
To appear in Micro-31
A Bandwidth-Efficient Architecture for Media Processing

Scott Rixner1, William J. Dally, Ujval J. Kapasi, Brucek Khailany,
Abelardo López-Lagunas, Peter R. Mattson, and John D. Owens

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

{rixner, billd, ujk, khailany, alopez, pmattson, jowens}@cva.stanford.edu

Abstract

Media applications are characterized by large amounts of
available parallelism, little data reuse, and a high compu-
tation to memory access ratio. While these characteristics
are poorly matched to conventional microprocessor archi-
tectures, they are a good fit for modern VLSI technology
with its high arithmetic capacity but limited global band-
width. The stream programming model, in which an appli-
cation is coded as streams of data records passing through
computation kernels, exposes both parallelism and locality
in media applications that can be exploited by VLSI archi-
tectures. The Imagine architecture supports the stream pro-
gramming model by providing a bandwidth hierarchy
tailored to the demands of media applications. Compared
to a conventional scalar processor, Imagine reduces the
global register and memory bandwidth required by typical
applications by factors of 13 and 21 respectively. This
bandwidth efficiency enables a single chip Imagine proces-
sor to achieve a peak performance of 16.2GFLOPS (sin-
gle-precision floating point) and sustained performance of
up to 8.5GFLOPS on media processing kernels.

1. Introduction

Application and technology trends together motivate a
departure from the scalar, general-purpose register archi-
tecture in wide use today toward a stream-based architec-

ture with a bandwidth-efficient register organization.
Media applications are already a dominant consumer of
computing cycles and are projected to account for over
90% of the cycles consumed by the year 2000 [2] [3] [6].
These applications, including rendering 2-D and 3-D
graphics, image and audio compression and decompres-
sion, and image processing, operate on large streams of
low-precision integer data and share three key characteris-
tics. First, operations on one stream element are largely
independent of the others. Thus, they can exploit large
amounts of parallelism and tolerate large amounts of
latency. Second, every stream element is read exactly once,
resulting in poor cache performance. Finally, they are com-
putationally intensive, often performing 100-200 arith-
metic operations for each element read from memory.
These applications are poorly matched to conventional
architectures that cannot exploit the available parallelism,
are optimized for low latency, depend on data reuse, and
cannot support a high computation to memory access ratio.
These applications are well matched, however, to the char-
acteristics of modern VLSI technology.

Modern VLSI computing systems are limited by com-
munication bandwidth rather than arithmetic. In a contem-
porary 0.25µm CMOS technology, a 32-bit adder requires
less than 0.25mm2 of chip area and a multiplier is smaller
than 0.5mm2 of area.2 Hundreds of these arithmetic units
fit on an inexpensive 1cm2 chip. The challenge is keeping
these hungry units fed with instructions and data. It is
infeasible to provide the data bandwidth required out of a
global register file or the instruction bandwidth needed
from a global issue unit. Locality is required to realize the
potential of the technology. Fortunately, the streaming
nature of media applications provides exactly the locality

1 Scott Rixner is an Electrical Engineering graduate student at the Massa-
chusetts Institute of Technology.

The research described in this paper was supported by the Defense Ad-
vanced Research Projects Agency under ARPA order E254 and moni-
tored by the Army Intelligence Center under contract DABT63-96-C-
0037.

2 Based on area measurements taken from automatically generated layouts
of actual arithmetic units.
1

needed. Forwarding streams of data from one processing
kernel to the next localizes data communication and makes
it easy to manage. Exploiting data parallelism allows a sin-
gle instruction to be used by multiple arithmetic units and
localizes data to a small cluster of units. The computational
intensity of the applications can be exploited through
instruction-level parallelism. Most importantly, it is easy
to program a media application as a sequence of operations
on streams of data in a manner that exposes the parallelism
and locality required to execute the algorithm on a VLSI
architecture.

The Imagine architecture matches the demands of media
applications to the capabilities of VLSI technology by sup-
porting a stream-based programming model.3 Imagine is
organized around a large (64KB) stream register file (SRF).
Load and store operations move entire streams of data
between memory and the SRF. To the programmer, Imag-
ine is a load/store architecture for streams: one codes an
application to load streams into the SRF, pass these streams
through a number of computation kernels, and store the
results back to memory.

A stream computation, for example transforming trian-
gle vertices, is performed by reading a stream from the
SRF, passing its elements through a set of eight arithmetic
clusters, and storing the results back into the SRF. Both
data and instruction-level parallelism are exploited in a
stream computation. The arithmetic clusters work in paral-
lel on different elements of the stream and each cluster has
several arithmetic units that operate under VLIW control
on a single data element. Intermediate results during a
computation are kept local to a cluster and do not use SRF
bandwidth. This allows data bandwidth to be used effi-
ciently in the sense that expensive, communication limited
global register bandwidth is not wasted on the arithmetic
units where inexpensive local bandwidth is easy to provide
and use. Similarly, the recirculation of streams through the
large SRF minimizes the use of scarce off-chip data band-
width in favor of global register bandwidth. This is in con-
trast to conventional architectures which use less efficient
global register bandwidth when local bandwidth would
suffice, in turn forcing the use of more off-chip bandwidth.

This paper introduces streams as a programming model
and describes how the Imagine architecture uses a storage
bandwidth hierarchy to exploit the parallelism and locality
of streaming applications and achieve very high perfor-
mance in a single-chip media processor. As described in
Section 2, media applications are easily expressed as a
sequence of computation kernels that operate on streams of
data. Triangle rendering, for example, can be expressed as
passing a stream of triangles through the stages of the tradi-

tional graphics pipeline. The Imagine architecture,
described in Section 3, provides a three-level storage hier-
archy designed to support streaming applications. Pro-
gramming of Imagine by writing a set of kernels that are
then sequenced by application-level instructions is
described in Section 4. The performance and bandwidth
demands of applications are discussed in Section 5, and the
stream architecture is compared to alternate architectures.

