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The Message-Driven Processor, an integrated multicomputer node, provides efficient mecha-
nisms for parallel computing. Rather than being specialized for a single model of computation,
the MDP incorporates primitive mechanisms for communication, synchronization, and nam-
ing. These mechanisms efficiently support most proposed parallel programming models. Each
processing node of MIT’s J-Machine consists of an MDP with 1 Mbyte of DRAM. MDPs have been
operational since June 1991, and J-Machines built from them went on line in July 1991.

he Message-Driven Processor is a 36-

bit, 1.1-million transistor, VLSI micro-

computer specialized to operate

efficiently in a multicomputer. The
MDP chip includes a processor, a 4,096-word by
36-bit memory; and a network port. An on-chip
memory controller with error checking and cor-
rection (ECC) permits local memory to be ex-
panded to one million words by adding external
DRAM chips.

The processor is message-driven in the sense
that it processes in response to messages, via the
dispatch mechanism. No receive instruction is
needed. The MDP creates a task to handle each
arriving message. Messages carrying these tasks
advance, or drive, each computation.

We designed the MDP with two primary goals
in mind.

e We wanted to implement a general-purpose,
multicomputer processing node that provides
the communication, synchronization, and
naming mechanisms required to efficiently
support several different parallel program-
ming models.

e We wanted to create an inexpensive, VLSI
component for cost-efficient parallel com-
puters. Ideal nodes should be inexpensive
and plentiful VLSI commodity parts—as in-
expensive and plentiful as jellybean can-
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dies—that can network together to form a
Jellybean Machine (J-Machine) multi-
computer.

Efficient parallel mechanisms

Computer hardware provides primitive opera-
tions called mechanisms. These mechanisms build
the abstractions that in turn make up a program-
ming system.! For example, most sequential ma-
chines provide some mechanism for a push-down
stack to support the last-in-first-out (LIFO) stor-
age allocation required by many sequential pro-
gramming models. Most machines also provide
some form of memory relocation and protection
to allow several processes to coexist in memory
at once without interference. The proper set of
mechanisms can significantly improve perfor-
mance over a brute-force interpretation of a pro-
gramming model.

Over the past 40 years, sequential von
Neumann processors have evolved a set of mecha-
nisms appropriate for supporting most sequen-
tial programming models. It is clear, however,
from efforts to build concurrent machines by wir-
ing together many sequential processors, that
these highly evolved sequential mechanisms do
not adequately support most parallel models of
computation. These mechanisms do not efficiently
support synchronization of events, communica-
tion of data, or global naming of objects. As a
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result, designers must implement these functions, inherent to
any parallel model of computation, largely in software with
prohibitive overhead. For example, sequential machines re-
quire hundreds of instructions to create a new process. This
cost prohibits the use of fine-grain programming models where
processes typically last only a few tens of instructions.

The MDP supports a broad range of parallel programming
models, including shared-memory,? data parallel,’ dataflow,’
actors,” and explicit message-passing.® by providing low-
overhead primitive mechanisms for communication, synchro-
nization, and naming. Its communication mechanisms permit
a user-level task on one node to send a message to any other
node in a 4,096-node machine in less than 2 us. This process
doesn’t consume any processing resources on intermediate
nodes, and it automatically allocates buffer memory on the
receiving node. On message arrival, the receiving node cre-
ates and dispatches a task in less than 1 us.

Presence tags provide synchronization on all storage loca-
tions. Three separate register sets allow fast task switching. A
translation mechanism maintains bindings between arbitrary
names and values, and supports a global virtual address space.
We selected these mechanisms to be both general and ame-
nable to efficient hardware implementation. To support fine-
grain, concurrent programming systems, we designed the
mechanisms to efficiently handle small objects (eight words)
and small tasks (20 instructions).

3D array of fine-grain, processing nodes

The MDP is an example of an inexpensive, fine-grain, mul-
ticomputer building block. A fine-grain node does not neces-
sarily have a slow processor. We can build a competent
processor in a fraction of a modern VLSI chip’s area. Fine
grain and small memory decrease the chip’s cost, resulting in
greater arithmetic performance and local memory bandwidth
per unit cost. Fast communication and a global address space
prevent the small local memories from limiting programma-
bility or performance.

In a multicomputer, system cost is very sensitive to proces-
sor cost. A less-expensive node results in a comparably priced
system with more processors and, to first order, higher per-
formance. In these systems, designers avoid costly features
that give a small incremental return in processor performance
(such as large caches) in favor of building systems with more
nodes, an option not available to the designer of a sequential
computer.

The 3D network that connects MDPs gives the highest
throughput and lowest latency for a given wire density.” This
network allows the processing nodes to be packed densely
and results in uniformly short wires. It does not waste com-
munication bandwidth by embedding an esoteric topology
into physical space. Messages traveling through the network
follow a Manhattan shortest path in physical space; they never
backtrack. (A Manhattan path travels forward, to the side,
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and up or down, but not across diagonals.)

Background

The MDP builds on previous work in multicomputer de-
sign. Like the Caltech Cosmic Cube,” Intel's iPSC,* the Ncube,”
and the Ametek, each MDP in the J-Machine has a local
memory and communicates with other nodes by passing
messages. Because of its low overhead, the MDP can exploit
concurrency at a much finer grain than these early message-
passing multicomputers. Delivering a message and dispatch-
ing a task in response to the message’s arrival takes less than
2 ps on the J-Machine, as opposed to 5 ms on an iPSC-1 or
300 s on an iPSC-2.

