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Agenda  

1. Administrivia 
2. Intelligence = “Knowledge Based System” (KBS)  = Knowledge + Search 
3. How to search optimally: B&B, A* 

 
1. Administrivia 
 
 
2. What is intelligence?   Ans:  Good, optimal  searching 
 
Search is composed of 5 main features: 
•  DATA STRUCTURE (aka a Problem Representation) – mapping from problem into a graph, from graph into 

search tree 
1. The START state. 
2. The GOAL state (or states) 
3. Given an arbitrary state, the SUCCESSORS of that state (or a successor function that computes this 
4. A queue  to keep track of how we are searching through the graph 

•  CONTROL STRUCTURE 
5. Search STRATEGY that determines ORDER in which we search the queue. 

 
Search arises in many AI contexts, both as finding a goal, and in the more obvious one of finding a path (through a 
problem space or a real space).  Let's look at some examples of the goal-finding sort first.  These are perhaps the 
most ‘natural’ to visualize (as in the online demo), but actually the least frequently used in AI. 
 
To talk about moving through a space, it is natural to introduce the notions of graphs and trees.   A directed graph 
is like a set of one-way streets – a finite set of vertices (nodes) and links (edges) connecting the nodes.  An  
undirected graph - two-way streets.  A cycle (loop) in a graph is a sequence of edges that starts and ends at  the 
same node.  A tree is a directed graph without cycles.  We can turn graph search problems into tree search 
problems by (1) replacing each undirected links by 2 directed links (going in opposite directions) and (2) avoiding 
cycles on any path. 
 
 
3. Representing problems as search problems 
 
The key lesson for this recitation: searching is not just about maps! It applies whenever we can abstract a problem 
as a choice amongst alternatives, a set of  states of the problem (the problem  or state space), a special start state, 
a goal state, and a way to get from one state to another (the next/valid or legal moves)  Let’s do a few examples so 
you can see how this conversion works. 

1. Farmer, goose, grain (Startup firms and Oligopolies).  
A farmer wants to move a fox, a goose, grain, and the farmer across a river.  The boat is so tiny that it can hold only 
one of the possessions across on any trip.  Also, an unattended fox will eat a goose, and an unattended goose will eat 
the grain.  What should the farmer do? 

•  How do we represent the States?  (one state) – tells us how to represent the state space 
•  How do we represent the start state? 
•  How do we represent the goal state? 
•  How do we represent legal moves (transitions) from state to state? 
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Next we want to turn this graph into a tree.  Then we want to try out our ‘blind’ search methods on this 
tree.  Example:  Oligopolies and Startups 

4. Search me – the framework 
A partial path N is a path from the start node to some node X, e.g., (S A B X). The head of a partial path is the 
most recent node of the path, e.g. X. 

•  Let Q be a list of partial paths, e.g. ((S A B X) (S A B C) …). 
•  Let S be the start node and G the Goal node. 

Search framework pseudocode 
1.Initialize Q with partial path (S) as only entry; set Visited = S  Note change from slide pseudcode 
2.If Q is empty, fail.  Else, pick some partial path N from Q 
3.If head(N) = G(oal), return N (we’ve reached the goal); N is the successful path from S to G. 
4. Else Remove N from Q 
5.Find all the descendants of head(N) not in Visited and create all the one-step extensions of N to each descendant. 
6.Add to Q all the extended paths; add descendants of head(N) to Visited 
7.Go to step 2. 
 
Note 1:  There are two choices remaining: 

•  Where to pick elements N from Q  in step 2.  
•  Where to add the new  path extensions to Q  in step 6. 

Note 2: The Winston book does not use a Visited list 
Note 3:  We could stop at step 6 if the extended paths at that point reach the goal, but this won’t work for optimal 
searches, so we use the more general test in Step 3. 
 
Implementing Depth-First Search 
Our control choices: (1) Pick N from the first element of the Q; (2) Add new path extensions to the front 
of Q. 
 
Let’s try this out on our example.   Here are the first 3 iterations: 
1. Initial step:  partial path N = (1), Visited set= 1 
2. Q is not empty, so pick FIRST of partial paths; this is 1 
3. Not at goal, so  
4. Remove 1 from Q. 
5. Find all descendants of  head(N)¸ = 1 not in Visited  = 2;  & create all 1-step extensions, (2, 1);   
6. Add this path to Q; add head of this path to Visited.  So Visited= 2, 1  and Q=(2, 1) 
7. Go to Step 2. 
 
2. Q is not empty, so pick FIRST of  the partials, i.e., (2, 1). 
3. Not at goal, so 
4. Remove (2, 1) from Q 
5. Find all descendants of  (2,1) not in visited list =3 & create all 1-step extensions, (3, 2, 1) 
6. Add this path to Q; add head of this path to Visited.  So Visited= 3,2, 1  and Q=(3, 2, 1) 
7. Go to step 2. 
 
2. Q is not empty, so pick FIRST of  the partials, i.e., (3, 2, 1). 
3. Not at goal, so 
4. Remove (3, 2, 1) from Q 
5. Find all descendants of  (3, 2,1) not in visited list =4, 5, 6 & create all 1-step extensions, (4, 3, 2, 1); 

(5, 3, 2, 1) and (8, 3, 2, 1) 
6. Add these paths to Q; add heads of these paths to Visited.  So Visited= 8,5,4,3,2, 1  and Q=(4 3, 2, 1), 

(5, 3, 2,1) and (8, 3, 2, 1) 
7. Go to step 2 
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Implementing Breadth-first search 
Our control choices: (1) Pick N from the first element of the Q; (2) Add new path extensions to the end of 
Q. 
 
Now, you try this one on your own- follow the slides 
 