2. Stream Processing

Media processing applications are easily expressed as a
series of computation kernels that operate on large data
streams. A kernel is a small program that is repeated for
each successive element of its input streams to produce
output streams for the next kernel in the application.
Streams are organized as a sequence of records. Each
record in a stream is a collection of related data words.
Expressing a computation in the stream model enables a
system to meet the large instruction and data bandwidth
demands of media processing. The data bandwidth
required by the kernels can be provided by a storage hierar-
chy optimized for streams, and the instruction bandwidth

3 The Cheops video processor [1] was also organized around the concept
of streams, but with specialized function units and without the memory
hierarchy of Imagine.

Figure 1: Stream-Based Triangle Rendering

Pixel Depth & Color

2 W

Memory Stream Register File

Input
Data

word

record Triangle Records

24 W

Shaded Triangle Records

15 W

Projected Triangle Records

12 W

Span Records

7 W

Fragment Records

4 W

Pixel Depth & Color

2 W

2 W

Pixel Depth & Color
Z-Composite

3 ops

Fragment Records

4 W

Image
Depth &

Color

1 W

Image Buffer Indices

Memory

Bandwidth

Register

Bandwidth

Compact

10 ops

Sort

20 ops

Process Span

30 ops

Span Setup

222 ops

Project/ Cull

171 ops

Transform

108 ops

Arithmetic
Clusters

Triangle Records

24 W
Shade

513 ops
2

file,
ff-
ams
etic
tain
ed

 a
file
a-

ng
as

ns,
file,
ata
not
ss-
e

the
ister
 the
r of
ch

ls
le
es,

ro-
fer-
n).
e
ter

hat
es
requirements are greatly reduced by exploiting data paral-
lelism across the records of a stream.

Figure 1 shows one way that triangle rendering [4], a
representative media application, maps onto the stream
processing model. Triangle rendering is composed of eight
computation kernels that operate on data streams in succes-
sion. The input to the application is a stream of triangles
used to represent objects. Each triangle in this stream is
transformed into the viewing coordinate system, creating a
new stream of triangles. This new stream is passed through
the Phong shading kernel (although any shading algorithm
could be used) to light the triangle vertices. This creates
another stream, which is passed along to the next kernel,
and so on, as depicted in Figure 1. The output of the appli-
cation is the pixel color and depth information that is emit-
ted from the z-composite kernel. As triangle streams are
passed through the application, the image buffer will be the
composition of all of the visible rendered pixels from those
triangle streams. Ultimately, all of the objects’ triangles
will have passed through the computation pipeline, and the
image buffer will hold the final rendered image.

The computation kernels themselves are expressed as
compound stream operations. A compound stream opera-
tion is a small program that has access to the record at the
head of each of its input streams and to its local variables.
Explicit instructions read the input streams, so there is no
need for the consumption rate of the input streams to be
matched. Similarly, the tail of each output stream can be
written explicitly at any point in the program. Since all
streams are read and written independently, the length and
record size of each stream can be different. These opera-
tions are compound in the sense that they perform multiple
arithmetic operations on each stream element. This is in
contrast to conventional vector (or stream) operations that
perform a single operation on each element of the vector.

Consider, for example, the first kernel in triangle render-
ing: model to world space transformation. For this transfor-
mation, there is only a single input and a single output
stream. Both streams consist of 24 element triangle
records, with the input triangles positioned in model space,
and with the output triangles positioned in world space.
Each triangle is composed of three vertices. A vertex con-
tains eight 32-bit words: its three-dimensional coordinates
in single precision floating point, a homogenous coordinate
used for perspective, its rgb color packed into a single 32-
bit integer, and the normal vector for the vertex described
by three coordinates in single precision floating point. The
transformation computation can be expressed as a single
compound stream operation, as shown in Figure 2. The
outer loop is repeated for each 24 element triangle record
in the input stream.

Figure 1 also shows how triangle rendering maps onto a
stream storage hierarchy. The storage hierarchy has three

components: the memory system, the stream register
and local register files in the arithmetic clusters. The o
chip memory holds persistent data. The SRF stores stre
as they pass between computation kernels. The arithm
clusters execute compound stream operations and con
local register files so that intermediate results do not ne
to recirculate through the stream register file.

The triangle rendering computation begins by reading
stream of triangles from memory to the stream register
as shown in the upper left corner of Figure 1. The applic
tion then proceeds vertically down the figure by passi
streams through successive computation kernels,
described earlier. During the course of these computatio
streams are recirculated through the stream register
and do not need to return to memory. Intermediate d
within the kernels are held in local registers and thus do
consume stream register bandwidth. Finally, after proce
ing by eight kernels, a stream of pixels is written from th
stream register file back to memory. For each step,
number associated with each stream in the stream reg
file represents the number of words per data record, and
number associated with each kernel denotes the numbe
arithmetic operations performed by that kernel on ea
input record.

For typical data (average triangles covering 25 pixe
with a depth complexity of 5), rendering each triang
requires 1929 arithmetic operations, 666 SRF referenc
and 44 memory references. With a conventional microp
cessor architecture, at least 5787 global register file re
ences would be required (3 for each arithmetic operatio
Thus, by capturing locality within the kernels, coding th
application in the stream model reduces global regis
bandwidth demand by a factor of eight.