Like the BBN Butterfly'' and the IBM RP3,'* the MDP sup-
ports a global virtual address space. The same IDs (virtual
addresses) reference local (on the same node) and remote
(on a different node) objects. Like the Inmos transputer,' the
Caltech Mosaic," and the Intel iWarp,”” the MDP is a single-
chip processing element integrating a processor, memory,
and a communication unit. The MDP is unique because it
extends these previous efforts with efficient primitive mecha-
nisms for communication, synchronization, and naming." It
uses a direct communication network based on work reported
by Dally,” Dally and Seitz,' and Dally and Song."”

System architecture

To the hardware designer, the MDP appears as a compo-
nent with a memory port, six two-way network ports, and a
diagnostic port, as shown in Figure 1.

The memory port provides a direct (that is, no glue) inter-
face to up to 1 Mwords of ECC DRAM, consisting of 11 mul-
tiplexed address lines, a 12-bit data bus, and three control
signals. Static-column or page mode DRAMSs cycle three times
to access a 36-bit data word and a fourth time to check or
update the ECC check bits. Current J-Machines use three 1M
x 4 memory parts to form a four-chip processing node with

15 15
X- AP < X+
Y- 4P < Y+
7 44p Me;sage- > 7+
driven
processor 14
Diagnostic — ¥ —% External
pot  —<p ¢~ DRAM
2 12

Figure 1. MDP pinout. The MDP has a memory port (26
pins), six network ports (15 pins each), and a diagnostic
port (three pins).
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We initialize the value to zero and
the count to the number of inputs
expected. To sum the values of a
number of parallel processes, each
node sends a COMBINE message
containing the result of its process
to a combining node. When the
messages arrive, the processor con-
taining the combining node creates
a task to execute the COMBINE rou-
tine. The routine adds the message
value to the node’s value and dec-
rements the count. When the count
reaches zero, the node sends a
COMBINE message to the node’s
parent.

Communication. The MDP sup-
ports communication using a SEND
instruction for message formatting,
a fast network for delivery, auto-
matic message buffering, and task
creation upon message arrival.
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Figure 2. An array of four J-Machine processing nodes. Each node consists of one
MDP chip and three 1M x 4 static-column DRAMs. With conventional packaging the

node measures 2 in. x 2.75 in.

262,144 words of memory that measures 2 in. X 2.75 in., as
shown in Figure 2.

The network ports connect MDPs together in a 3D mesh
network. Each of the six network ports corresponds to one
of the six cardinal directions (+X,-X+Y,-Y,+Z~2) and con-
sists of nine data and six control lines. Each port connects
directly to the opposite port on an adjacent MDP. We give
details of the 3D network later in this article.

The diagnostic port issues supervisory commands and reads
and writes MDP memory from a console processor. The port
consists of two control lines, a serial input line, and a serial
output line. Using this port, a console processor can read or
write any location in the MDP’s address space, as well as
reset, interrupt, halt, or single-step the processor.

Software. To a systems programmer, a bare J-Machine
appears as a collection of node memories and register files
operable by an instruction set that includes communication,
synchronization, and naming mechanisms. The systems pro-
grammer uses these mechanisms to implement a program-
ming model. For example, one can build a shared memory
model that gives the application programmer a single, shared
address space.

The implementation of a combining tree’® illustrates the
use of the MDP mechanisms. The combining tree (Figure 3)
consists of a number of nodes each containing a value, a
count, and a pointer to a parent node.

A series of SEND instructions car-
ries a message of arbitrary length
to any node in the machine. Upon
arrival at the receiving node, a hard-
ware queue buffers the message.
When the message reaches the head of the queue, the node
dispatches a task to handle the message. The combining tree
example uses a pair of SEND instructions to send the COM-
BINE message to a node. Upon message arrival, the MDP
buffers the message and creates a task to execute the COM-
BINE routine.

Synchronization. The MDP synchronizes using message
dispatch and presence tags on all states. Because each mes-
sage arrival dispatches a process, messages can signal events
on remote nodes. For example, in the combining tree ex-
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Figure 3. A combining tree sums results produced by a dis-
tributed computation. Each node sums the input values as
they arrive and then passes a result message to its parent.
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ample, each COMBINE message signals its own arrival and
initiates the COMBINE routine.

In response to an arriving message, the processor may set
presence tags for task synchronization. For example, access
to the value produced by the combining tree may be syn-
chronized by initially tagging as empty the location that will
hold this value. An attempt to read this location before the
combining tree had written it would raise an exception and
suspend the reading task until the root of the tree writes the
value. Synchronization on data availability in this manner is
quite common in many parallel programs.

Naming. The MDP supports naming with segmented
memory management and translation instructions. In the com-
bining tree example, the MDP allocates a memory segment
to hold the state of each combining node. Using a segment
descriptor, it relocates and protects accesses to the node. To
make combining nodes relocatable across processing nodes,
the MDP translates a node’s virtual address to find the pro-
cessing node where it resides. Upon reaching this node, a
second translation locates the segment descriptor for the com-
bining node.

Instruction set architecture

The MDP extends a conventional microprocessor instruc-
tion set architecture (ISA) with instructions to support paral-
lel processing. Specifically, the MDP provides efficient
hardware mechanisms for communication, synchronization,
and naming. Although we describe here the MDP ISA, with
particular emphasis on these mechanisms, readers can find
more details in Dally et al.'?

Register set. The MDP provides separate register sets to
support rapid switching between three execution levels: back-
ground, priority 0 (P0), and priority 1 (P1). The MDP ex-
ecutes at the background level when no messages are pending.
Fach arriving message creates a task and initiates execution
at PO or P1, depending on the message’s priority. The MDP
executes the highest priority task at any point in time. The
arrival of a P1 message while the MDP is executing a PO task
causes the MDP to switch execution levels (and thus register
sets). When the P1 task completes, the MDP resumes execu-
tion at PO by switching to the PO register set that holds the
register state of the suspended task.

