (Ieft) and AlphaServer 8400 (right).

loop polling is used, and the fixed Shastaline size is 64 bytes. The
block size of objectslessthan 1024 bytesis automatically set to the
size of the object. We have additionally made one-line changes (at
mal | oc calls) to the applications(except for Water-sp) to explicitly
set the block size for one or two important data structures. Table 4
describesthe selected data structures along with the block size spec-
ified for them. The table also gives the problem sizes (larger than
default SPLASH-2 sizesfor several applications) and the sequential
execution times. Even though the two platforms are significantly
different in their underlying processor and messaging performance,
the speedupsfor variousapplications are roughly comparable. The-
oretically, the faster processors on the 8400 platform make it more
difficult to get good speedups. However, the higher performance
messaging layer and the fact that protocol processingis also sped
up by the faster processors seems to compensate for this, leading
to better speedups on this platform. The reason for the drop off
in performance of Volrend on the Memory Channel platform is the
lower communication bandwidth. Table 4 also comparesthe eight-
processor speedups on the AlphaServer 8400 platform when the
default block size of 64 bytesis used for the selected data structures
and when the specified block size is used. In the following, we
discussthe applications and explain the choice of block sizes.

Barnes has three main arrays which hold three different kinds
of structures called cells, leaves, and bodies. The cells and leaves

are part of an oct-tree that is repeatedly traversed by all the proces-
sors without being modified in the main force computation phase.
Therefore, cell andleaf arrays canbe communicatedat alarger gran-
ularity, such as 512 bytes, so that contents of the tree are fetched
with few messages. On the other hand, the body array can be sub-
ject to false sharing during the force computation phase, since the
bodies are modified by the individual processorsthat “own” them.
It is therefore better to keep the block size of the body array at the
default 64 bytes. Theinteresting result is that the best performance
is obtained when different arrays in the application use different
coherencegranularities.

In non-contiguous LU, thematrix isallocated asonebig array, so
the blocks of the matrix that are modified by difference processors
are not contiguous. Given matrix blocks of 16x16 floating point
numbers, onerow of ablock is 128 bytes. The largest block sizefor
the matrix array that does not cause false sharing is therefore 128
bytes. In contiguous LU, the data for each matrix block is actually
stored contiguously (but still in one big array). Therefore, it makes
sense to maintain coherence at the granularity of a matrix block,
which is 2048 bytes.

In Water-nsquared, all of the molecules are stored in a single
array. Since each processor accessesall moleculesat eachtime step
and moleculeinformation isonly changedat theend of atime step, it
makes senseto have alarge coherencegranularity for the molecule



problem sequential time selected data specified | 8-proc. speedup (on 8400)

size 190MHz | 300MHz structure(s) block size | default block | specified

21064 21164 (bytes) size (64 bytes) | block size
Barnes 16K particles 22.55s 9.04s cell, leaf arrays 512 3.2 3.7
LU 1024x1024 matrix 48.55s 27.45s matrix array 128 38 47
LU-Contig || 1024x1024 matrix 39.63s 17.75 matrix block 2048 31 53
Volrend head 4.22s 1.86s opacity, normal maps 1024 28 34
Water-Nsq 1000 molecules 17.20s 7.88s molecule array 2048 44 5.0
Water-Sp 1000 molecules 8.55s 3.91s molecules, boxes varies NA 3.1

Table 4: Effects of varying block sizes on speedups on AlphaServer 8400.

array. We obtain the best performance when the block size for this
array is 2048 bytes. Similarly, in Volrend, the opacity and normal
tables are read by all processors, and it improves performance to
increase the block size of these tables to 1024 bytes. In Water-
spatial, all of the molecule and box data structures are allocated
separately and are under 1024 bytes. Therefore, our heuristic for
choosing block sizes automatically makesthe coherencegranularity
for the molecules and boxes equal to the size of the molecule and
box structure, respectively.

In summary, the speedups we have observed are encouraging
given the extremely fast processorsand the large messagelatencies.
In addition, the ability to choose different coherence granularities
for different data structures in the same application appears to be
highly beneficial for boosting performance.

6 Reated Work

Shasta’s basic approach is derived from the Blizzard-S work [18].
However, we have substantially extended the previouswork in this
area by developing several techniques for reducing the otherwise
excessive access control overheads. We have also developed an
efficient protocol that provides support for maintaining coherence
at variable granularities within a single application. Finally, we
have explored the use of relaxed memory models in the context of
software protocols that can support coherence at a fine granularity.

We independently developedthe“ flag” techniqueof Section 3.2
for use with all types of loads in the 64-bit Alpha architecture. We
recently became aware that a form of the “flag” technique has been
proposed for use in hardware in the StarT-NG machine [5]. The
Blizzard-S project has also recently incorporated the flag technique
by adapting this idea from the StarT-NG design [17]. With this
optimization, the Blizzard-S overheadis 3 instructions at most loads
and 8 instructions at most stores. Run-time overheadson a66 MHz
HyperSPARC processor (with a 8K first-level data cache and 256K
second-level datacache) are reported for five applications, of which
only one is a SPLASH-2 application [17]. For the Barnes-Hut
application, the reported Blizzard-S overhead on the Sparc is 1.6,
while the Shasta overhead on the 275 MHz Alphais 1.08. We have
also measured the Shasta overhead for the appbt application. The
Blizzard-S overhead is 1.9, while the Shasta overhead is 1.19.