3. Imagine Stream Architecture

Imagine is a programmable single-chip processor t
supports the stream programming model. Imagine provid

loop over all triangles {
loop over 3 vertices {

// read vertex data from input stream
[x, y, z, w, rgb, nx, ny, nz] = InputStream0;

// compute transformed vertex coordinates
tx = r11 * x + r12 * y + r13 * z + r14 * w;
ty = r21 * x + r22 * y + r23 * z + r24 * w;
tz = r31 * x + r32 * y + r33 * z + r34 * w;

// compute transformed normal vector
tnx = n11 * nx + n12 * ny + n13 * nz;
tny = n21 * nx + n22 * ny + n23 * nz;
tnz = n31 * nx + n32 * ny + n33 * nz;

// write vertex data to output stream
OutputStream0 = [tx, ty, tz, w, rgb, tnx, tny, tnz];

}
}

Figure 2: Transformation Kernel
3

a storage bandwidth hierarchy that corresponds to the three
levels of Figure 1. Using this hierarchy to exploit the paral-
lelism and locality of streaming media applications, Imag-
ine is able to sustain performance of 8.5GFLOPS on key
kernels. This is comparable to special purpose processors,
yet Imagine is still easily programmable for a wide range
of applications. Imagine is designed to fit on a 1cm2

0.25µm CMOS chip and to operate at 400MHz.
Imagine is a coprocessor that is programmed at two lev-

els: kernel and application. Kernels, like the triangle trans-
formation kernel in Figure 2, are coded in a programming
language using the expression syntax of the C language.
Kernels may access local variables, read input streams, and
write output streams, but may not make arbitrary memory
references. As described in Section 4, kernels are compiled
into microcode programs that sequence the units within the
arithmetic clusters to carry out the kernel function on each
stream element in turn.

At the application level, Imagine is programmed using
C++ library calls on a host processor. These library calls
pass instructions to Imagine using the stream instruction

set shown in Figure 4. Load and store instructions move
streams between the SRF and memory. These instructions
take a stream descriptor that identifies a starting location,
length, and record size of a stream in the SRF, and an
address descriptor that provides the base address in mem-
ory and addressing mode (constant stride, indexed, or bit-
reversed). Send and receive instructions allow streams to
be passed from the SRF of one Imagine to the SRF of
another for multiprocessor applications. Finally, kernels are
invoked by operate instructions. This instruction specifies
the start address of the kernel in the control store of the
microcontroller, stream descriptors for up to four source
streams, and stream descriptors for up to four destination
streams.

For example, the triangle rendering application of Fig-
ure 1 is coded with just 11 application-level instructions.
One load instruction reads the stream of triangles from
memory. Seven operate instructions sequence the kernels
from 75$16)250 to &203$&7. A load instruction uses the
index vector computed by &203$&7 to read the old Z-values
of the pixels in question. One more operate instruction ini-
tiates the =�&20326,7(kernel. Finally, a store instruction
writes the visible pixels, and their Z-values, back to mem-
ory.

Figure 3 shows a block diagram of the Imagine stream
processor. The stream register file (SRF) is the nexus of the
processor. The memory system, arithmetic clusters, host
interface, microcontroller, and network interface all inter-
act by transferring streams to and from the SRF. Kernel

Figure 3: Block Diagram of Imagine

Stream Register File
Network
Interface

Host
Interface

Imagine Stream Processor

Host
Processor

N
et

w
or

k

A
L

U
 C

lu
st

er
 0

A
L

U
 C

lu
st

er
 1

A
L

U
 C

lu
st

er
 2

A
L

U
 C

lu
st

er
 3

A
L

U
 C

lu
st

er
 4

A
L

U
 C

lu
st

er
 5

A
L

U
 C

lu
st

er
 6

A
L

U
 C

lu
st

er
 7

SDRAMSDRAM SDRAMSDRAM

Streaming Memory System

SRF
Bandwidth

Memory
Bandwidth

Micro-
Controller

Load Stream AddressDescriptor

Store Stream AddressDescriptor

Send Stream RoutingHeader Channel

Receive Stream Channel

Operate Kernel IStream0..IStream3 OStream0..OStream3

Figure 4: Imagine Application-Level Instruction Set
4

he
m-

ip
e

To
two
ory

port
and

o-
ta.
that
 in

pli-
pad
is

al
ble
e

d
F).
ters,
th.
ds
ach
he
f

 of

r-
, a
programs are loaded into the microcontroller’s control
store by loading streams from the SRF.

3.1 Stream Register File (SRF)

The SRF is a 64KB memory organized to handle
streams. The SRF can hold any number of streams of any
length. The only limitation is the actual size of the SRF.
Streams are referenced using a stream descriptor, which
includes a base address in the SRF, a stream length, and the
record size of data elements in the stream.

An array of 18 64-word stream buffers is used to allow
read or write access to 18 stream clients simultaneously.
The clients are the units which access streams out of the
SRF, such as the memory system, network interface, and
arithmetic clusters. The internal memory array is 32 words
wide, allowing it to fill or drain half of one stream buffer
each cycle, providing a total bandwidth of 51.2GB/s for all
18 streams.

Each stream client may access its dedicated stream
buffer every cycle if there is data available to be read or
space available to be written. The eight stream buffers
serving the clusters are accessed eight words at a time, one
word per cluster, while the other ten stream buffers are
accessed a single word at a time. The peak bandwidth of
the stream buffers is therefore 74 words per cycle, or
118GB/s, allowing peak stream demand to exceed the SRF
bandwidth during short transients. Stream buffers are bidi-
rectional, but may only be used in a single direction for the
duration of each logical stream transfer.

3.2 Memory System

As described above, all Imagine memory references are
made using stream load and store instructions that transfer
an entire stream between memory and the SRF. This stream
load/store architecture is similar in concept to the scalar
load/store architecture of contemporary RISC processors.
It simplifies programming and allows the memory system

to be optimized for stream throughput, rather than t
throughput of individual, independent accesses. The me
ory system provides 1.6GB/s of bandwidth to off-ch
SDRAM storage via four independent 32-bit wid
SDRAM banks operating at 100MHz.4 The system can
perform two simultaneous stream memory transfers.
support these simultaneous transfers, four streams (
index streams and two data streams) connect the mem
system to the SRF. Imagine addressing modes sup
sequential, constant stride, indexed (scatter/gather),
bit-reversed accesses on a record-by-record basis.