The register set at each priority level includes

e four general-purpose data registers, RO-R3,
o four address registers, A0-A3,

e four ID registers, IDO-ID3, and

e one instruction pointer, IP.

The background register set does not include ID registers.
They only exist at PO and P1.

Most instructions operate on the general registers RO-R3.
Each address register A0-A3 contains a segment descriptor
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consisting of a base and a length field. Memory addresses are
specified by an offset and an address register. For example,
the operands [RO, A1l and (3, A2] specify an indexed access
to the segment described by Al and a displacement of three
words into A2's segment.

ID registers usually hold object IDs. The instruction pointer
includes process status bits that control virtual addressing,
type checking, and fault handling. Placing these bits in the
instruction pointer enables control and execution states to
change by loading a single register. The relatively small size
of each register set facilitates quick task switching within an
execution level.

Tags. The MDP uses tags for type checking and synchro-
nization. Every 36-bit word of register and memory state holds
a 32-bit value and a 4-bit tag that indicates the type of the
value. Tag values are defined for primitive user data types
(such as symbol, integer, and Boolean) and for system data
types, such as IP, Addr (a segment descriptor), and Msg (a
message header). Four tag values are user-definable. If type
checking is enabled, the MDP checks operand tags to deter-
mine which form of an instruction to execute. It raises an
exception if the operands are incompatible with the instruction.

Two tags, Fut and Cfut, support intertask synchronization.
A Cfut tag initially marks a location empty. When a task pro-
duces the value for the location, it overwrites the Cfut with
the final value and tag. Any attempt to read from the location
before the value is produced invokes the Cfut fault handler,
which typically suspends the reading task until the location
is written. Fut is used for global synchronization, and Cfut for
local.

Hardware support for tags makes software more efficient
and robust. A program can perform an operation without
checking whether operands are present or of the correct type.
For normal cases in which no fault occurs, execution pro-
ceeds faster than if special test and branch instructions were
required to check for type and presence. Only exceptional
cases incur the overhead of running a fault handler.

Instructions. The MDP executes 17-bit, fixed-format, three-
address instructions with the format shown in Figure 4. Each
instruction specifies an operation, two general register oper-
ands, and a third operand that may be a register, a memory
location, or a constant. Two 17-bit instructions fit into each
36-bit word. Any instruction stream word not tagged as an

16 1110 98 76 0
Opcode IOperand 2|Operand 1| Operand 0 ]

Register, constant, \

’ Register operands ‘
or memory operand

Figure 4. MDP instruction format.




General movement and type instructions

READ WRITE READR WRITER RTAG

WTAG LDIP LDIPR  CHECK
Arithmetic and logic instructions

CARRY ADD suB MULH  MUL

ASH LSH ROT AND OR
XOR FFB NOT NEG LT

LE GE GT EQUAL NEQUAL
EQ NEQ
Network instructions
SEND SENDE SEND2 SEND2E
Associative lookup table instructions
XLATE ENTER PROBE
Special instructions
NOP INVAL  SUSPEND CALL
Branches
BR BNIL BNNIL  BF BT
BZ BNZ

Figure 5. Six categories of MDP instructions.

instruction is loaded as a constant into register RO. This pro-
vides a very efficient means to load arbitrary 36-bit constants.
Figure 5 summarizes the MDP instruction set by category.
Naming. The MDP supports naming via translation instruc-
tions and segmented addressing. Addressing memory through
segment descriptors permits arbitrary size objects to be relo-
cated and protected. The ENTER instruction enters an arbitrary
translation from a 36-bit key to a 36-bit data value in a set-
associative cache (translation table) mapped into the on-chip
memory. The XLATE instruction looks up the data value (if
any) associated with a key. These instructions can translate an
object’s name into a physical segment descriptor or a node
number to support a global virtual address space.
Communication. The MDP provides hardware support
for end-to-end message delivery including formatting, injec-
tion, delivery, buffer allocation, buffering, and task scheduling.
An MDP transmits a message using a series of SEND in-
structions, each of which injects one or two words into the
network at either priority 0 or 1. Figure 6 shows a typical

SEND RO,0 ; send net address (priority 0)

SEND2  R1,R2,0 ; header and receiver (priority 0)

SEND2E R3,[3,A3],0 ; selector and continuation -
end msg. (priority 0)

Figure 6. MDP assembly code to send a four-word mes-
sage uses three variants of the SEND instruction.

message send. The first SEND instruction reads the absolute
address of the destination node in < X,¥,Z> format from RO
and forwards it to the network hardware. The SEND2 in-
struction reads the first two words of the message out of
registers R1 and R2 and enqueues them for transmission. The
final instruction enqueues two additional words of data, one
from R3, and one from memory. The use of the SEND2E
instruction marks the end of the message and causes it to be
transmitted into the network. This sequence executes in four
clock cycles (250 ns).

The network delivers an injected message to the destina-
tion node, as described later. At the destination, a hardware-
managed, FIFO queue in the internal RAM of the MDP buffers
the message. Separate queues exist for PO and P1 messages.

Task scheduling. When a message reaches the head of
the highest priority nonempty queue, the MDP creates a task
to handle it by changing the thread of control and creating a
new addressing environment, as shown in Figure 7. Every
message header contains a message opcode and the mes-
sage length. The MDP loads the message opcode into the
instruction pointer to start a new thread of control. The length
field and the queue head create a message segment descrip-
tor (automatically written to A3) that represents the initial
addressing environment for the task. The message handler
code may open additional segments by translating object IDs
in the message into segment descriptors. Creating a task to
handle a message takes three cycles.

