Introduction to the CESDIS Beowulf Project http://www.beowulf.org/intro.html

Beowulf
| ntroduction & Overview

In the summer of 1994 Thomas Sterling and Don Becker, working at CESDIS under the sponsorship of
the ESS project, built a cluster computer consisting of 16 DX4 processors connected by channel bonded
Ethernet. They called their machine Beowulf. The machine was an instant success and their idea of
providing COTS (Commodity off the shelf) base systems to satisfy specific computational requirements
quickly spread through NASA and into the academic and research communities. The development effort
for thisfirst machine quickly grew into awhat we now call the Beowulf Project. Some of the major
accomplishment of the Beowulf Project will be chronicled below, but a non-technical measure of
success is the observation that researcher within the High Performance Computer community are now
referring to such machines as "Beowulf Class Cluster Computers.” That is, Beowulf clusters are now
recognized as genre within the HPC community.

The next few paragraphs will provide a brief history of the Beowulf Project and discussion of certain
aspects or characteristics of the Project that appear to be key to its success.

The Center of Excellence in Space Data and Information Sciences (CESDIS) isadivision of the
University Space Research Association (USRA) located at the Goddard Space Flight Center in Greenbelt
Maryland. CESDISisaNASA contractor, supported in part by the Earth and space sciences (ESS)
project. The ESS project is aresearch project within the High Performance Computing and
Communications (HPCC) program. One of the goals of the ESS project is to determine the applicability
of massively parallel computers to the problems faced by the Earth and space sciences community. The
first Beowulf was built to address problems associated with the large data sets that are often involved in
ESS applications.

It may well be that thisis simply the "right time" in history for the development of Beowulf class
computers. In the last ten years we have experienced a number of events that have brought together all
the pieces for the genesis of the Beowulf project. The creation of the causal computing market (office
automation, home computing, games and entertainment) now provides system designer with anew type
of cost effective components. The COTS industry now provides fully assembled subsystems
(microprocessors, motherboards, disks and network interface cards). Mass market competition has
driven the prices down and reliability up for these subsystems. The development of publicly available
software, in particular, the Linux operating system, the GNU compilers and programming tools and the
MPI and PVM message passing libraries, provide hardware independent software. Programs like the
HPCC program have produced many years of experience working with paralel algorithms. That
experience has taught us that obtaining high performance, even from vendor provided, parallel platforms
is hard work and requires researchers to adopt a do-it-yourself attitude. A second aspect to this history of
working with parallel platformsis an increased reliance on computational science and therefore an
increased need for high performance computing. One could argue that the combination of the these
conditions: hardware, software, experience and expectation, provided the environment that makes the
development of Beowulf clusters seem like a natural evolutionary event.

We are constantly reminded of the performance improvements in microprocessors, but perhaps more
important to the Beowulf project is the recent cost/performance gains in network technology. The history

lof4 1/31/00 1:10 AM

Introduction to the CESDIS Beowulf Project http://www.beowulf.org/intro.html

of MIMD computing records many academic groups and commerical vendors that have built

multi processor machines based on what was then the state-of-art microprocessor, but they always
required special "glue" chips or a one-of-a-kind interconnection schemes. For the academic community
this lead to interesting research and the exploration of new ideas, but usually resulted in one of akind
machines. The life cycle of such a machines strongly correlates to the life cycle of the graduate careers of
those working on them. Vendors usually made choices for special features or interconnection schemes to
enhance certain characteristics of their machine or to tailor a machine to a perceive market. Exploiting
these enhancements required programmers to adopt a vendor specific programming model. This often
lead to dead ends with respect to software development. The cost effectiveness and Linux support for
high performance networks for PC class machines has enabled the construction of balanced systems built
entirely of COTS technology which has made generic architectures and programming model practical.

The first Beowulf was built with DX4 processors and 10Mbit/s Ethernet. The processors were too fast
for asingle Ethernet and Ethernet switches were still too expensive. To balance the system Don Becker
rewrote his Ethernet driversfor Linux and built a"channel bonded" Ethernet where the network traffic
was striped across two or more Ethernets. As 100Mbit/s Ethernet and 100M bit/s Ethernet switches have
become cost effective, the need for channel bonding has diminished (at least for now). In late 1997, a
good choice for a balance system was 16, 200MHz P6 processors connected by Fast Ethernet and a Fast
Ethernet switch. The exact network configuration of a balanced cluster will continue to change and will
remain dependent on the size of the cluster and the relationship between processor speed and network
bandwidth and the current price list for each of components. An important characteristic of Beowulf
clustersisthat these sorts of changes---processors type and speed, network technology, relative costs of
components---do not change the programming model. Therefore, users of these systems can expect to
enjoy more forward compatibility then we have experienced in the past.

Another key component to forward compatibility is the system software used on Beowulf. With the
maturity and robustness of Linux, GNU software and the "standardization” of message passing viaPVM
and MPI, programmers now have a guarantee that the programs they write will run on future Beowulf
clusters---regardless of who makes the processors or the networks. A natural consequence of coupling
the system software with vendor hardware is that the system software must be developed and refined
only dlightly ahead of the application software. The historical criticism that system software for high
performance computers is always inadequate is actually unfair to those developing it. In most cases
coupling vendor software and hardware forces the system software to be perpetually immature. The
model used for Beowulf system software can break that rule.