3.3 Cluster Array

Eight arithmetic clusters, controlled by a single micr
controller, perform kernel computations on streams of da
Each cluster operates on one record of a stream so
eight records are processed simultaneously. As shown
Figure 5, each cluster includes three adders, two multi
ers, one divide/square root unit, one 128-entry scratch-
register file, and one intercluster communication unit. Th
mix of arithmetic units is well suited to our experiment
kernels. However, the architectural concept is compati
with other mixes and types of arithmetic units within th
clusters.

Each input of every functional unit in the cluster is fe
by a separate sixteen element local register file (LR
These local register files store kernel constants, parame
and local variables, reducing the required SRF bandwid
Each cluster has 17 16-word LRFs for a total of 272 wor
per cluster and 2176 words across the eight clusters. E
local register file has one read port and one write port. T
17 local register files collectively provide 54.4 GB/s o
peak data bandwidth per cluster, for a total bandwidth
435.2 GB/s within the cluster array.

In order to provide the equivalent bandwidth and sto
age needed within a cluster using a single register file

Figure 5: Imagine Cluster Organization

CU

in
te

rc
lu

st
er

 n
et

w
or

k

+

From SRF

To SRF

+ + * * /

cross point

Local Register
File

4 The memory system architecture could also support Direct RDRAM.
5

 read
that
he

ing
m

evel
ra-
e

ing
29-port, 256-entry register file would be required. This is
significantly less efficient in terms of area and speed than
the LRF organization. A simple storage cell for such a reg-
ister file could be no less than 29 wiring tracks in both
dimensions - one data wire and one control wire for each
port. A more realistic storage cell would likely be much
larger. An actual LRF storage cell is 6 wiring tracks by 8
wiring tracks. Therefore, the large multi-ported register file
would require more than a 16x area increase over the 17
LRFs, making it the same size as three entire arithmetic
clusters on Imagine.

The LRF organization is also faster than a single multi-
ported register file for two reasons. First, LRFs hold 16
words instead of 256 words. This leads to much less capac-
itive loading and faster register file accesses by at least a
factor of two. Second, with a large multi-ported register
file, read and write accesses each require one wire delay
across a cluster. In modern VLSI, this global communica-
tion incurs a significant delay for every register file access.
With the LRF structure, this wire delay is only incurred for
writes, since the reads occur locally to each ALU.

Additional storage is provided by a 128-word scratch-
pad register file, the second unit from the right in Figure 5.
It can be indexed with a base address specified in the
instruction word and an offset specified in a local register.
The scratch-pad allows for coefficient storage, short arrays,
small lookup tables, and some local register spilling.

The intercluster communication unit, labelled &8 in the
figure, allows data to be transferred among clusters over
the intercluster network using arbitrary communication
patterns. The communication units are useful for kernels
such as the Fast Fourier Transform, where interaction is
required between adjacent stream elements.

The adders and multipliers are fully pipelined and per-
form single precision floating point arithmetic, 32-bit inte-
ger arithmetic, and 16-bit or 8-bit parallel subword integer
operations, as found in MMX [9] and other multimedia
extensions [8] [10]. The adders are also able to perform 32-
bit integer and parallel subword integer shift operations.
All multiplication and floating point addition has a latency
of four cycles, while logical operations and integer addition
have latencies of one and two cycles respectively.5 The
divide/square root unit is not pipelined and operates only
on single precision floating point and 32-bit integers. The
divider has a latency of 14 cycles for floating point divide,
13 cycles for floating point square root, and 21 cycles for
integer divide.5 This gives a total of up to 21 arithmetic
operations in flight for each cluster (168 for all eight clus-
ters), half of which are utilized by key media processing
kernels. The 48 total arithmetic units, six units replicated

across eight clusters, provide a peak computation rate of
16.2GOPS for both single precision floating point and 32-
bit integer arithmetic. The rate for byte operations is
64.2GOPS (the divider does not perform subword opera-
tions).

3.4 Network Interface

The network interface connects the SRF to four bidirec-
tional links (400MB/s per link) that can be configured in an
arbitrary topology to interconnect Imagine processors. A
send instruction executed on the source Imagine processor
reads a stream from the SRF and directs it onto one of the
links and through the network as specified by a routing
header. At the destination Imagine processor, a receive
instruction directs the arriving stream into the SRF. The
send and receive instructions both specify channels to
allow a single node to discriminate between arriving mes-
sages.

Using the stream model, it is easy to partition an appli-
cation over multiple Imagine processors using the network.
In the triangle rendering application of Figure 1, for exam-
ple, higher throughput could be achieved by running the
first three kernels on one Imagine, transmitting the output
stream over the network to a second Imagine, and running
the last five kernels on the second processor. The applica-
tion is adapted by dividing the application-level code
across the two processors, inserting a send instruction at
one end, and inserting a receive instruction at the other.

3.5 Host Interface

A host processor issues application-level instructions to
Imagine with encoded dependency information. The host
interface buffers these instructions in an instruction win-
dow and issues them when their resource requirements and
dependency constraints are satisfied. The host interface
allows an Imagine processor to be mapped into the host
processor’s address space, so the host processor can
and write Imagine memory and can execute programs
issue the appropriate application-level instructions to t
Imagine processor.

