Digitally Programmed Cells

Ron Weiss PI: Tom Knight

MIT Artificial Intelligence Laboratory

Goal

- Process-Control Cellular Computers --Microbial Robotics
- Unique features:

> small, self-replicating, energy-efficient

- Purposes:
 - Biomedical applications
 - Environmental applications (sensors & effectors)
 - Embedded systems
 - Interface to chemical world
 - Molecular scale engineering

Microbial Robotics

- Potential to engineer behavior into bacterial cells:
 - phototropic or magnetotropic response
 - control of flagellar motors
 - chemical sensing and engineered enzymatic release
 - selective protein expression
 - molecular scale fabrication

- selective binding to membrane sites
- collective behavior
 - autoinducers
 - slime molds
 - pattern formation
- Example: timed drug-delivery in response to toxins

A New Engineering Discipline

- System design:
 - interfaces to sensors
 - in-vivo logic circuits
 - interfaces to actuators
- Strategy: reuse and modify existing mechanisms
 - characterize, then combine control elements
 - > modify elements to generate large component libraries
 - implement transgenic signalling pathways for I/O

- Implementing in-vivo computation
- Experimental effort
- System design methodology
- Programming Cooperative behavior
- Challenges

Implementing the Digital Abstraction

- *In-vivo* digital circuits:
 - signal = concentration of specific protein
 - computation = regulated protein synthesis + decay
- The basic computational element is an **inverter**

Allows building any (complex) digital circuit in individual cells!

Inverter Characteristics

• inversion relation \mathcal{J} :

 $\phi_{Z} = \vartheta (\phi_{A}) = \pounds \circ \mathscr{I} \circ \mathscr{O} (\phi_{A})$

- "ideal" transfer curve:
 - > gain (flat,steep,flat)
 - > adequate noise margins

Experimental Effort

First, characterize several inverters
 genes from Lambdoid phages (cI, P_R)
 measure points on the transfer function

Events

- Typical fluctuations in signal levels:
 > constitutive expression of GFP
 - with a synthetic promoter

Digital Circuits

• With properly designed inverters, any (finite) digital circuit can be built

- proteins are the wires, genes are the gates
- NAND gate = "wire-OR" of two genes

"Proof of Concept" Circuits

- Building several simple circuits
- Simulation results are promising:

RS-Latch ("flip-flop")

Ring oscillator

time (x100 sec)

BioCircuit Design ("TTL Data Book")

- Data sheets for components
 - imitate existing silicon logic gates
 - > new primitives from cellular regulatory elements
 - e.g. an inverter that can be "induced"
- Assembling a large library of components
 - modifications that yield desired behaviors
- Constructing complex circuits
 - > matching gates is hard
 - need standard interfaces for parts

from black magic to "you can do it too"

Naturally Occurring Sensor and Actuator Parts Catalog

Sensors

- Light (various wavelengths)
- Magnetic and electric fields
- pH
- Molecules
 - > Ammonia
 - > H2S
 - maltose
 - > serine
 - ribose
 - > cAMP
 - > NO
- Internal State
 - > Cell Cycle
 - Heat Shock
- Chemical and ionic membrane
 potentials

Actuators

- Motors
 - Flagellar
 - Gliding motion
- Light (various wavelengths)
- Fluorescence
- Autoinducers (intercellular communications)
- Sporulation
- Cell Cycle control
- Membrane transport
- Exported protein product (enzymes)
- Exported small molecules
- Cell pressure / osmolarity
- Cell death

Tools

BioSpice – a <u>prototype</u> simulation & verification tool
 > simulates protein and chemical concentrations
 > intracellular circuits, intercellular communication

Programming Cooperative Behavior

- Engineer loosely-coupled multicellular systems that display coordinated behavior
- Use localized cell-to-cell communications
- Robust programming despite:
 - faulty parts
 - unreliable communications
 - no global synchronization
- Control results in
 - Patterned biological behavior
 - Patterned material fabrication
 - Massively parallel computation with local communication
 - Suitable for problems such as physical simulation

High Level Programming

- Requires a new paradigm
 - > colonies are amorphous
 - cells multiply & die often
 - > expose mechanisms cells can perform reliably
- Microbial programming language
 - > example: pattern generation using aggregated behavior

Pattern Formation in Amorphous Substrates

<u>Example:</u> forming a chain of "inverters" using only local communications

Limitations

- DNA Binding Protein Logic is Slow
 > milli Hertz (even with 10¹² cells, still too slow)
- Limited number of intra- and inter-cellular signals
- Amount of extracellular DNA that can be inserted into cells
- Reduction in cell viability due to extra metabolic requirements
- We need a writeable long term storage

Challenges

- Engineer the system support for experimental cellular engineering into living cells
- Engineer component interfaces
- Develop instrumentation and modeling tools
 - Obtain missing data in spec sheet fields
 - Discover unknown fields in the spec sheet
- Create computational organizing principles
 - Invent languages to describe phenomena
 - Builds models for organizing cooperative behavior
- Create a new discipline crossing existing boundaries
 - Educate a new set of engineering oriented students