The first Beowulf was built to address a particular computational requirement of the ESS community. It
was built by and for researcher with parallel programming experience. Many of these researchers have
spent years fighting with MPP vendors, and system administrators over detailed performance
information and struggling with underdevel oped tools and new programming models. Thislead to a
"do-it-yourself" attitude. Another reality they faced was that access to alarge machine often meant
access to atiny fraction of the resources of the machine shared among many users. For these users,
building a cluster that they can completely control and fully utilize resultsin a more effective, higher
performance, computing platform. An attitude that summarizes this situation is "Why buy what you can
afford to make?' Therealization isthat learning to built and run a Beowulf cluster is an investment;
learning the peculiarities of a specific vendor only enslaves you to that vendor.

These hard core parallel programmers are first and foremost interested in high performance computing

applied to difficult problems. At Supercomputing '96 both NASA and DOE demonstrated clusters
costing less than $50,000 that achieved greater than a gigaflop/s sustained performance. A year later,

20f 4 1/31/00 1:10 AM

Introduction to the CESDIS Beowulf Project http://www.beowulf.org/intro.html

30f4

NASA researchers at Goddard Space Flight Center combined two clusters for atotal of 199, P6
processors and ran a PVM version of a PPM (Piece-wise Parabolic Method) code at a sustain rate of 10.1
Gflop/s. In the same week (in fact, on the floor of Supercomputing '97) Caltech's 140 node cluster ran an
N-body problem at arate of 10.9 Gflop/s. This does not mean that Beowulf clusters are supercomputers,
it just means one can build a Beowulf that is big enough to attract the interest of supercomputer users.

Beyond the seasoned parallel programmer, Beowulf clusters have been built and used by programmer
with little or no parallel programming experience. In fact, Beowulf clusters provide universities, often
with limited resources, an excellent platform to teach parallel programming courses and provide cost
effective computing to their computational scientists aswell. The startup cost in auniversity situation is
minimal for the usual reasons. most students interested in such a project are likely to be running Linux
on their own computers, setting up alab and learning of write parallel programsis part of the learn
experience.

In the taxomony of parallel computers, Beowulf clusters fall somewhere between MPP (Massively
Parallel Processors, like the nCube, CM5, Convex SPP, Cray T3D, Cray T3E, etc.) and NOWSs
(Networks of Workstations). The Beowulf project benefits from developmentsin both these classes of
architecture. MPPs are typically larger and have alower latency interconnect network than an Beowul f
cluster. Programmers are still required to worry about locality, load balancing, granularity, and
communication overheads in order to obtain the best performance. Even on shared memory machines,
many programmers develop their programs in a message passing style. Programs that do not require
fine-grain computation and communication can usually be ported and run effectively on Beowulf
clusters. Programming a NOW is usually an attempt to harvest unused cycles on an already installed
base of workstationsin alab or on a campus. Programming in this environment requires algorithms that
are extremely tolerant of load balancing problems and large communication latency. Any program that
runs on aNOW will run at least aswell on a cluster.

A Beowulf class cluster computer is distinguished from a Network of Workstations by several subtle but
significant characteristics. First, the nodes in the cluster are dedicated to the cluster. This helps ease load
balancing problems, because the performance of individual nodes are not subject to external factors.
Also, since the interconnection network isisolated from the external network, the network load is
determined only by the application being run on the cluster. This eases the problems associated with
unpredictable latency in NOWSs. All the nodes in the cluster are within the administrative jurisdiction of
the cluster. For examples, the interconnection network for the cluster is not visible from the outside
world so the only authentication needed between processorsis for system integrity. On aNOW, one
must be concerned about network security. Another example is the Beowulf software that provides a
global process ID. This enables a mechanism for a process on one node to send signals to a process on
another node of the system, all within the user domain. Thisis not alowed on a NOW. Finally, operating
system parameters can be tuned to improve performance. For example, a workstation should be tuned to
provide the best interactive feel (instantaneous responses, short buffers, etc), but in cluster the nodes can
be tuned to provide better throughput for coarser-grain jobs because they are not interacting directly with
users.

The Beowulf Project grew from the first Beowulf machine and likewise the Beowulf community has
grown from the NASA project. Like the Linux community, the Beowulf community isaloosely
organized confederation of researcher and developer. Each organization has its own agenda and its own
set of reason for developing a particular component or aspect of the Beowulf system. As aresult,
Beowulf class cluster computers range from several node clusters to severa hundred node clusters.
Some systems have been built by computational scientists and are used in an operational setting, others

1/31/00 1:10 AM

Introduction to the CESDIS Beowulf Project http://www.beowulf.org/intro.html

have been built as test-beds for system research and others are serve as an inexpensive platform to learn
about parallel programming.

Most people in the Beowulf community are independent, do-it-yourself'er. Since everyone is doing their
own thing, the notion of having a central control within the Beowulf community just doesn't make sense.
The community is held together by the willingness of its members to share ideas and discuss successes
and failuresin their development efforts. The mechanisms that facilitate this interaction are the Beowulf
mailing lists, individual web pages and the occasional meeting or workshop.

The future of the Beowulf project will be determined collectively by the individual organizations
contributing to the Beowulf project and by the future of mass-market COTS. As microprocessor
technology continues to evolve and higher speed networks become cost effective and as more
application developers move to parallel platforms, the Beowulf project will evolve to fill its niche.

Contact: Phil Merkey merk@cesdis.gsfc.nasa.gov
Page last modified: 1998/09/11 20:20:22 GMT
CESDIS s operated for NASA by the USRA

40f 4 1/31/00 1:10 AM