The dispatch mechanism directly processes messages re-
quiring low latency (for example, combining and forwarding).
Other messages, such as a remote procedure call, specify a
handler that locates the required method (using the translation
mechanism described earlier) and then transfers control to the
method.

Segment
descriptor

Message
length

| Message = process

Message

head 3| Message header

Y
Instruction
pointer (IP)

Figure 7. Message dispatch. In three clock cycles, a node
creates a new task by setting the instruction pointer to
change the thread of control and creating a message seg-
ment to provide the initial addressing environment.
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MOVE [1,A3],RO ; get method ID
XLATE RO,AQ ; translate to segment descriptor
LDIP INITIAL_IP  ; load instruction pointer to

transfer control to method

Figure 8. MDP assembly code for the CALL message.

For example, Figure 8 shows the CALL handler code han-
dling a remote procedure call. Figure 9 depicts the execution
of the handler. The first instruction gets the method ID (off-
set one word into the message segment
referenced by A3). The next instruction
translates this method ID into a segment

it can perform simple operations, such as combining. These
ways include the following:

e The MDP hardware dispatches the COMBINE task by
setting the instruction pointer to COMBINE and initializ-
ing message pointer A3 to allow direct access to mes-
sage words. This avoids the overhead otherwise
associated with control transfer and with setting up an
addressing environment.

* The two SEND instructions transmit the four-word mes-

Memory

Message

descriptor for the method and places
this descriptor in A0. In one of its oper-
ating modes, the MDP can use AO as a
pointer to a segment of code and IP as
an index into that segment. This allows
code to be easily relocated at runtime.
The final instruction of the CALL han-
dler transfers control to the method by
loading the IP with a short integer off-
set. Thereafter the MDP will fetch in-
structions from the called method.
The method code may then read in
arguments from the message queue. The

Argument IDs .
Method ID

Call = > Call
i routine

XLATE

Method
code

\ 4

Argument

y

XLATE instruction translates argument
object identifiers to physical memory
base/length pairs. If the method needs
space to store local state, it may create
a context object. When the method fin-
ishes executing, or when it needs to wait

object

Context

for a reply, it executes a SUSPEND in-
struction, which dequeues its message
and passes control to the next message
in the queue.

An example of a direct message han-
dler is the COMBINE routine shown in

Figure 9. The CALL message invokes a method by translating the method identi-
fier to find the code, creating a context (if necessary) to hold local state, and
translating argument identifiers to locate arguments.

X - i COMBINE: MOVE  [1,A3], COMB ; get node pointer from msg
Figure 3. Figure 10 displays the code MOVE [2,A3], R1 : get value from msg
for this routine. If the node is idle, ex- ADD R1. COMB.VALUE. R1
ecution of this routine begins three  MOVE R‘I' COMB.VALUE’ - store result
cycles after message arrival. The rou- MOVE CéMB.COUNT R2 : get Count
tine loads the combining node pointer ADD R2 -1 R2 '
and value from the message, performs MOVE  R2, COMB.COUNT ; store decremented Count
the required add and decrement, and, BNZ R2. DONE
if Count reaches zero, sends a message MOVE HE:ADER RO : get message header
to its parent. SEND2  COMB.PARENT_NODE, RO ; send message to parent
This 12-instruction routine executes SEND2E COMB.PARENT, R1 - with value
in 21 cycles. It demonstrates several DONE: SUSPEND ’ !

ways in which the MDP’s communica-

tion mechanism reduces the overhead
of message passing to the point where
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Figure 10. MDP assembly code for the combining tree example.




sage to the parent task. The message transmits directly
from register and memory variables with no need to first
format it in memory.

e The SUSPEND instruction terminates the task and simul-
taneously dequeues the message. If another message is
pending in the queue, the processor dispatches a task to
handle it two cycles after the execution of the SUSPEND
instruction.

Figure 11. The J-Machine network is a 3D mesh or k-ary
3-cube. The network performs e~cube or destination tag
routing. Messages route in each dimension in turn to the
proper coordinate in that dimension. In this figure, a mes-
sage routes from (1,5,2) to (5,1,4), routing first in X, then
Y, then Z.

Control Prefetch

Network architecture

The MDP contains a network interface and a router that
support a communication network closely integrated with
the processor. In a J-Machine composed of MDPs, the net-
work provides end-to-end message delivery with low latency
(less than 2 ps in a 4,096-node network) and high bandwidth
(288 Mbits per second per channel). Message delivery occurs
entirely within the routers of the machine and consumes no
ProCessor or memory resources at intermediate nodes.

Structure. The J-Machine network is a 3D grid, with two-
way channels, dimension-order routing, and blocking flow
control. (See Figure 11.) Addressing limits the size of the
network to 65,536 nodes (32 x 32 x 64). Our initial prototype
is a 1,024-node machine (8 x 8 x 16). The faces of the net-
work cube are open for use as I/O ports to the machine.
Each channel can sustain a data rate of 288 Mbps. All three
dimensions may operate simultaneously for an aggregate data
rate of 864 Mbps per node.

Three modules, shown in Figure 12, compose the network
logic. The network output module buffers words and injects
them into the network. The three routers, one for each di-
mension of the network, route messages from node to node.
The network input module reassembles messages at their
destination and buffers them into a message queue. We de-
scribe more details of implementation in the next section.

Engineering. We chose the 3D mesh topology of the J-
Machine network as the most efficient arrangement subject
to constraints of wiring density and component pinout.” These
constraints set the width of the six bidirectional channels per
MDP node at 9 data bits plus 6 control bits. We built the J-
Machine as a stack of boards with dense board-to-board in-
terconnections to implement the 3D network with short wires.