4. Programming Model

Figure 6 shows the actual code for the triangle render
application, as presented in Figure 1. This C++ progra
executes on the host processor and issues application-l
instructions that direct Imagine to perform stream ope
tions. A set of library functions provide an interface to th
application-level instructions. The /2$'B0,&52&2'(� func-
tion loads the requested routine (e.g., 75$16)250�8&) if it is
not already in the control store, and returns its start

5 These latencies are derived from HSPICE simulations of the arithmetic
units, including wiring parasitics extracted from the arithmetic unit lay-
out.
6

as-

 as
ill
ies
g,
. It
st,
he

e
ndi-

 as
low
ms

ndi-
m

ad

he
ft-

-
 14
c-
oft-
up
fter
es
address. Memory load and store instructions are issued to
Imagine by the 675($0B/2$' and 675($0B6725(functions,
respectively. Finally, an operate instruction is issued by the
675($0B23 function causing the corresponding microcode
kernel to run on each element of the specified source
streams. For example, the first 675($0B23 function shown
in the code initiates a compound stream operation on Imag-
ine by issuing an operate instruction, as described in Sec-
tion 3, specifying the start address of the 75$16)250

microcode. The instruction also specifies one input stream,
65)B02'(/B75,$1*/(6, and one output stream,
65)B:25/'B75,$1*/(6.

The arguments of the stream load, store, and operate
instructions are specified by stream descriptors. Each
memory stream descriptor (e.g., 0(0B02'(/B75,$1*/(6)
includes a base address, length, record size, addressing
mode, and stride or index stream. Each SRF stream
descriptor (e.g., 65)B02'(/B75,$1*/(6� includes a base
location in the SRF, record length, and stream length.
These descriptors are computed by C++ code running on
the host processor (in the call to 83'$7(B'(6&5,37256 in the
figure).

Note that the microcode kernels need only be loaded
once for all of the triangle streams that are to be processed,
as the microcode store is large enough to hold all of the
kernels. If another function were to be performed, then it is
likely that these kernels would have to be evicted from the
control store and reloaded the next time that
5(1'(5B75,$1*/(B675($06 is called. This allows the over-
head of loading microcode kernels to be amortized across
several large data streams.

Kernels, such as those invoked by 675($0B23 commands
in Figure 6, are written in Imagine’s microassembly lan-

guage which uses a C-like expression syntax. The micro
sembly code for the first kernel of the
5(1'(5B75,$1*/(B675($06 application, 75$16)250, was
shown in Figure 2. The kernel compiler takes this code
input and generates VLIW microcode instructions that w
control the arithmetic clusters. The kernel compiler appl
several common high level optimizations: loop unrollin
iterative copy propagation, and dead code elimination
then performs list scheduling, starting with the large
most deeply nested basic block. Within each block, t
operations with the least slack are scheduled first.

Loops are the only control flow operations in th
microassembly language; however, data dependent co
tionals can be handled using the select instruction, scratch-
pad accesses, or conditional streams. The select operation
acts exactly like the C “?:” operator, and is implemented
a hardware primitive. The scratch-pad can be used to al
each of the eight clusters to access different data ite
based on a register offset computed in the clusters. Co
tional streams are a powerful conditional mechanis
allowing each cluster to independently conditionally re
or write its streams.

Figure 7 graphically depicts the schedule output by t
kernel compiler for the transformation kernel using so
ware pipelining. The two loops of the kernel are com
pressed into one for efficiency, and the figure shows the
instruction software pipelined loop body. The 25 instru
tions before the loop that load constants and prime the s
ware pipeline are not shown for clarity. The omitted set
code would only execute once for an entire stream, a
which the loop would repeat for each set of eight vertic
(one per cluster).

void render_triangle_streams() {
// Make sure the kernels are loaded into the Imagine microcontroller
int transform = load_microcode(“transform.uc”);
int shade = load_microcode(“shade.uc”);
int project_cull = load_microcode(“project_cull.uc”);
int span_setup = load_microcode(“span_setup.uc”);
int process_span = load_microcode(“process_span.uc”);
int sort = load_microcode(“sort.uc”);
int compact = load_microcode(“compact.uc”);
int z_composite = load_microcode(“z_composite.uc”);

// Render a series of triangle streams
for (int i=0; i<NUM_TRIANGLE_STREAMS; i++) {

update_descriptors();
stream_load(mem_model_triangles, srf_model_triangles);
stream_op(transform, srf_model_triangles, srf_world_triangles);
stream_op(shade, srf_world_triangles, srf_shaded_triangles);
stream_op(project_cull, srf_shaded_triangles, srf_screen_triangles);
stream_op(span_setup, srf_screen_triangles, srf_spans);
stream_op(process_span, srf_spans, srf_fragments);
stream_op(sort, srf_fragments, srf_sorted_fragments);
stream_op(compact, srf_sorted_fragments, srf_buf_idx, srf_pixels);
stream_load(mem_buf_pixels[srf_buf_idx], srf_pixels2);
stream_op(z_composite, srf_pixels, srf_pixels2, srf_output_pixels);
stream_store(srf_output_pixels, mem_buf_pixels[srf_buf_idx]);

}
}

Figure 6: Stream-Based Triangle Rendering
7

e
ir-
n-
 the
r-
-

of
re
h-
ine
t

to
 the
As
of
ing
RF

ions
fer-

ve
ar-
e,
The nodes in the figure represent the operations in each
VLIW instruction word of the compiled kernel. The arcs
between the operation nodes indicate dependencies and are
labelled with the latency of the source operation. Operation
nodes which are not the source of a dependency arc interact
only with operations on subsequent iterations of the soft-
ware pipeline. Nodes that are aligned horizontally belong
to the same instruction and specify operations that are
issued simultaneously. For example, the first instruction of
the loop specifies that each cluster will initiate two multi-
plications, and the second instruction will issue two multi-
plies, two adds, and a stream input operation to each
cluster. The actual VLIW instruction word contains fields
for all of the units, but nodes are only shown for operations
that are not NOPs. For this particular kernel, 75% of the
multiplier issue slots and 36% of the adder issue slots are
utilized. The multipliers are the limiting resource that pre-
vents the schedule from being compacted further.