There are several other systems that use compiler-generated
checksto aid in implementing a global address space. Olden [3]
uses the compiler to insert checks at loads and stores to implement
a specialized shared memory protocol across workstations. Split-
C [6] uses compiler-inserted checksto implement a shared address
space without caching in the context of a parallel language. Mid-
way [2] inserts code at stores to record where writes have occurred
in a shared memory block. Some systemsthat utilize garbage col-
lection record the location of storesin a manner similar to Midway
to aid in the process of scavengingfor free memory [21].

Object- or region-based DSM systems|[1, 2, 11, 14, 16] com-
municate data at the object level and therefore support coherenceat
multiple granularities, but these systems require explicit program-
mer intervention to partition the application datainto objectsand to
identify when objects are accessed through annotations. Midway
also allows different regions of memory to have different granular-
ities for detecting writes. Even though a finer granularity of write
detection can reduce the amount of communicated data, the access
and coherencegranularity is still at an object or pagelevel (depend-
ing on the consistency model). Similarly, some page-based sys-
tems (e.g., Treadmarks[12]) reduce the required bandwidth by only
communicating the differences between copies, but the coherence
granularity is still a page. Page-based DSM systems implemented
on acluster of shared-memory multiprocessors, such as MGS [23]
and SoftFLASH [7], naturally support two coherence granularities
— the line size of the multiprocessor hardware and the size of the
virtual memory page. However, neither of these granularities can
be changed.

A number of systems attempt to use a small amount of extra
hardwareto support fine-grain accesscontrol to shared datamore ef-
ficiently. Blizzard-E [18] uses ECC bitsat thememory level to cause
faults on accessesto particular lines; similarly, Typhoon-0[15] uses
hardware at the memory busto detect an accessfault. These schemes
reguire precise memory exceptions on processor reads and writes if
themain processor is to execute the codeto handlethe accessfaullts;
however, precise exceptions on processor writes are not supported
inmany processors(e.g., duetothe presenceof write buffers). Sup-
port for “informing” memory operations has also been proposed as
away of invoking handler code whenever thereis amissin the pri-
mary data cache [10]. While “informing” operations may be used
to implement coherent shared memory, amajor disadvantage of the
schemeis that the handler is called whenever referenced datais not
inthefirst-level cache, evenif itisinlocal memory. Another poten-
tial mechanismis to extend the functionality of the TLB to support
fine-grain accesscontrol bits. For example, the RS/6000 providesa
singleaccesscontrol bit for every 128-byte segment. This approach
has the advantage of leveraging the precise exception and fast trap
mechanismsthat are already present for handling TLB faults. It is
interesting to note that some of the techniques we have developed
to reduce accesscontrol overheadsin software may also beuseful in
systemswith hardware assistance. For example, our flag technique
for loads can be used in a hybrid system where access checks for
loads are achieved efficiently in software, while the TLB control
bits can be used to invoke a trap on a store access fault. Among
the above techniques, an “ extended TLB” with two access control
bits (e.g., per 128 bytes) to allow for efficient checksfor both loads
and stores seemsto be the most promising approachif the goal isto
handle access control faults on the main processor.



7 Conclusion

Instrumenting loads and stores in an application to check for ac-
cesses to remote data is a potentially attractive technique for sup-
porting a fine-grain shared address space in software. We have
demonstrated a set of techniques that reduce both the cost and the
frequency of the added code in order to decrease the overall over-
head to acceptablelevels. Our techniquesto reducethe overhead of
theinline checksinclude careful memory layout of the program, us-
ing effectiveinstruction scheduling between applicationinstructions
and checking instructions, reducing cache misses incurred by the
instrumentation code, and a novel method for quickly determining
load misses. Our techniquesto reducethefrequency of instrumenta-
tion include using compiler analysisto eliminate unnecessary loads
and store checksand batching checksfor multiple loads and stores.

Our current implementation of Shasta on Alpha processorsin-
curs instrumentation overheads in the range of 5-35% for almost
all of the SPLASH-2 applications. This overhead may be reduced
further by interprocedural analysis and better instruction schedul-
ing. We feel that this level of overhead makesit feasible to use our
approach to support fine-grain data sharing on clusters of proces-
sors connected by high-speed interconnects, especially becausethe
relative effect of the checking overhead on the parallel execution
time is reduced dueto the addition of other overheads such as com-
munication latency. Since Shasta supports shared memory entirely
in software, it provides considerable flexibility in managing coher-
ence granularity and applying protocol optimizations. Our parallel
performance results on a cluster of Alphaworkstationsillustrate the
benefits of this flexibility.
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