
SIMD Parallel Processing

Michael Sung
6.911: Architectures Anonymous

February 22, 2000

1 Introduction

SIMD represents one of the earliest styles of parallel processing. The term SIMD stands
for “Single-Instruction Multiple-Data,” which aptly encapsulates the parallel processing
model. Closely related to vector processing, the basic idea is to operate the same
instruction sequence simultaneously on a large number of discrete data sets. SIMD
machines are geared toward applications that exhibit massive amounts of data parallelism
without complicated control flow or excessive amounts of inter-processor
communication. Typical applications for SIMD machines include low-level vision and
image processing, discrete particle simulation, database searches, and genetic sequence
matching.

2 Background

The history of SIMD machines began with the ILLIAC IV project, started in 1962. The
machine was the first large-scale multiprocessor, composed of 64 64-bit processors. The
project itself was pretty infamous for its failure; estimated costs of $8 million ballooned
to $31 million by 1972. The actual performance of 15 MFLOPS was far below the
original estimates of 1000 MFLOPS, partially because only a quarter of the planned
machine was ever constructed. In addition, the machine took another 3 years of
engineering to actually work following its delivery to NASA in 1972. Needless to say,
the project slowed interest and investigation of SIMD architectures for quite a while.
Eventually, Danny Hillis resurrected the SIMD architecture in 1985 with his Connection
Machine. However, following a short stint in the 80’s by several commercial companies
such as Thinking Machines and MasPar, SIMD has once again fallen by the wayside in
the arena of commercial general-purpose computing.

3 General Description

SIMD machines can be classified as processor-array machines; a SIMD machine
basically consists of an array of fine-grained computational units connected together in
some sort of simple network topology. This processor array is connected to a control
processor, which is responsible for fetching and interpreting instructions. The control
processor issues arithmetic and data processing instructions to the processor array, and
handles any control flow or serial computation that cannot be parallelized. For flexibility
in implementing algorithms, processing elements can usually be individually disabled for
conditional execution. The instructions issued by the control processor are executed by
the processor array in lockstep operation. Thus, control for a SIMD machine is vastly
simplified, and synchronization issues can be avoided. Since the individual processing

elements are usually very simple in nature, SIMD machines can typically run at very high
clock rates and process data very quickly.

When designing a SIMD machine, the primary factors to consider are:

 • Processing element selection

• Communications/network topology
• Instruction issue

The primary trade-off for SIMD machines is between processor simplicity and cost.
Traditionally, SIMD processor elements are very rudimentary, shunning complex control
and generalized function in favor of simple interfaces and implementation. Oftentimes,
SIMD machines employ bit processors which operate on only one bit at a time (bit
serial); thus a 32-bit operation would require 32 cycles for a bit processor to work
through. One of the chief benefits of using very simple processors is that they are readily
optimized and uncomplicated to control. An added benefit is the fact that bit processors
can work on arbitrary length data. In addition, since SIMD machines are targeted at
specific applications, no silicon is wasted in implementing functionality that is not used.

SIMD processing elements are usually connected to their nearest neighbors, forming 2D
or 3D meshes. The benefit here is the physical connections often mimic the physical
phenomena the program is trying to simulate (e.g., cellular automata for microphysical
simluations). SIMD-style processing works best when there is little data exchange
between processors, since communication is costly. The ideal case has each processing
element munging on data stored locally on each processing node without any data
dependencies.

The method by which instructions are issued to the processor array are of primary
concern. The control processor may broadcast instructions to the processor arrays, or
each processing node can hold a local cache of instructions to operate. Distribution of
instructions to the processing nodes is a serious issue when designing SIMD machines.

4 SIMD Machines

The three SIMD machines covered in this paper are the Connection Machine by Danny
Hillis, the Abacus Project at the MIT AI Lab, and the CAM-8 machine by Norman
Margolus. These three machines give a pretty accurate sampling of the type of SIMD
machines that were constructed as well as an idea of the motivations for creating the
machines in the first place.