5. Discussion

5.1 Storage Bandwidth Hierarchy

The bandwidth hierarchy of the Imagine architecture
matches the demands of media applications to the capabil-
ity of modern VLSI technology. The memory, SRF, and
LRFs on a single Imagine chip have bandwidth ratios of
1:32:272. That is, for each word accessed in memory, 32
words may be accessed in the SRF, and 272 words may be
accessed in the clusters’ local register files. The memory

bandwidth is set by the pin bandwidth limitations of th
chip, and the SRF bandwidth is limited by the global w
ing available on the chip. LRF bandwidth is less co
strained because it involves no long wires, and is set by
number of ALUs. Viewed a different way, Imagine can pe
form 40.5 arithmetic operations per 4-byte word of mem
ory bandwidth and 1.2 arithmetic operations per word
SRF bandwidth. In contrast, a conventional architectu
requires 3 words of global register bandwidth per arit
metic operation. The bandwidth hierarchy enables Imag
to productively employ large numbers of ALUs withou
requiring prohibitive global bandwidth.

Imagine’s bandwidth hierarchy is also well matched
the needs of media applications. Consider, for example,
triangle rendering application presented in Section 2.
mentioned earlier, for an image with a depth complexity
five, where an average triangle covers 25 pixels, render
each triangle requires 1929 arithmetic operations, 666 S
references, and 44 memory references (or 2.9 operat
per SRF reference and 43.8 operations per memory re
ence).

5.2 Instruction Bandwidth

At peak, Imagine is able to execute 136 instructions6 per
cycle, not counting memory loads and stores. To achie
this rate, Imagine relies on an instruction bandwidth hier
chy with four levels: host interface, memory, control stor

Figure 7: Compiled Transform Kernel

MUL1 : *

ADD1 : +

4

MUL0 : *

4

ADD0 : +

4

IN0

MUL0 : *

1

MUL1 : *

1

MUL1 : *

1

IN0

MUL1 : *

1

MUL0 : *

1

MUL0 : *

1

IN0

MUL0 : *

1

MUL0 : *

1

MUL1 : *

1

IN0

MUL1 : *

1

MUL1 : *

1

MUL0 : *

1

IN0

IN0

IN0

MUL0 : *

1

MUL1 : *

1

MUL0 : *

1

IN0

ADD0 : +

ADD0 : +

4

ADD2 : +

4

OUT0

4

ADD1 : +

OUT0

4

ADD0 : +

4 4

ADD1 : +

4

4

ADD0 : +

OUT0

4

ADD2 : +

4

4

ADD0 : +

4

4

OUT0

4

MUL1 : *

ADD2 : +

4

MUL0 : *

4

ADD1 : +

4

OUT0

4

MUL0 : *

ADD0 : +

4

MUL1 : *

4

ADD2 : +

4

OUT0

4

OUT0

OUT0

6 This includes 6 arithmetic instructions, 8 SRF references, one communi-
cation, and 2 scratch-pad references for each of the eight clusters.
8

of
ces
pi-
fer-
he
he
F

er-
th-
cal
es
08
red
igi-

m-
um-
 (in
om-

II

igh
f a
the
d-
m-
old
er-
ut
-

data
 the
ory

ces
iza-
s,
of
sed

s
er
. A
ese
red

ref-
 The
ca-
obal
be
m-

 a
er-
and arithmetic units. A pair of application-level instruc-
tions issued through the host interface will transfer a
microprogram from memory to the SRF and then from the
SRF into the control store. This memory transfer will occur
once for an entire stream operation, and since the working
set of kernels for a typical application will fit in the control
store, the kernel will be reused for several stream opera-
tions over the course of the application. Using strip-min-
ing, a single application-level 23(5$7(instruction will
iterate the kernel over a stream containing as many input
records as will fit in the SRF. Each instruction in the inner
loop of the kernel will be issued once for every eight input
records, and will execute on all eight clusters simulta-
neously to process those eight records.

The triangle transform kernel can be used to illustrate
these concepts. The kernel itself consists of 39 wide
instructions, of which 14 are in the inner loop. Since each
wide instruction can be specified with 12 32-bit words, 468
words will be transferred from memory to the control store
for this kernel. This operation has a negligible impact on
performance, as each individual scene can easily consist of
hundreds of thousands of triangles, and other kernels can
execute during the transfer. Each time the transform kernel
runs, it will operate on 200 triangles.7 Hence a single 23(5�
$7(instruction issued by the host processor will issue 1075
instructions from the control store and execute 8600
instructions on the eight clusters, each specifying up to 17
actual operations. So, even if the transform kernel is only
run on one input stream, each instruction read from mem-
ory executes an average of over 200 times. As with the data
bandwidth hierarchy, the instruction bandwidth hierarchy
is well matched to the capabilities of current technology.

5.3 Conventional Processors

The advantages of Imagine’s data and instruction band-
width hierarchies can be appreciated by comparing them to
conventional scalar and vector processors. Table 1 com-
pares the memory, global register, and local register band-
width requirements of a stream architecture (Imagine) with
a vector processor and a scalar processor for the triangle
transformation kernel.

The left-most column of Table 1 shows the number
memory references, SRF references, and LRF referen
for the stream architecture. As stated in Section 2, for ty
cal data the stream architecture performs 44 memory re
ences for the entire pipeline. Amortizing this across t
eight kernels gives 5.5 memory references per kernel. T
transformation kernel itself reads 24 words from the SR
and writes 24 words to the SRF for a total of 48 SRF ref
ences. Finally carrying out the kernel requires 108 ari
metic operations per triangle that use 372 words of lo
register file (LRF) bandwidth. The additional LRF access
beyond the 324 that would strictly be required by the 1
arithmetic operations come from register transfers requi
for software pipelining, and the register accesses to or
nally store data from the SRF into a local register file.

