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Abstract

This report documents the design and imple-
mentation of a binocular, foveated active vision
system as part of the Cog project at the MIT Ar-
tificial Intelligence Laboratory. The active vision
system features a 3 degree of freedom mechan-
ical platform that supports four color cameras,
a motion control system, and a parallel network
of digital signal processors for image process-
ing. To demonstrate the capabilities of the system,
we present results from four sample visual-motor
tasks.

1 Introduction

The Cog Project at the MIT Artificial Intelligence Labo-
ratory has focused on the construction of an upper torso
humanoid robot, called Cog, to explore the hypothesis
that human-like intelligence requires human-like interac-
tions with the world (Brooks & Stein 1994). Cog has
sensory and motor systems that mimic human capabili-
ties, including over twenty-one degrees of freedom and
a variety of sensory systems, including visual, auditory,
proprioceptive, tactile, and vestibular senses. This paper
documents the design and implementation of a binocular,
foveated active vision system for Cog.

In designing a visual system for Cog, we desire a sys-
tem that closely mimics the sensory and sensori-motor ca-
pabilities of the human visual system. Our system should
be able to detect stimuli that humans find relevant, should
be able to respond to stimuli in a human-like manner, and
should have a roughly anthropomorphic appearance. This
paper details the design decisions necessary to balance the
need for human-like visual capabilities with the reality of
relying on current technology in optics, imaging, motor
control, as well as with factors such as reliability, cost,
and availability.

The author receives support from a National Defense Science and
Engineering Graduate Fellowship. Support for the Cog project is pro-
vided by an ONR/ARPA Vision MURI Grant (No. N00014-95-1-0600).

Three similar implementations of the active vision sys-
tem described here were produced. The first, shown in
Figure 1, is now part of the robot Cog. The second and
third implementations, one of which is shown in Figure 2,
were constructed as desktop development platforms for
active vision experiments.

Figure 1: Cog, an upper-torso humanoid robot.

The next section describes the requirements of the ac-
tive vision system. Sections 3, 4, 5, and 6 provide the
details of the camera system, mechanical structure, mo-
tion control system, and image processing system used in
our implementation. To demonstrate the capabilities of
the system, we present four sample visual-motor tasks in
Section 7.

2 System Requirements

The active vision system for our humanoid robot should
mimic the human visual system while remaining easy to
construct, easy to maintain, and simple to control. The
system should allow for simple visual-motor behaviors,
such as tracking and saccades to salient stimuli, as well as
more complex visual tasks such as hand-eye coordination,
gesture identification, and motion detection.

While current technology does not allow us to exactly



Figure 2: One of the two desktop active vision platforms.

mimic all of the properties of the human visual system,
there are two important properties that we desire: wide
field of view and high acuity. Wide field of view is neces-
sary for detecting salient objects in the environment, pro-
viding visual context, and compensating for ego-motion.
High acuity is necessary for tasks like gesture identifica-
tion, facerecognition, and guiding fine motor movements.
In a system of limited resources (limited photoreceptors),
a balance must be achieved between providing wide field
of view and high acuity. In the human retina, this balance
results from an unequal distribution of photoreceptors, as
shown in Figure 3. A high-acuity central area, called the
fovea, is surrounded by a wide periphery of lower acuity.
Our active vision system will also need to balance the
need for high acuity with the need for wide peripheral
vision.

We also require that our system be capable of perform-
ing human-like eye movements. Human eye movements
can be classified into five categories: three voluntary
movements (saccades, smooth pursuit, and vergence) and
two involuntary movements (the vestibulo-ocular reflex
and the optokinetic response)(Kandel, Schwartz & Jessell
1992). Saccades focus an object on the fovea through an
extremely rapid ballistic change in position (up to 900
per second). Smooth pursuit movements maintain the
image of a moving object on the fovea at speeds below
100 per second. Vergence movements adjust the eyes
for viewing objects at varying depth. While the recovery
of absolute depth may not be strictly necessary, relative
disparity between objects are critical for tasks such as
accurate hand-eye coordination, figure-ground discrim-

Figure 3: Density of retinal photoreceptors as a function
of location. Visual acuity is greatest in the fovea, a very
small area at the center of the visual field. A discontinuity
occurs where axons that form the optic nerve crowd out
photoreceptor cell bodies, resulting in a blind spot. From
(Graham 1965).

ination, and collision detection. The vestibulo-ocular
reflex and the optokinetic response cooperate to stabilize
the eyes when the head moves.