The Connection Machine was composed of 65,536 bit processors. Each die consisted of
16 processors with each processor capable of communicating with each other via a
switch. These 4,096 dies formed the nodes of a 12th dimension hypercube network.
Thus, a processor was guaranteed to be within 12 hops of any other processor in the
machine. The hypercube network also facilitated communication by providing
alternative routes from source processor to destination. Each node was given a 12-bit

node ID, and different paths between two nodes in the network could be traversed based
on how the node ID was read. The network allowed for both packet and circuit-based
communication for flexibility.

The second machine discussed is the Abacus machine created at the MIT AI Lab. This
machine was constructed primarily for vision processing. The machine consisted of 1024
bit processing elements set in a 2D mesh. The primary concept of interest from the
design was that the processing elements were configurable, and used reconfigurable bit
parallel "RBP" algorithms instead of traditional bit serial computation. This means that
each PE emulated logic for part of an arithmetic circuit (be it an adder, shifter, multiplier,
etc) based on a RBP algorithm. The motivation for having these configurable processing
elements was to save on the silicon area needed to implement arithmetic. However,
because there was a necessary overhead for reconfiguration and the implementation did
not easily allow for pipelining due to data dependencies, it was not clear that having
configurable processing elements was a definite win.

The final machine of the talk was for the CAM-8 cellular automata machine, a machine
that mimics the basic spatial locality of physics. Thus, each processing element would
get it’s own "piece" of the physical entity that is being modeled, such as a location in
space or a particle, etc. The processing elements are connected in a 3D mesh, a natural
topology for describing microphysical simulations. Each processing element consisted of
a programmable lookup-table with an associated local memory. Since there are usually
not enough processing elements to assign one to each cell of the system that was to be
simulated, each PE was assigned a specific region and performed updates to each cell
virtually. Cellular automata applications include microscopic physics/lattice gas
simulations (for which the machine was originally intended), statistical mechanics, and
data visualization/ image processing.

4 Issues with SIMD

Although SIMD machines are very effective for certain classes of problems (namely
embarrassingly parallel problems with very high parallelism), they do not perform well
universally. The architecture is specifically tailored for data computation-intensive work;
as such, SIMD machines are rather inflexible and perform poorly on some classes of
important problems. In addition, SIMD architectures typically do not scale down in
competitive fashion when compared to other style multiprocessor architectures. That is
to say, the desirable price/performance ratio when constructed in massive arrays becomes
less attractive when constructed on a smaller scale. Finally, since SIMD machines almost
exclusively rely on very simple processing elements, the architecture cannot leverage
low-cost advances in microprocessor technology. A combination of these factors and
others have lead SIMD architectures to remain in only specialized areas of use.

5 Conclusion

Even though SIMD machines have not found their way into ubiquitous use, they have not
completely died out. Why? For one, SIMD architectures still make a lot of sense for

special applications that require a great deal of independent data computation. In
addition, multimedia and graphics applications have become very commonplace with the
advent of the internet and computer-gaming. Since multimedia such as video or sound
processing are inherently parallelizable tasks that involve computation on data streams,
small-scale commercial SIMD variants have come into the marketplace. Thus, SIMD has
once again found a way to survive in the form of ISA multimedia extensions, including
Intel’s MMX and SSE, AMD’s 3D-Now, and Motorola’s AltiVec.

6 Bibliography

1) J. Hennessy and D. Patterson, "Computer Architecture: A Quantitative Approach,"

Morgan Kaufmann Publishers, SF, CA., 1996
2) W.D. Hillis, “The Connection Machine,” MIT Press, Cambridge, MA., 1985
3) M. Bolotski, et. al., “Abacus: A 1024 Processor 8 ns SIMD Array,” Proceedings of

Advanced Research in VLSI ‘95
4) N. Margolus, “CAM-8: a computer architecture based on cellular automata,” MIT

Laboratory of Computer Science, Cambridge, MA., 1993