The MDP breaks with the tradition of asynchronous net-
work routers by implementing a synchronous router.’*' This
router operates at twice the rate of the
processor, sending a pair of 9-bit phits
between nodes each 62.5-ns processor
cycle (A phit is a physical digit, the width
of the physical channel. A pair of phits

+ !;gus

AAU

RALU Memory

External C L4 5 To form a flit, or flow-control digit, the

memory A "‘%’
interfface D [~ DRAM

granularity of flow control in the net-
work. An 18-bit flit is half an MDP data

external

A B

b Qbus e

C bus 36

4

word.)
Each of the six bidirectional channels

Abus can be turned around on alternate cycles

20 18

with no contention penalty. A novel pad

Network 6%15

channels >

Network
input

Routers

Network
output

design tolerates clock skew between
routers and eliminates the potential for

conduction overlap when the channel
reverses direction.? Messages route
through the network with 2 latency of

Figure 12. MDP block diagram.

one 62.5-ns processor cycle per hop.
Thus, message latency T'is given by
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T=T Q2L+ D),

where T, is the processor cycle time, L is message length in
words, and D is the distance (number of nodes) a message
must traverse. For example, in a 1,024-node machine, an I=6
word message to a random destination traverses an average
of D=10 nodes for a latency of 7=22 cycles or 1.4 ps. The
bisection bandwidth (the bandwidth across a plane dividing
the machine into two equal halves) of a 1,024-node machine
is 18.4 Gbps. The aggregate bandwidth of the network chan-
nels is 864 Gbps, and the 1/0 bandwidth is 184 Gbps.

Routing and flow control. The ]J-Machine uses deter-
ministic dimension order routing, also called e-cube routing.
As shown in Figure 11, all messages route first in the X di-
mension, then in ¥, then in Z. Since messages route in di-
mension order and messages running in opposite directions
along the same dimension do not block, we avoid resource
cycles, and leave the network provably deadlock free.?

Table 1 lists the format of a message. The first three flits of
the message contain the X, ¥, and Z addresses. Each node
along the path compares the address in the head flit of the
message with the node’s index in the current dimension. If
the two indices match, the node strips the head flit off the
message and routes the rest to the next dimension. The MDP’s
network output node formats the address flits of the mes-
sage. It also precomputes the direction (positive or negative)
the message must travel along each dimension, setting addi-
tional bits in the address flits. This reduces the latency and
complexity of the router nodes.

The network uses blocking flow control to resolve conten-
tion for a physical channel (see Figure 13). When a message
arrives at a router path already in use by a message of the
same priority, it is blocked. The blocked message compresses

Table 1. A typical message in the J-Machine.
Flit Contents Remark
1 X address
2 Y address
3 7 address
4 MSG: 00 Method to call
5 00440
6 Argument to method
7 0023
8 INT: 00 Reply address
9
The first three flits contain the destination address. The
final flit in the message is marked as the tail.
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Figure 13. The J-Machine network performs blocking flow
control with two stages of queueing per node. Message
arrives at busy channel (a). Message becomes compressed
by queueing (b). Channel is available; message continues
advancing (c).

into routers along its path, occupying one node per word
(two flits) of the message. When the blockage clears, the
message uncompresses and proceeds to its destination, at a
rate of one hop per cycle.

Two priorities of messages share the physical wires, but
use completely separate buffers and routing logic. This al-
lows priority 1 messages to proceed through blockages at
priority 0. Without this ability, the system could not redistrib-
ute data that has caused hot spots in the network.

MDP implementation

Figure 12 shows the major subsystems in the MDP. The
chip includes a conventional microprocessor with prefetch,
control, register file and ALU (RALU), and memory blocks.
The communication system comprises the routers and net-
work input and output interfaces. The address arithmetic unit
(AAD) provides addressing functions. The MDP also includes
a DRAM interface, control block, and diagnostic interface.

Communication subsystem. The communication sub-
system contains the network output, the network input, and
the routers. The network output block buffers messages from
the registers or memory and injects them into the network. A
FIFO buffer matches the speed of message transmission to
the network. On each SEND instruction, the MDP transfers
one or two words to its FIFO. When the message is com-
plete, or the eight-word buffer is full, the buffer launches the
message into the network. In cases where the MDP cannot
send message words as fast as the network can transmit them,
the FIFO prevents bubbles (absence of words) from entering
the network pipeline and degrading performance.

The network input module transfers messages from the
network to the MDP’s memory. Data from the network arrive
in 18-bit flits, which are composed into a four-word queue
row buffer. When the QRB fills, it writes its contents to the
on-chip memory in one cycle. Writing memory a row (4 x 36
bits) at a time reduces the number of memory cycles con-
sumed by the network, leaving more memory bandwidth for
the CPU.

The routers form the switches in a J-Machine network and
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Figure 14. Block diagram of the routers. The two priorities
per dimension are completely separate except where they
share physical channels (a). Each priority contains forward,
reverse, and previous to next dimension datapaths (b).

deliver messages to their destinations. As shown in Figure
14a, the MDP contains three independent routers, one for
each bidirectional dimension of the network. Each router
contains two separate virtual networks with different priori-
ties that share the same physical channels. The priority 1
network can preempt the wires even if the priority 0 network
is congested or jammed.

