
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.034 Artificial Intelligence, Fall 2001
Recitation 7, October 26, 2001

Language and Mind Prof. Robert C. Berwick

Agenda

1. Administrivia
2. Language: Why language is special; from Words to Meaning
3. Syntactic nets to semantic nets
4. The Blue Room: The Language of Thought?

1. Administrivia: PS due Oct. 30

2. Language: Why language is special; from Word strings to Meaning (Syntax to semantics)
Language is special: The Twain Test (Unsupervised learning; very small sample complexity – 1-5 examples; no Wall
Street Journal subscriptions), and “the Burst Effect”. At age 1 yr, 1-11 months or so, these are the kinds of utterances
children produce:
 Ride papa’s neck; this my rock-baby; mama forget this

By the age of 3, this is what they produce. What’s the difference?
 You match me open sandbox; Papa, you like this song? I won’t cry if mama wash my hair

The same difference shows up in this way.
Pop-quiz (multiple choice): who produced the following ‘sentences’ (Names changed to protect the innocent):

(1) I see red one (2) P. want drink (3) P. open door (4) P. tickle S. (5) I go beach (6) P. forget this (7) P said no
(8) P. want out (9) You play chicken

Multiple choice: (a) Pidgin speakers; (b) apes (signing); (c) Feral child Genie; (d) ordinary children [Hint: recall the
Burst effect plus the general rule about tricky 6.034 questions]

Question: How can we represent knowledge of language? How can we compute with it? (Like data structure +
algorithm question).

Answer to first part (representation) – this is what linguists do for a living. What are the underlying representations
that constitute our knowledge of language?

Answer to the second part (computation) – this is what syntactic and semantic transition trees partially accomplish,
mapping strings of words into procedural operations on a database (“meaning”).

As to the first part, look at how much we implicitly ‘know’ about a language. Take even a simple sentence like the
cats ate ice-cream.

• We know how each word sounds and whether it's an English word at all. Ca begins a valid English word, but
no English word will start out ptk (but could in Polish). Further, the s on cats marks it as plural.

• We know that the words must appear in a certain order. Ice-cream ate the cats means something very
different from The cats ate the ice-cream.

• We know “who did what to whom,” a kind of mental snapshot: the cats is the agent of the action ate while the
ice-cream is the thing eaten, or the affected object. (These are the thematic roles or slots in a thematic role
frame) . And so on…

6.034 Artificial Intelligence, Recitation 2, September 14, 2001 2
It is conventional to divide the study of the representation of linguistic knowledge into two parts: syntax, the study of
word arrangements without regard for meaning – this derived from the Greek word syntaxis, literally ‘to arrange
together’ and semantics, the study of meaning.

Syntax determines the allowable combinations of primitives in a language, where one notion of primitives are word
categories, and further, combinations of word categories. For example, let us suppose that we had sentences like
these:
 The cat ate the ice-cream
 The dog ate the ice-cream
 The dog ate the cat
If we take these words for the moment as primitives, we can simply write down these possible linear patterns as a
directed graph or transition network (tree) as follows:

Here, the ‘start’ state is marked by an incoming arrow, and the final (goal) state is a double circle. Given a transition
network and a string of words (a sentence), we can check to see if the string of words can be ‘let through’ the network,
or generated by it. To do this, we start by looking at the first word in the sentence can let us move from one state to
the next via a transition – does the label on the arc match the current word in the sentence we are looking at? (See
how we can march through the first example sentence this way. If we arrive at the end of the sentence and are in the
goal state, we win.)

Of course, it would get very boring (and wrong) to just keep writing down words as arc labels to encompass more and
more sentence patterns: a dog ate the ice-cream; a cat ate the ice-cream; a dog ate the cat; the dog ate an ice-cream;
etc. Instead, we can collapse collections of words such as {dog, cat, ice-cream, tree,…} into a word category called
‘Nouns’ and words like {a, the, an…} into a category called ‘Determiners’ (because they ‘determine’ in some sense
the multiplicity of the Noun that comes later). That gives us the following, more compact network:

Of course, now this transition tree (network) will allow some ‘funny’ word sequences – but we did say this was
syntax, not semantics. Only form matters.
Finally, since we are good programmers, we notice a final redundancy in the network: the pattern “determiner noun”
is repeated, once as the ‘Subject’ of the sentence, and once as the ‘Object’. So, why not turn that pattern into a
subroutine? We can call the repeated pattern a ‘Noun Phrase’ and splice out the repeated pattern (see the network
below.) Of course, since this is a subroutine, we must have a way to call and return from subroutines generally (i.e.,
we must use a stack and sentences are now recursive). Now we will have two networks: the main Sentence network
and a ‘subnetwork’ called a Noun Phrase. We need a new label in the Sentence network that is called ‘Noun Phrase’,
and marking that at the beginning of a valid sentence, we must find a Noun Phrase:

We now have that in English, a Sentence ‘is a’ Noun Phrase followed by a Verb and then a Noun Phrase. (This of
course is not always so!) We can further combine a Verb and a Noun phrase into a unit called a Verb Phrase. This is
what a syntactic transition network can easily encode. We just replace ‘isa’ and map the ‘followed by’ with a
graphical representation:

Sentence ‘is a’ Noun Phrase Verb Phrase

the dog

cat

ate the

cat

ice-cream

determiner verb determiner nounnoun

Sentence:
noun phrase

determiner noun

verb noun phrase

Noun phrase:

6.034 Artificial Intelligence, Recitation 2, September 14, 2001 3

How would we modify this to handle an example like “John slept”?

So far, our syntactic networks merely check the form of sentences. They don’t do anything. We can couple form
(syntax) to actions by adding procedures that trigger as each arc is traversed or as we hit the end of a network (or
both). Such actions translate the input sentence into a series of actions, often a series of database calls, just as a
compiler will parse a line of program code and output the actual sequence of machine instructions to be followed. In
the case of computer code, the “meaning” simply is the sequence of machine instructions; in the case of a simple
natural language system, the “meaning” is the database calls; in general, the “meaning” of a sentence is much more
complicated than that. As a simple example, though, following the Winston notes, consider a sentence like “How
many screwdrivers are there?” The goal of the network is to map the query into a set of database and procedure calls.
As we traverse the portion of the network corresponding to “How many”, we output “Count” (a procedure call). As
we traverse “screwdrivers are there” we output a database call that ‘selects’ the screwdrivers and returns a list of them
(or, if we are using a real database program, most likely the count routine would be built in and we could do it all at
once.) The key idea, though is this:

Distinct paths through the network represent distinct meanings= distinct procedure and database sequence calls

Example: Fruit flies like a banana. There are at least 2 obvious paths (in an expanded network) hence 2 meanings:

Fruit flies like a banana
Noun Verb Adverb Determiner Noun

Adjective Noun Verb Determiner Noun

(For a more complex example, consider, “I saw the cat that Sue said died yesterday”.)

To summarize, syntax links the arrangement of words to meaning, "semantics," which we define as the action carried
out at the end of a network. So, syntax matters to language. Winston ate the spider has a very different meaning from
The spider ate Winston (at least, it matters to Winston). But semantics matters too: we can say "Winston admires
sincerity" but not "Sincerity admires Winston". (‘Admire’ requires an animate subject).

3. From Syntactic nets to Semantic nets
It’s now simple to move on to semantic transition trees (networks). All you do is replace the purely
syntactic categories like Noun, Verb, Determiner with semantically meaningful categories like ‘tool,’
‘color,’ ‘size,’ etc. Everything else remains as before. What is the advantage? You are translating more
immediately and directly into semantic actions, instead of routing everything first into a syntactic form.
What is the disadvantage? A lack of modularity; how do we tell what the right categories are for a domain?
What happens when we switch domains?

4. The Blue Room: The language of thought?
Spelke’s experiment & the Burst Effect. Recall the Spelke experiment: rats and adults/older children in a room. Task:
locate reward hidden in one of 4 corners of a room; reward is hidden in their sight; Subjects are then blindfolded &
spun around (like pin the tail on the donkey) to disorient. Then remove blindfold and see how quickly they can locate
the reward
• Puzzle 1: first room setup, people and rats did fine and headed straight for the hidden reward. Why?
• Once that effect was controlled for, then test effect of having strong cue, like one wall being BLUE
• Results: now, only adults and syntactically capable children succeed. Why?

Sentence:
Noun phrase Verb phrase

