
1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.034—Artificial Intelligence
Recitation 10, Friday, November 16, 2001

Agenda

1. Summary sheet for What to Know

2. What’s in a Neural Net

3. Gradient Descent

4. The Backpropagation Algorithm

5. Training Neural Nets

6. Classification vs. Regression

What to Know

1 Nearest Neighbors
a. Single nearest neighbor boundaries
b. Multiple nearest neighbor smoothing
c. Scaling and normalizing the data
d. Operating with partially labeled data

2 ID Trees
a. Calculating entropy for a collection
b. Choosing useful features
c. Building an ID tree to classify data
d. Overfitting and cross-validation

3 Neural Networks
a. Forward equation (sum of weighted inputs, through threshold or sigmoid)
b. Threshold learning for a simple perceptron
c. Sigmoid learning for an output node
d. Sigmoid learning for a hidden node
e. Learning rate, overshooting

4 Genetic Algorithms
a. Steps of the basic GA
b. Representation of an individual
c. Mutation & Crossover
d. Fitness: proportional & rank selection



xn

y

-1

w0

w1
x1 x2

w2
wn

x1

x2

y=0

y=1

6.034 Recitation Notes, Friday, November 16, 2001 2

Perceptrons

A perceptron is a single-layer neural net. The output y = 1 if the weighted sum on the inputs is
greater than 0; it is 0 otherwise. (The idea is to simulate a single neuron.)

The picture looks like this:

We can understand this mathematically as the equation of a line in a plane (hyperplane). For two
variables,

w1x1 + w2x2 = w0 = 0

The equation in the plane looks like this:

where xi are the input variables and wi are the weights. Alternatively, as a matrix equation, we
have that the dot product of [x1s2] and [w1w2] is equal to the constant 0. This is true of the points
on the line perpendicular to the vector [w1w2]. If we let w be the length of the vector [w1w2], i.e.,√

w2
1 + w2

2, then we can write this as:



x1

x2

y=1

[w1 w2]

w0/w

x1

x2

x1

x2

x1

x2

6.034 Recitation Notes, Friday, November 16, 2001 3

We can use a single layer net (perceptron) to make decision boundaries that are linearly separable:



6.034 Recitation Notes, Friday, November 16, 2001 4

Perceptron Learning rule

Because outputs are directly tied to inputs, the perceptron learning rule is easy: change the weights
of inputs that are non-zero in the direction of the error, where the error is the difference between the
true output and the output the perceptron with the current weight gives. (If the error is negative,
i.e., the weight is too large for that example, then lower the weight; if the error is positive, then
raise the weight. Ignore weights that are zero — they are contributing nothing.)

The learning equation to change the weights is:

∆w = α(y∗ − y)x

where y∗ is the correct output, y is the current output with the current weights, and α is the
learning rate (amount of allowed change in weights, usually small so we don’t overshoot). Note
that the difference between the correct and computed values can only be −1, 0,+1 in this case.

This method is guaranteed to converge for linearly separable problems, and is chaotic otherwise.

Representing line equations: we use ax + by − c = 0 since that lets us represent vertical lines.

What’s In a Neural Net

We stack the layers of a perceptron. The lower layers transform the input problem into more
tractable problems for later layers — now can learn non-half-space regions (as with XOR). Note
that if we can draw TWO lines, then that lets us easily classify XOR.

The first inputs are as before, the next units, since they are neither input nor output units, are
called hidden units.

For the XOR example, one solution with the net shown is to have,

w10 = 3
2 w11 = 1 w12 = 1

w20 = 1
2 w21 = 1 w22 = 1

w30 = 1
2 w31 = −1 w32 = 1

x1 x2 O1 O2 y

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0



6.034 Recitation Notes, Friday, November 16, 2001 5

Computational Power

If we let the weights on the units be arbitrary real numbers, then a 2-layer neural net can compute
any computable function, i.e., equivalent to any of your favorite programming languages (except
those developed by Microsoft).

In the simpler case of a neural net where all the hidden units are perceptrons, i.e., the outputs are
0 or 1 rather than ‘smoothed’ by the sigmoid function, there is an easier way to see how to

Learning: Backpropagation

However, there is no good learning rule for a multi-layer perceptron, as there is for a single-layer
perceptron.

Instead of using a discontinuous (step) function to relate input to output, we can use a smooth
threshold function that approximates it, and then use gradient descent to improve the weights.