Each of the 18 router paths contains buffers, comparators,
and output arbitration (Figure 14b). On each data path, a
comparator compares the lead flit, which contains the
destination’s address in this dimension, to the node coordi-
nate. If the head flit does not match, the message continues
in the current direction. Otherwise the message is routed to
the next dimension. Messages entering the dimension com-
pete with messages continuing in the dimension at a two-to-
one switch. Once a message is granted this switch, any other

input is locked out for the duration of the message. Once the
head flit of the message has set up the route, subsequent flits
follow directly behind it.

Address arithmetic unit. The AAU, the largest logic block
in the MDP, performs all functions associated with memory
addressing. To support naming and relocation, the AAU con-
tains the address and ID registers. It protects memory ac-
cesses and implements the translation instructions. Each
memory reference is offset by the selected address register’s
base field and checked against its length field. An attempt to
access through an invalid address register (which may occur
when an object relocates) or to access beyond the end of an
object raises an exception. A translation base/mask register
defines an area of memory to be a two-way, set-associative
translation buffer used by the XLATE, PROBE, and ENTER
instructions. The AAU hashes the keys used to access this
table usihg an exclusive-Or network to improve hit rate in
the transiation buffer.

The AAU maintains two queues to buffer incoming mes-
sages and schedule the associated tasks. Associated with each
queue are a queue base/mask (QBM) and a queue head/
length (QHL) register. (See Figure 15.) The QBM registers
define the position and length in main memory of the mes-
sage queues. Queues are circular, so messages at the end of
the queue wrap around to the beginning. The QHL registers
point to the beginning of the first message in the queue and
its length field encompasses exactly all of the messages cur-
rently in the queue. When the MDP dispatches a task to
handle a message, ‘it loads the A3 register with a segment
descriptor for the message. The processor dispatches a task
as soon as the first four words of a message are written. If the
task attempts to read a word of the message which has not
yet arrived, a special Early fault occurs.

Layout. Figure 16 shows a floor plan of the chip with a die
photograph for comparison. Table 2 breaks down the area usage.

Figure 15. The AAU maintains the queue base/mask (QBM)
registers, which specify the location of the message queues
in main memory, and the queue head/length (QHL) regis-
ters, which specify the beginning and end of the messages
received in each queue. Figure shows only one queue.
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Figure 16. MDP chip floor plan (a) and die photograph (b).

Methodology. We implemented the MDP using Intel stan-
dard cells except for the on-chip RAM, clock generator, and
pads. Using standard cells sacrificed a factor of three to four
in area and two to three in performance over what would be
possible with full-custom design. The advantage was a sig-
nificant increase in productivity which was essential to com-
pleting the chip successfully with our small design team.

The 700 or so sheets of schematics drafted at MIT used
35,000 standard cells containing 210,000 transistors. (The re-
maining 890,000 devices are contained in the full custom
portions of the chip, mostly in the RAM.) We sent these sche-
matics to Intel for layout. Designers laid out many of the data
paths by hand to exploit the regularity of the design. Auto-
matic place and route CAD tools laid out the less regular
collections of logic.

We began architecture studies leading to the MDP in Octo-
ber 1986. Work on the RTL model of the microarchitecture
began in June 1988, and schematic entry at MIT started that
November. The task of translating schematics into layout com-
menced in June 1989, and we finished the layout in Decem-
ber 1990. We received first silicon in June 1991 and were
running programs on it within a few hours.
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Table 2. Chip area breakdown.

Dimensions Area Transistors

Module (mm) (mm?) (x10%)
AAU 3.7x7.0 25.9 75.0
RALU 3.7x2.9 10.7 39.0
Diagnostic 0.9x1.1 1.0 3.7
Prefetch 0.9x%x 1.1 1.0 3.2
Control 1.1%x2.6 2.9 8.7
Internal memory

interface 7.8x0.5 3.9 13.0
External memory

interface 1.6x1.8 2.9 9.0
Net input 1.8x0.7 1.3 4.4
Net output 21x%x1.8 3.8 18.0
Routers 84x1.3 10.9 29.0
RAM 8.8x4.9 431 880.0
Clock 0.7x0.8 0.6 0.1
Pads 50.5x0.2 8.4 2.6
Full chip 10.2 x 15.0 153.0* 1,087.0

* Includes wiring between modules.




Figure 17. Photograph of 64-node J-Machine system.

Figure 18. A 1,024-node J-Machine chassis.

Although we thoroughly simulated the logic design, we
have uncovered 12 bugs while running our validation tests
and applications on the hardware. Some of these bugs have
simple software work-arounds, but for performance reasons
we sent a second revision of the layout with modified control
logic and some metal fixes for fabrication in January of this
year. We plan to use several thousand of these chips to build
research multicomputers at MIT.

System design. Figure 17 shows a photograph of a 64-
node J-Machine processor board measuring 20.5 in. X 24 in.
Each node consists of an MDP chip (in a 168-pin grid array
package) and three 4-Mbit DRAMs. Each pair of nodes shares
a set of elastomeric connectors to communicate with the cor-
responding nodes on the boards above or below the board
in a stack. A total of 32 elastomeric connectors held in four
connector holders provide 2,240 electrical connections be-
tween adjacent boards. Of these connections, 960 are used
for signalling and the remaining are ground returns. No power
is supplied through the elastomers. Bus bars supply power
and ground directly to each board. The center area of the
board contains the final stage of the clock distribution net-
work, along with diagnostic fan-out, multiplexing logic, and
temperature and airflow monitors.

Figure 18 shows a photograph of our chassis for a 1,024-
node system. The chassis contain a stack of 16 processor
boards, power supplies, and distribution bus bars. Twenty
tie rods bind the boards and compress the elastomer connec-
tors. A 4,096-node system can be built by combining four
chassis. Each stack connects to its neighboring stacks by 128
(16 x 8) short, 60-pin, ribbon cables—one for each pair of
nodes on the periphery. Each vertical pair of stacks shares a
3,000 cu ft/min. blower for cooling.