The next two columns of Table 1 compare these nu
bers to a scalar processor by giving both the absolute n
ber of references and the ratio to a stream processor
parentheses). The scalar numbers were generated by c
piling the transformation kernel for an UltraSPARC
using version 2.7.2 of the gcc compiler with the �2� flag.
The table shows that a scalar architecture places very h
demands on global register bandwidth, 13 times that o
stream processor. Scalar register files also increase
demand on memory bandwidth. Significant memory ban
width is needed to load and store values from main me
ory because global scalar register files are too small to h
the local variables and parameters of a typical media k
nel. In addition to the 48 words needed to fetch the inp
triangle and write the output triangle, 69 additional mem
ory references are needed to load constants and input
repeatedly and to spill registers to the stack. As a result,
scalar processor requires 21.3 times as much mem
bandwidth as a stream processor.

The last two columns present the number of referen
for the same kernel on a vector processor with an organ
tion similar to the Imagine processor. All vector operation
however, are primitive arithmetic operations instead
compound stream operations. Also, data is acces
directly out of the global register file as vectors (stream
with a record length of 1), instead of using local regist
files as a source and sink of data for the arithmetic units
scalar register file to hold constants is assumed, but th
references are not included as they are negligible compa
to the vector accesses. Again the ratio of the number of
erences to a stream processor is given in parentheses.
global vector register file is a data bottleneck, as in the s
lar case, since all computations must reference these gl
registers. Also, vectors of intermediate results must
recirculated through memory, as there is not enough te
porary storage in a typical vector register file.

Vector processors reduce instruction bandwidth in
manner similar to Imagine because each instruction op

7 This number is set by the number of 96-byte triangles that fit in the 64KB
SRF.

Table 1. 32-bit Data References per Triangle for Transform

Stream Scalar Vector

Memory 5.5 117 (21.3) 48 (8.7)

Global RF 48 624 (13.0) 261 (5.4)

Local RF 372 N/A N/A
9

gh
els.
ra-
nce
m-
in
hy
 of
ates on an entire vector, rather than a single word. Also, the
vector register file relieves register pressure for scalars
thereby reducing the number of main memory accesses that
must occur during each record computation of a kernel.
Even with these advantages, the vector processor still
requires 8.7 times the memory bandwidth and 5.4 times the
global register file bandwidth as a stream processor.

5.4 Cache Memories

A cache memory reduces main memory traffic in the
same manner as a stream register file. However, a cache
memory falls far short of a stream register file in terms of
data and instruction bandwidth. The Imagine SRF is able to
read 32 words per cycle because they are read sequentially
from a single stream. In contrast, a typical cache memory
allows only one or two independent word accesses per
cycle, and thus is a bandwidth bottleneck for streaming
media applications. Cache memories also require much
greater instruction bandwidth than a SRF. An entire 2KW
stream can be read from an SRF with a single application-
level instruction. Reading the same data from a cache
requires 2K instructions.

5.5 Sustained Kernel Performance

The Imagine kernel compiler and cycle accurate simula-
tor were used to generate the following performance results
for four representative media processing kernels: FFT,
DCT, transform, and blockwarp. FFT performs one stage
of an N-point complex, floating point, radix-2 Fast Fourier
Transform. Streams must be run through the kernel log2(N)
times in order to perform the full transform. DCT performs
the Discrete Cosine Transform on streams of 8[8 blocks of
packed 16-bit fixed point data. Transform is the vertex
transformation code shown in Figure 2, which operates on
floating point pixel values. Blockwarp, taken from an
image-based rendering application [5], performs a 3-D per-
spective transformation from model space into screen
space on 8[8 blocks of 3-D floating point pixels. These
four kernels are representative of typical graphics and sig-
nal processing applications. All performance numbers are
sustainable for any data stream length that entirely fits
within the SRF.

Table 2 shows the speedup of the four kernels on the
Imagine processor going from a single cluster configura-
tion to an eight cluster configuration. The near-linear
speedup of 7.4 shows that the Imagine architecture is effec-
tive at exploiting the data parallelism available in these
kernels. Vertex transformations are completely indepen-
dent calculations, allowing the eight clusters to achieve a
speedup of exactly eight for the transform kernel. Commu-
nication between the clusters reduces the speedup to less
than 8 for the rest of the kernels, as they are not perfectly
data parallel.

Table 3 shows the sustained bandwidth used by these
kernels and demonstrates the effectiveness of the band-
width hierarchy. The kernels sustain an average of
7.7GOPS and require 123GB/s of local register bandwidth.
The SRF, which provides higher bandwidth than a general-
purpose global register file, cannot even provide half of the
data bandwidth used by the arithmetic units. Therefore,
without the small, fast local register files at the bottom of
the bandwidth hierarchy, Imagine would not be able to
achieve such high sustained performance on media kernels.

The arithmetic throughput of blockwarp is worse than
the other kernels because it contains a divide in each pixel
warp computation. The non-pipelined divider creates a bot-
tleneck, even with software pipelining to hide its latency,
because all subsequent calculations are dependent on its
result. DCT makes use of 16-bit parallel subword opera-
tions in order to achieve a sustained throughput of
16.45GOPS.

Imagine’s stream architecture allows it to achieve hi
sustained performance for these media processing kern
For the FFT kernel, an average of over 21 arithmetic ope
tions are issued on every cycle for a sustained performa
of 8.48GFLOPS. This represents a radix-2 butterfly co
putation every 2/3 cycles. The inherent parallelism
media applications and the Imagine bandwidth hierarc
results in similar sustainable performance on a variety
media processing applications.