Sigmoid Threshold Units

A single threshold unit is like a perceptron with a “soft” threshold. On the perceptron, the decision
boundary output is 1/2; far from this line, the output is 0 or 1. We let g denote the sigmoid
threshold,

g(v) = 1
1−e−v

v = Σn
i=0wixi



6.034 Recitation Notes, Friday, November 16, 2001 6

Training

Consider a multi-layer (actually, just the 2 layer) neural net. Let y be the output. Then

y = g(w31 · (g(w11x1 + w12x2 − w10) + w21 · (g(w21x1 + w22x2 − w20)− w30)

Or,

y = F (w, x)

where x is a vector of inputs, and w is a vector of weights.

For a FIXED xi vector, we have yi = Fi(w), and the DESIRED output is denoted y∗i
For any weight vector wi, denote the ERROR E over all the training set as,

E = Σi
1
2
(y∗i − yi)2 = Σi

1
2
(y∗i − Fiw))2

Our GOAL is to find the weight vector that MINIMIZES the error E.

Minimization of Error by Gradient Descent

Basic Problem: Given an initial set of parameters wo with error Eo = G(wo), find a (new) value
of w that is a local minimum of the error of G. At a local minimum, no incremental change in w
produces a change in G(wo), i.e., all the first derivatives are zero. (I.e., if we “wiggle” w a tiny bit,
how much does the G change?

Approach:

1. Find the “slope” of G at vector wo.

2. Move to w1 which is “downslope” (make the stepsize proportional to the magnitude of the
slope). (Note: gradient is n-dimensional slope, the direction where G changes the fastest.)

More formally:

wi+1 = wi − α× gradG

where α (also called r) is some “small” step-size. If r is too big, we can jump over minima.

(2) Stop when either the (a) gradient is very small; or (b) the change in G is minimal.

Important: this is NOT guaranteed to find a global minimum of G!

Recall that the gradient is the n-dimensional “slope”, the direction where G changes fastest.

An example:

E = G(w) =
1
2
(w2

1 + w2
2)

then

NB: for a nonlinear function, the gradient changes with “position”; the gradient vector is always
perpendicular to contour lines.



6.034 Recitation Notes, Friday, November 16, 2001 7

The Backpropagation Algorithm

The Backpropagation Algorithm is an efficient method of doing on-line gradient de-
scent for neural networks.

We need two rules:

• A gradient descent rule: what direction and how far to move at each step (what weights
to change and how much)

The change in a weight wi,j that goes FROM unit i TO unit j is simply the step size or
learning rate r times the local gradient of the activation function at j (here, the sigmoid
function) times the value of the current input yi on the “line” from i to j, i.e., from unit wi,j

to wj,k.

• A backpropagation rule: a method that tells us how to change the interior unit weights,
given a gradient descent step.

The algorithm runs as follows:

1. [Initialize] Initialize the weights to small random values (if big, causes saturation).

2. [Random start] Choose a sample input vector xi

3. [Forward propagation] Compute the output that this input vector produces (the activation or
value vj at each unit, and the output for each unit, yj (activation after being passed through
a sigmoid).

4. [Start back propagation] Compute the gradient change or delta δn for each output layer
unit n (O= the actual, true, observed output, and d is the computed output by forward
propagation). φ′ is the derivative of the sigmoid or activation function.

δn = φ′(vn)× (On − dn)
= ∂g

∂v × (ytrue
n − Y computed

n )

5. Compute the gradient change δ for each preceding layer in the network, by backpropagation
(going backwards, layer by layer):

δj = φ′(vj)Σkfkwj⇒k

6. Compute the weight change by the gradient descent rule:

∆wi⇒j = rδjyi

Note: in the Winston book, we have δj = oj(1 − oj) × βj ; o(1 − o) is the derivative of the
sigmoid function. This product is oj(1− oj) is φ′(vj).



6.034 Recitation Notes, Friday, November 16, 2001 8

7. Use this value to iterate back to the next layer

In practice, the backprop algorithm is very sensitive to the choice of the step size, r, otherwise
known as the learning rate.

Training neural nets

Given a data set and desired outputs, a neural net with m weights, we want to find a setting of
the weights that will give good predictive performance on new data (we also want to estimate the
performance of the trained net on new data).

This is done by using a training set and a validation set, and a test set. The training set is used
to pick the weights; the validation set is used to stop training; the test set is used to evaluate
performance.

We first pick an initial set of weights, random and small.

Second, we perform interative minimization of error over the training set by either

(i) on-line training: present a sample xi and yi chosen randomly and change weights to reduce
error on this sample; repeat

(ii) off-line training: change weights to reduce error using entire training set

Third, we stop when error on the validation set reaches a minimum — this is to avoid overfitting
the training set.

Fourth, can repeat the above steps and get the best weight vector performance

Fifth — use this best weight vector to compute error on the test set — we do not repeat training
to improve this value.

We can use cross-validation when we don’t have enough data to split it into three groups.

Example

See attached.