The goal of mimicking human eye movements gen-
erates a number of requirements for our vision system.
Saccadic movements provide a strong constraint on the
design of our system because of the high velocities nec-
essary. To obtain high velocities, our system must be
lightweight, compact, and efficient. Smooth tracking
motions require high accuracy from our motor control
system, and a computational system capable of real-time
image processing. Vergence requires a binocular sys-
tem with independent vertical axis of rotation for each
eye. The vestibulo-ocular reflex requires low-latency
responses and high accuracy movements, but these re-
quirements are met by any system capable of smooth
pursuit. The optokinetic response places the least de-
manding requirements on our system; it requires only ba-
sic image processing techniques and slow compensatory
movements. 1

With this set of requirements, we can begin to describe
the design decisions that lead to our current implementa-
tion. We begin in Section 3 with the choice of the camera
system. Once we have chosen a camera system, we can
begin to design the mechanical support structures and to
select a motor system capable of fulfilling our require-
ments. Section 4 describes the mechanical requirements,
and Section 5 gives a description of the motor control
system that we have implemented. If we were to stop at

1Implementations of these two reflexes are currently in progress for
Cog(Peskin & Scassellati 1997). The desktop development platforms
have no head motion, and no vestibular system, and thus do not require
these reflexes.



this point, we would have a system with a standard motor
interface and a standard video output signal which could
be routed to any image processing system. Section 6
describes one of the possible computational systems that
satisfies our design constraints which we have imple-
mented with the development platforms and with Cog.
In all of these sections, we err on the side of providing
too much information with the hope that this document
can serve not only as a review of this implementation
but also as a resource for other groups seeking to build
similar systems.

3 Camera System Specifications

The camera system must have both a wide field of view
and a high resolution area. There are experimental cam-
era systems that provide both peripheral and foveal vi-
sion from a single camera, either with a variable density
photoreceptor array (van der Spiegel, Kreider, Claeys,
Debusschere, Sandini, Dario, Fantini, Belluti & Soncini
1989) or with distortion lenses that magnify the central
area (Kuniyoshi, Kita, Sugimoto, Nakamura & Suehiro
1995). Because these systems are still experimental, fac-
tors of cost, reliability, and availability preclude using
these options. A simpler alternative is to use two cam-
era systems, one for peripheral vision and one for foveal
vision. This alternative allows the use of standard com-
mercial camera systems, which are less expensive, have
better reliability, and are more easily available. Using
separate foveal and peripheral systems does introduce a
registration problem; it is unclear exactly how points in
the foveal image correspond to points in the peripheral
image. One solution to this registration problem is re-
viewed in Section 7.4.

The vision system developed for Cog replaced an ear-
lier vision system which used four Elmo ME411E black
and white remote-head cameras. To keep costs low, and
to provide some measure of backwards compatibility, we
elected to retain these cameras in the new design. The
ME411E cameras are 12 V, 3.2 Watt devices with cylin-
drical remote heads measuring approximately 17 mm in
diameter and 53 mm in length (without connectors). The
remote head weighs 25 grams, and will maintain broad-
cast quality NTSC video output at distances up to 30
meters from the main camera boards. The lower camera
of each eye is fitted with a 3 mm lens that gives Cog
a wide peripheral field of view (88 6 (V) 115 8 (H)).
The lens can focus from 10 mm to . The upper camera
is fitted with a 15 mm lens to provide higher acuity in a
smaller field of view (18 4 (V) 24 4 (H)). The lens fo-
cuses objects at distances from 90 mm to . This creates
a fovea region significantly larger than that of the human
eye, which is 0 3 , but which is significantly smaller than
the peripheral region.

For the desktop development platforms, Chinon CX-
062 color cameras were used.2 These cameras were con-
siderably less expensive than the Elmo ME411E models,
and allow us to experiment with color vision. Small
remote head cameras were chosen so that each eye is
compact and lightweight. To allow for mounting of these
cameras, a 3 inch ribbon cable connecting the remote
head and the main board was replaced with a more flex-
ible cable. The upper cameras were fitted with 3 mm
lenses to provide a wide peripheral field of view. The
lower cameras were fitted with 11 mm lenses to provide
a narrow foveal view. Both lenses can focus from 10 mm
to . The CX-062 cameras are 12 V, 1.6 Watt devices
with a remote board head measuring 40 mm (V) 36
mm (H) 36 mm (D) and a main camera board measur-
ing 65 mm 100 mm with a maximum clearance of 15
mm. The CX-062 remote heads weight approximately
20 grams, but must be mounted within approximately .5
meters from the main camera boards.

4 Mechanical Specifications

The active vision system has three degrees of freedom
(DOF) consisting of two active “eyes”. Each eye can
independently rotate about a vertical axis (pan DOF), and
the two eyes share a horizontal axis (tilt DOF). These de-
grees of freedom allow for human-like eye movements.3

Cog also has a 3 DOF neck (pan, tilt, and roll) which
allows for joint pan movements of the eyes. To allow for
similar functionality, the desktop platforms were fitted
with a one degree of freedom neck, which rotates about a
vertical axis of rotation (neck pan DOF). To approximate
the range of motion of human eyes, mechanical stops
were included on each eye to permit a 120 pan rotation
and a 60 tilt rotation.

