Search Me Quickly

Prof. Robert C. Berwick

Agenda

1. Administrivia
2. Intelligence = “Knowledge Based System” (KBS) = Knowledge + Search
3. How to search optimally: B&B, A*

1. Administrivia

2. What is intelligence? Ans: Good, optimal searching

Search is composed of 5 main features:

- DATA STRUCTURE (aka a Problem Representation) – mapping from problem into a graph, from graph into search tree
 1. The START state.
 2. The GOAL state (or states)
 3. Given an arbitrary state, the SUCCESSORS of that state (or a successor function that computes this
 4. A queue to keep track of how we are searching through the graph
- CONTROL STRUCTURE
 5. Search STRATEGY that determines ORDER in which we search the queue.

Search arises in many AI contexts, both as finding a goal, and in the more obvious one of finding a path (through a problem space or a real space). Let’s look at some examples of the goal-finding sort first. These are perhaps the most ‘natural’ to visualize (as in the online demo), but actually the least frequently used in AI.

To talk about moving through a space, it is natural to introduce the notions of graphs and trees. A directed graph is like a set of one-way streets – a finite set of vertices (nodes) and links (edges) connecting the nodes. An undirected graph - two-way streets. A cycle (loop) in a graph is a sequence of edges that starts and ends at the same node. A tree is a directed graph without cycles. We can turn graph search problems into tree search problems by (1) replacing each undirected links by 2 directed links (going in opposite directions) and (2) avoiding cycles on any path.

3. Representing problems as search problems

The key lesson for this recitation: searching is not just about maps! It applies whenever we can abstract a problem as a choice amongst alternatives, a set of states of the problem (the problem or state space), a special start state, a goal state, and a way to get from one state to another (the next/valid or legal moves). Let’s do a few examples so you can see how this conversion works.

1. Farmer, goose, grain (Startup firms and Oligopolies).
A farmer wants to move a fox, a goose, grain, and the farmer across a river. The boat is so tiny that it can hold only one of the possessions across on any trip. Also, an unattended fox will eat a goose, and an unattended goose will eat the grain. What should the farmer do?

- How do we represent the States? (one state) – tells us how to represent the state space
- How do we represent the start state?
- How do we represent the goal state?
- How do we represent legal moves (transitions) from state to state?
Next we want to turn this graph into a tree. Then we want to try out our ‘blind’ search methods on this tree. Example: Oligopolies and Startups

4. Search me – the framework

A **partial path** \(p \) is a path from the start node to some node \(X \), e.g., \((S \: A \: B \: X)\). The **head** of a partial path is the most recent node of the path, e.g. \(X \).

- Let \(Q \) be a list of partial paths, e.g. \((S \: A \: B \: X) \: (S \: A \: B \: C) \: \ldots\).
- Let \(S \) be the start node and \(G \) the Goal node.

Search framework pseudocode

1. Initialize \(Q \) with partial path \((S)\) as only entry; set Visited = \(S \)
 Note change from slide pseudocode
2. If \(Q \) is empty, fail. Else, pick some partial path \(p \) from \(Q \)
3. If head\((p)\) = \(G \) (goal), return \(p \) (we’ve reached the goal); \(p \) is the successful path from \(S \) to \(G \).
4. Else Remove \(p \) from \(Q \)
5. Find all the descendants of head\((p)\) not in Visited and create all the one-step extensions of \(p \) to each descendant.
6. Add to \(Q \) all the extended paths; add descendants of head\((p)\) to Visited
7. Go to step 2.

Note 1: There are two choices remaining:
- Where to pick elements \(p \) from \(Q \) in step 2.
- Where to add the new path extensions to \(Q \) in step 6.

Note 2: The Winston book does not use a Visited list
Note 3: We could stop at step 6 if the extended paths at that point reach the goal, but this won’t work for optimal searches, so we use the more general test in Step 3.

Implementing Depth-First Search

Our control choices: (1) Pick \(p \) from the first element of the \(Q \); (2) Add new path extensions to the front of \(Q \).

Let’s try this out on our example. Here are the first 3 iterations:

1. Initial step: partial path \(p = (1) \), Visited set= 1
2. \(Q \) is not empty, so pick FIRST of partial paths; this is 1
3. Not at goal, so
4. Remove 1 from \(Q \)
5. Find all descendants of head\((p)\) = 1 not in Visited = 2; & create all 1-step extensions, \((2, 1)\);
6. Add this path to \(Q \); add head of this path to Visited. So Visited= 2, 1 and \(Q=(2, 1) \)
7. Go to Step 2.

2. \(Q \) is not empty, so pick FIRST of the partials, i.e., \((2, 1)\).
3. Not at goal, so
4. Remove \((2, 1)\) from \(Q \)
5. Find all descendants of \((2,1)\) not in visited list =3 & create all 1-step extensions, \((3, 2, 1)\)
6. Add this path to \(Q \); add head of this path to Visited. So Visited= 3, 2, 1 and \(Q=(3, 2, 1) \)
7. Go to step 2.

2. \(Q \) is not empty, so pick FIRST of the partials, i.e., \((3, 2, 1)\).
3. Not at goal, so
4. Remove \((3, 2, 1)\) from \(Q \)
5. Find all descendants of \((3, 2, 1)\) not in visited list =4, 5, 6 & create all 1-step extensions, \((4, 3, 2, 1)\);
 \((5, 3, 2, 1)\) and \((8, 3, 2, 1)\)
6. Add these paths to \(Q \); add heads of these paths to Visited. So Visited= 8,5,4,3,2, 1 and \(Q=(4 3, 2, 1),\)
 \((5, 3, 2,1)\) and \((8, 3, 2, 1)\)
7. Go to step 2
Implementing Breadth-first search

Our control choices: (1) Pick N from the first element of the Q; (2) Add new path extensions to the end of Q.

Now, you try this one on your own- follow the slides