Table 2. Exploiting Data Parallelism

Kernel 1 to 8 Cluster Speedup

FFT 6.3

DCT 7.7

Transform 8.0

Blockwarp 7.8

Harmonic Mean 7.4

Table 3. Kernel Performance

Kernel
SRF BW

(GB/s)
LRF BW

(GB/s)

Arithmetic
Ops Issued
per Cycle

Arithmetic
BW

(GOPS)

FFT 24.24 186.70 21.21 8.48

DCT 4.79 134.10 41.12 16.45

Transform 14.63 113.37 20.57 8.23

Blockwarp 4.70 92.84 11.49 4.60

Harmonic Mean 7.53 123.44 19.31 7.73
10

6. Conclusions

The stream programming model exposes the parallelism
and locality of media applications in a manner that is well
matched to the capabilities of modern VLSI technology. A
programmer describes an application as streams of records
that are passed through computation kernels. Individual
stream elements may be operated on in parallel to exploit
data parallelism. Instruction-level parallelism can be
exploited within the individual computation kernels. Also,
control parallelism can be exploited by partitioning an
application across multiple processors. Locality is exposed
both by recirculating streams through a stream register file
and also within the computation kernels which access
streams in order and keep a small set of local variables. For
triangle transformation, a typical media kernel, this locality
reduces the demand on global register and memory band-
width over a scalar processor by factors of 13 and 21,
respectively. This enables a stream architecture to make
efficient use of a large number of arithmetic units without
global bandwidth becoming a bottleneck.

Imagine is a single-chip media processor that supports
the stream programming model by providing a data band-
width hierarchy matched to the demands of typical media
applications. Imagine is organized around a central stream
register file (SRF) and all operations on Imagine are per-
formed by transferring streams to and from the SRF. Load
and store instructions transfer streams between the SRF
and memory. Network instructions transfer streams
between the SRFs on different Imagine processors. Stream
computations are performed by passing a stream from the
SRF through an array of 48 32-bit FP arithmetic units (6
units in each of 8 clusters) and back to the SRF. These units
have a peak performance of 16.2GFLOPS (32-bit) and
achieve 8.5GFLOPS on important media kernels.

At present (Summer 1998) we have developed a cycle
accurate simulator of Imagine. Designs of key components,
including the 32-bit segmented adder and multiplier and
key register files have been carried through sized schemat-
ics and layout to accurately validate area and delay esti-
mates. A programming system including a kernel compiler
and application toolbench has been developed. The kernel
compiler accepts a kernel in a restricted subset of C and a
description of an arithmetic cluster and outputs optimized
microcode. The application toolbench provides utilities
that allow a host processor to issue application-level
instructions to Imagine.

Our experiments to date have demonstrated the ability
of stream architectures to reduce demands on memory and
global register bandwidth and thus achieve high sustained
throughput rates on key kernels. There is much work to be
done, however. Trade-offs in the composition of an arith-

metic cluster must be quantified as do the trade-offs
between large clusters and more clusters and between a sin-
gle stream processor with many clusters and many stream
processors with a few clusters. Conditional operations also
present an interesting challenge in a machine that has 168
operations in flight each cycle. Many memory system
issues are also open including how to partition addresses
across the banks, how to order memory accesses, how to
exploit a limited amount of cache memory, and how to use
large amounts of on-chip DRAM, if available. To work
seamlessly with a host processor, the host interface pre-
sents challenges such as how to sequence instructions, how
to synchronize with the host, and how to pass data between
the host and Imagine.

7. Acknowledgments

We would like to thank Brad Johanson for his tireless
effort at application development for Imagine. We would
also like to thank Chris Buehler, J.P. Grossman, and Don
Alpert for their contributions to the Imagine architecture.

References

[1] BOVE, JR. V.M. AND WATLINGTON, J.A. Cheops: A Reconfig-
urable Data-Flow System for Video Processing. IEEE Trans-
actions on Circuits and Systems for Video Technology (April
5, 1995), pp. 140-149.

[2] CONTE, THOMAS M., ET. AL. Challenges to Combining Gen-
eral-Purpose and Multimedia Processors. In Computer
(December 1997), pp. 33-37.

[3] DIEFENDORFF, K. AND DUBEY, P. How Multimedia Workloads
Will Change Processor Design. In Computer (Septemeber
1997), pp. 43-45.

[4] FOLEY, JAMES D., ET. AL. Computer Graphics: Principles and
Practice, Addison-Wesley Publishing Company: Menlo
Park, California, 1996.

[5] GROSSMAN, J.P. AND DALLY, WILLIAM J. Point Sample Render-
ing. In Proceedings of the 9th Eurographics Workshop on
Rendering (June, 1998), pp. 181-192.

[6] KIRKPATRICK, SCOTT, Presentation at Harvard University,
1996.

[7] LIAO, HENG AND WOLFE, ANDREW. Available Parallelism in
Video Applications. In Proceedings of the International
Symposium on Microarchitecture (December, 1997), pp.
321-329.

[8] LEE, RUBY B. Subword Parallelism with MAX-2. In IEEE
Micro (August, 1996), pp. 51-59.

[9] PELEG, ALEX AND WEISER, URI. MMX Technology Extension
to the Intel Architecture. In IEEE Micro (August, 1996), pp.
42-50.

[10] TREMBLAY, MARC, ET. AL. VIS Speeds New Media Processing.
In IEEE Micro (August, 1996), pp. 10-20.
11

	1. Introduction
	2. Stream Processing
	3. Imagine Stream Architecture
	3.1 Stream Register File (SRF)
	3.2 Memory System
	3.3 Cluster Array
	3.4 Network Interface
	3.5 Host Interface

	4. Programming Model
	5. Discussion
	5.1 Storage Bandwidth Hierarchy
	5.2 Instruction Bandwidth
	5.3 Conventional Processors
	5.4 Cache Memories
	5.5 Sustained Kernel Performance

	6. Conclusions
	7. Acknowledgments
	References