In addition to the processor board and chassis, we have
also designed a diagnostic interface board and are designing
a SCSI disk interface, a distributed graphics frame buffer, and
an S-bus interface. Noakes and Dally? offer more details of
the J-Machine system design.

Software

We intended the J-Machine as a platform for software ex-
periments in fine-grain, parallel programming. To this end,
we have implemented and are studying software systems for
different fine-grain programming models. Fine-grain programs
typically execute from 10 to 100 instructions between com-
munication and synchronization actions. Reducing the
grain size of a program increases both the potential speedup
due to parallel execution and the potential overhead associ-
ated with parallelism. Special hardware mechanisms to re-
duce the overhead due to communication, process switching,
synchronization, and multithreading are therefore central to
the design of the MDP. Software issues such as load balanc-
ing, scheduling, and locality remain open questions and are
the focus of current research efforts.
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(defmethod Size-Of-Tree Pair ()
{+ (Size-Of-Tree Left)
(Size-Of-Tree Right)))
(defmethod Size-Of-Tree Object ()
1)
(defmethod Size-Of-Tree Null ()
0)

Figure 19. Concurrent Smalltalk source to compute Size-
Of-Tree. Method definitions specify the class to which
they apply. The class Pair contains two elements, Left and
Right, each of which may hold an Object or another Pair.

A parallel processor creates programming challenges. It is
difficult to extract the fine-grain parallelism needed from stock
programs written in C or Fortran. Instead of concentrating on
extracting parallelism from existing programs (an active and
interesting area for many parallel programming researchers)
or on adapting sequential Janguages for the parallel domain,
we focus on languages where the expression of fine-grain
parallelism is much cleaner. To date, we have implemented
two languages on the J-Machine: the actor language Concur-
rent Smalltalk and the dataflow language Id.

Concurrent Smalltalk. CST? is a parallel, object-oriented,
programming language (based on the Actor model®) with
asynchronous message send and distributed objects. Its syn-
tax is similar to that of Lisp or Scheme. It performs method or
function invocation by sending a message to the first argu-
ment of the method. The message contains the method se-
lector and the rest of the arguments.

Functions and methods in the language are compiled into
MDP assembly code by an optimizing compiler, called Opti-
mist, and assisted at runtime by a small kernel called Cosmos.

MODULE  OBJ:Selector.Size_Of_Tree
DC Copyable | class_Selector ; Identify properties of
Size_Of_Tree selector
DC OBJ:Selector.Size_Of Tree  ; Store own ID inside selector
DC 3 ; Number of functions
DC CLASS:Object ; Class identifier for Object
DC {function.Size_Of_Tree} ; Function for class Object
DC CLASS:Nutl ; Class identifier for Nuli
DC {function.Size_Of_Tree_1} ; Function for class Nuil
DC CLASS:Pair ; Class identifier for Pair:
DC {function.Size_Of_Tree_2} ; Function for class Pair

Cosmos provides a global virtual name space, object-based
memory management, support for distributed objects, and low-
overhead context switching. Its memory management system
provides fast, transparent access to storage distributed across
the machine. Cosmos efficiently supports fine-grain concur-
rent computation in which tasks are very short (40 user in-
structions) and data objects are very small (eight words). The
CST compiler and the Cosmos runtime system also provide
floating-point arithmetic, simple arrays, and garbage collection
for CST programs. Cosmos manages contexts, futures, and ob-
jects, and therefore plays an important role in providing ser-
vices that exploit the communication, synchronization, and
naming mechanisms of the J-Machine.

Figure 19 shows a small sample program deﬁmng the Size-
Of-Tree method for three object types: a Pair, the Null object,
and-a generic object. When called on a Lisp-style tree, these
methods return the number of generic objects stored in the tree.
For example, when called on the tree '((1 2 3)(4 5 6)(7 8 9)),
Size-Of-Tree returns the value 9. Note that since Pair and Null
are subclasses of Object, their more specific methods are se-
lected when Size-Of-Tree is invoked on their types.

When Optimist, the CST compiler, compiles this example
program, it defines a selector object and three function ob-
jects. The selector object (shown in Figure 20) lists the type
and function correspondence. When a method applies to an
object, Cosmos examines the object type and locates the ap-
propriate function in the selector object. The MDP then in-
vokes this function on the object. (In cases where the compiler
can infer the type of the object or when the type of objects is
explicitly declared, the compiler optimizes a method invoca-
tion directly to the correct function invocation.) The com-
piler marks the selector object as copyable, and Cosmos
maintains it like any other object.

Figure 21 shows the compiled code for the function for the
class Pair. When a method applies to a particular object,
Cosmos examines the object class and the selector object,
and chooses the correct function to invoke.

The function first does an XLATE opera-
tion to get the address of the Pair and uses
that address to get the object ID for Left. It
then calls Cosmos to find the node where
Left exists. The function sends a message to
Left that recursively applies the Size-Of-Tree
method. It marks the slot that will hold the
return value with a Cfut tag. Next, it applies
Size-Of-Tree to Right without waiting for the
result of the first remote procedure to return.
However, when the function attempts to add
the two return values, the results will prob-
ably not have returned yet. In this case, the
ADD instruction will fault trying to add Cfuts,

Figure 20. Selector object generated by the example program.
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and the MDP will suspend the process, sav-
ing its registers into the context.
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Figure 21. Compiled code for the Size-Of-Tree function for objects of class Pair.

