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1  Introduction 
 
SIMD represents one of the earliest styles of parallel processing.  The term SIMD stands 
for “Single-Instruction Multiple-Data,”  which aptly encapsulates the parallel processing 
model.  Closely related to vector processing, the basic idea is to operate the same 
instruction sequence simultaneously on a large number of discrete data sets.  SIMD 
machines are geared toward applications that exhibit massive amounts of data parallelism 
without complicated control flow or excessive amounts of inter-processor 
communication.  Typical applications for SIMD machines include low-level vision and 
image processing, discrete particle simulation, database searches, and genetic sequence 
matching.  
 
2  Background 
 
The history of SIMD machines began with the ILLIAC IV project, started in 1962.  The 
machine was the first large-scale multiprocessor, composed of 64 64-bit processors.  The 
project itself was pretty infamous for its failure; estimated costs of $8 million ballooned 
to $31 million by 1972.    The actual performance of 15 MFLOPS was far below the 
original estimates of 1000 MFLOPS, partially because only a quarter of the planned 
machine was ever constructed.  In addition, the machine took another 3 years of 
engineering to actually work following its delivery to NASA in 1972.  Needless to say, 
the project slowed interest and investigation of SIMD architectures for quite a while.  
Eventually, Danny Hillis resurrected the SIMD architecture in 1985 with his Connection 
Machine.  However, following a short stint in the 80’s by several commercial companies 
such as Thinking Machines and MasPar, SIMD has once again fallen by the wayside in 
the arena of commercial general-purpose computing. 
 
3  General Description 
 
SIMD machines can be classified as processor-array machines; a SIMD machine 
basically consists of an array of fine-grained computational units connected together in 
some sort of simple network topology.  This processor array is connected to a control 
processor, which is responsible for fetching and interpreting instructions.  The control 
processor issues arithmetic and data processing instructions to the processor array, and 
handles any control flow or serial computation that cannot be parallelized.  For flexibility 
in implementing algorithms, processing elements can usually be individually disabled for  
conditional execution.  The instructions issued by the control processor are executed by 
the processor array in lockstep operation.  Thus, control for a SIMD machine is vastly 
simplified, and synchronization issues can be avoided.  Since the individual processing 



elements are usually very simple in nature, SIMD machines can typically run at very high 
clock rates and process data very quickly. 
 
When designing a SIMD machine, the primary factors to consider are: 
 
 • Processing element selection 

• Communications/network topology  
• Instruction issue 

 
The primary trade-off for SIMD machines is between processor simplicity and cost.  
Traditionally, SIMD processor elements are very rudimentary, shunning complex control 
and generalized function in favor of simple interfaces and implementation.  Oftentimes, 
SIMD machines employ bit processors which operate on only one bit at a time (bit 
serial); thus a 32-bit operation would require 32 cycles for a bit processor to work 
through.  One of the chief benefits of using very simple processors is that they are readily 
optimized and uncomplicated to control.  An added benefit is the fact that bit processors 
can work on arbitrary length data.  In addition, since SIMD machines are targeted at 
specific applications, no silicon is wasted in implementing functionality that is not used.   
 
SIMD processing elements are usually connected to their nearest neighbors, forming 2D 
or 3D meshes.  The benefit here is the physical connections often mimic the physical 
phenomena the program is trying to simulate (e.g., cellular automata for microphysical 
simluations).  SIMD-style processing works best when there is little data exchange 
between processors, since communication is costly.  The ideal case has each processing 
element munging on data stored locally on each processing node without any data 
dependencies. 
 
The method by which instructions are issued to the processor array are of primary 
concern.  The control processor may broadcast instructions to the processor arrays, or 
each processing node can hold a local cache of instructions to operate.  Distribution of 
instructions to the processing nodes is a serious issue when designing SIMD machines. 
 
4  SIMD Machines 
 
The three SIMD machines covered in this paper are the Connection Machine by Danny 
Hillis, the Abacus Project at the MIT AI Lab, and the CAM-8 machine by Norman 
Margolus.  These three machines give a pretty accurate sampling of the type of SIMD 
machines that were constructed as well as an idea of the motivations for creating the 
machines in the first place. 
 
The Connection Machine was composed of 65,536 bit processors.  Each die consisted of 
16 processors with each processor capable of communicating with each other via a 
switch.  These 4,096 dies formed the nodes of a 12th dimension hypercube network.  
Thus, a processor was guaranteed to be within 12 hops of any other processor in the 
machine.  The hypercube network also facilitated communication by providing 
alternative routes from source processor to destination.  Each node was given a 12-bit 



node ID, and different paths between two nodes in the network could be traversed based 
on how the node ID was read.  The network allowed for both packet and circuit-based 
communication for flexibility. 
 
The second machine discussed is the Abacus machine created at the MIT AI Lab.  This 
machine was constructed primarily for vision processing.  The machine consisted of 1024 
bit processing elements set in a 2D mesh.  The primary concept of interest from the 
design was that the processing elements were configurable, and used reconfigurable bit 
parallel "RBP" algorithms instead of traditional bit serial computation.  This means that 
each PE emulated logic for part of an arithmetic circuit (be it an adder, shifter, multiplier, 
etc) based on a RBP algorithm.  The motivation for having these configurable processing 
elements was to save on the silicon area needed to implement arithmetic.  However, 
because there was a necessary overhead for reconfiguration and the implementation did 
not easily allow for pipelining due to data dependencies, it was not clear that having 
configurable processing elements was a definite win. 
 
The final machine of the talk was for the CAM-8 cellular automata machine, a machine 
that mimics the basic spatial locality of physics.  Thus, each processing element would 
get it’s own "piece" of the physical entity that is being modeled, such as a location in 
space or a particle, etc.  The processing elements are connected in a 3D mesh, a natural 
topology for describing microphysical simulations.  Each processing element consisted of 
a programmable lookup-table with an associated local memory.  Since there are usually 
not enough processing elements to assign one to each cell of the system that was to be 
simulated, each PE was assigned a specific region and performed updates to each cell 
virtually.  Cellular automata applications include microscopic physics/lattice gas 
simulations (for which the machine was originally intended), statistical mechanics, and 
data visualization/ image processing. 
 
4  Issues with SIMD 
 
Although SIMD machines are very effective for certain classes of problems (namely 
embarrassingly parallel problems with very high parallelism), they do not perform well 
universally.  The architecture is specifically tailored for data computation-intensive work; 
as such, SIMD machines are rather inflexible and perform poorly on some classes of 
important problems.  In addition, SIMD architectures typically do not scale down in 
competitive fashion when compared to other style multiprocessor architectures.  That is 
to say, the desirable price/performance ratio when constructed in massive arrays becomes 
less attractive when constructed on a smaller scale.  Finally, since SIMD machines almost 
exclusively rely on very simple processing elements, the architecture cannot leverage 
low-cost advances in microprocessor technology.  A combination of these factors and 
others have lead SIMD architectures to remain in only specialized areas of use. 
 
5  Conclusion 
 
Even though SIMD machines have not found their way into ubiquitous use, they have not 
completely died out.  Why?  For one, SIMD architectures still make a lot of sense for 



special applications that require a great deal of independent data computation.  In 
addition, multimedia and graphics applications have become very commonplace with the 
advent of the internet and computer-gaming.  Since multimedia such as video or sound 
processing are inherently parallelizable tasks that involve computation on data streams, 
small-scale commercial SIMD variants have come into the marketplace.  Thus, SIMD has 
once again found a way to survive in the form of ISA multimedia extensions, including 
Intel’s MMX and SSE, AMD’s 3D-Now, and Motorola’s AltiVec. 
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