Assuming this happens, when the MDP receives replies from
the methods after writing the value into the future slot, Cos- Let us consider some interesting points:

mos checks to see if the process was waiting for that particular

future. If so, it reactivates the context. The reactivated function
would then sum the two results and forward them to the con-

tinuation specified in the original method invocation.

¢ If the object of the function is not present or if the trans-
lation cache does not have an entry for the object, the
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XLATE instruction will fault. Cosmos will find the object
and move or copy it to the local node.

e Cosmos maintains functions and selectors like any other
immutable object. If they are not present, Cosmos will
copy them to the node, a process analogous to a distrib-
uted instruction cache.

¢ If the function were preempted and the object moved or
migrated away, Cosmos would invalidate the address
registers. Accesses to the object would cause a fault that
would attempt to retranslate or reobtain the object.

e The Al register points to the current context. The con-
text contains storage to hold working variables or, if the
context faults, to hold spilled register values. In the ex-
ample, the futures are constructed in the context, and
thus are named context-future (Cfut).

This example illustrates some important research questions
related to the efficiency of this model of computation.

e When is it better to spawn processes nonlocally rather
than locally? This is probably a strong function of the
amount of associated overhead. The MDP architecture
attempts to reduce this overhead, but algorithms for
making this trade-off at compile and runtime still need
to be developed and evaluated.

¢ How should we place objects in the machine, and how
should they migrate in order to reduce the overhead of
communication?

e In some cases, the amount of paralielism grows much
larger than the machine can handle. We need to study
how we can effectively and automatically throttle the
parallelism created by the machine when it becomes
saturated.

Horwat discusses these issues, and others related to the
efficiency of programming fine-grain, parallel processors in
more detail *

Dataflow implementation. Id is a functional program-
ming language originally designed for dataflow architectures.”*
The Id compiler converts an Id program into a dataflow graph,
in which nodes represent operators and arcs represent de-
pendencies. Originally, researchers executed these dataflow
graphs directly on specialized dataflow machines. More re-
cently, they have begun compiling dataflow graphs to run on
general-purpose parallel machines.? Dataflow programs suit
large parallel computers, because the abundance of fine-grain
tasks—each of which can be as small as a single dataflow
operator—makes it easy to mask communication latency with
task switches. Conversely, the J-Machine’s fine-grain mecha-
nisms make it an excellent target for dataflow programs.

We experimented with several methods of executing
dataflow programs on the J-Machine.*® The simplest of the
systems translates each node of the dataflow graph into a
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sequence of MDP instructions. A dataflow node with two
inputs takes 20 MDP instructions to simulate. To do so, it
stores the first data value, matches it with the second value
when it arrives, performs the dataflow operation, and sends
the resulting value to two destinations. This process uses the
Cfut tag and fault handler.

A more efficient approach increases the granularity of each
task to reduce scheduling overhead. We are building a sys-
tem on top of the Berkeley TAM project® that addresses the
inefficiencies of our earlier systems.

WE BUILT THE MDP TO DEMONSTRATE THE UTILITY
of general-purpose communication, synchronization, and
naming mechanisms in a multicomputer building block. Its
mechanisms efficiently support dataflow? and object-oriented
programming® models using a global name space. The use
of a few simple mechanisms provides orders of magnitude
lower communication and synchronization overhead than is
possible with multicomputers built from off-the-shelf micro-
processors. Its communication and synchronization perfor-
mance competes with processing nodes specialized to a single
model of computation, such as iWarp'® (systolic) or the trans-
puter” (communicating sequential processes).

Computers built from fine-grain processing nodes, such as
the MDP, consisting of a small but powerful processor and a
small memory, are more cost-effective than those built from
fewer coarse-grain nodes. Fine-grain nodes devote a larger
fraction of their silicon area to processing and have higher
arithmetic, memory, and communication bandwidth per unit
cost. Large-scale parallel machines built from fine-grain pro-
cessors have a larger total amount of memory within a given
latency of a processor. An efficient network design provides
global memory latency and bandwidth competitive with
coarse-grain machines.

The MDP is a component for building scalable computer
systems. It is useful in configurations ranging from one node
to 65,536 nodes. A 128-node Jellybean Machine is currently
operational and resources are in place to build several more
machines, including a 1,024-node system at MIT and ma-
chines at a number of other research institutions.

The MDP project demonstrated the feasibility of building
experimental computer systems with limited resources. By
concentrating on the novel mechanisms of the MDP and keep-
ing the design simple and modest in other respects, we com-
pleted the design of the chip, its system-level hardware, and
several programming systems with a handful (less than eight)




of graduate students and engineers in two and a half years.

With the MDP we have begun exploring mechanisms for
parallel computers. Much work remains to be done to tune
the MDP’s mechanisms and compare them to alternatives.
The demands of parallel software that drive these mecha-
nisms are very different from the demands placed on se-
quential computers. We find the design of mechanisms for
parallel computers particularly challenging because no well-
. established parallel benchmarks exist. Additionally, most par-
allel programs are very biased by the mechanisms (or lack
thereof) of the machines for which they were initially written.

Our software studies have suggested improvements that
could be made to the MDP. More registers and better map-
ping mechanisms would be useful. MDP’s conservative imple-
mentation leaves opportunities for streamlining, by decreasing
the cycle time and number of clocks per instruction. A com-
mercial, custom VLSI product based on the architectural
mechanisms in the MDP is very plausible.

As technology scales, we can put many powerful process-
ing units on one chip. An interesting direction for further
research is the extension of the MDP mechanisms to control
intranode as well as internode concurrency. The MIT M-
Machine project, now in its early phase, takes this approach.
It employs a processor-coupling mechanism to allow local
processors to interact with single-cycle latency. [@
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