To minimize the inertia of each eye, we used thin,
flexible cables and chrome steel bearings.4 This allows
the eyes to move quickly using small motors. For Cog’s
head, which uses the Elmo ME411E cameras, each fully
assembled eye (cameras, connectors, and mounts) occu-
pies a volume of approximately 42 mm (V) 18 mm
(H) 88 mm (D) and weighs about 130 grams. For the
development platforms, which use the Chinon CX-062
cameras, each fully assembled eye occupies a volume of

2In retrospect, this choice was unfortunate because the manufac-
turer, Chinon America, Inc. ceased building all small-scale cameras
approximately one year after the completion of this prototype. How-
ever, a wide variety of commercial remote-head cameras that match
these specifications are now available.

3Human eyes have one additional degree of freedom; they can rotate
slightly about the direction of gaze. You can observe this rotation as
you tilt your head from shoulder to shoulder. This additional degree of
freedom is not implemented in our robotic system because the pan and
tilt DOFs are sufficient to scan the visual space.

4We used ABEC-1 chrome steal bearings (part # 77R16) from Alpine
Bearings.



Figure 4: Three orthographic projections of the mechanical schematics of the desktop active vision system. All
measurements are in inches.

Figure 5: Rendering of the desktop active vision system
produced from the engineering drawings of Figure 4.

approximately 70 mm (V) 36 mm (H) 40 mm (D) and
weighs about 100 grams. Although significantly heavier
and larger than their human counterpart, they are smaller
and more lightweight than other active vision systems
(Ballard 1989, Reid, Bradshow, McLauchlan, Sharkey,
& Murray 1993).

The mechanical design and machining of the vision
systems were done by Cynthia Ferrell, Elmer Lee, and
Milton Wong. Figure 4 shows three orthographic projec-

Figure 6: Rendering of Cog’s active vision system.
Different cameras produce slightly different mechanical
specifications, resulting in a more compact, but heavier
eye assembly.

tions of the mechanical drawings for the desktop devel-
opment platform, and Figures 5 and 6 show renderings of
both the desktop platform and the system used on Cog.
The implementation of the initial Cog head prototype
and the development platforms were completed in May
of 1996.



5 Eye Motor System Specifications

Section 2 outlined three requirements of the eye motor
system. For Cog’s visual behaviors to be comparable
to human capabilities, the motor system must be able
to move the eyes at fast speeds, servo the eyes with fine
position control, and smoothly move the eyes over a wide
range of velocities.

On average, the human eye performs 3 to 4 full range
saccades per second(Kandel et al. 1992). Given this goal,
Cog’s eye motor system is designed to perform three 120
pan saccades per second and three 60 tilt saccades per
second (with 250 ms of stability in between saccades).
This specification corresponds to angular accelerations
of 1309 2 and 655 2 for pan and tilt.

To meet these requirements, two motors were selected.
For the pan and tilt of the Cog prototype and for the neck
pan and tilt on the desktop systems, Maxon 12 Volt, 3.2
Watt motors with 19.2:1 reduction planetary gearboxes
were selected. The motor/gearbox assembly had a total
weight of 61 grams, a maximum diameter of 16 mm
and a length of approximately 60 mm. For the desktop
development platforms, it was possible to use smaller
motors for the pan axis. We selected Maxon 12 Volt, 2.5
Watt motors with 16.58:1 reduction planetary gearboxes.
This motor/gearbox assembly had a total weight of 38
grams, a maximum diameter of 13 mm and a total length
of approximately 52 mm.5

To monitor position control, each motor was fitted with
a Hewlett-Packard HEDS-5500 optical shaft encoder.
The HEDS-5500 has a resolution of 1024 counts per
revolution. The motor/gearbox/encoder assembly was
attached to the load through a cable transmission system.
By modifying the size of the spindles on the cable trans-
mission, it was possible to map one full revolution of the
motor to the full range of motion of each axis. This re-
sults in an angular resolution of 8.5 encoder ticks/degree
for the pan axis and 17 encoder ticks/degree for the tilt
axis.

The motors were driven by a set of linear amplifiers,
which were driven by a commercial 4-axis motor con-
troller (see Figure 7).6 This motor controller maintained
a 1.25 kHz servo loop at 16 bits of resolution for each
axis. The motor controller interfaced through the ISA
bus to a PC and provided a variety of hardware supported
motion profiles including trapezoidal profiles, S-curve
acceleration and deceleration, parabolic acceleration and
deceleration, and constant velocity moves.

5The 3.2 Watt Maxon motor is part # RE016-039-08EAB100A and
its gearbox is part # GP016A019-0019B1A00A. The 2.5 Watt motor is
part # RE013-032-10EAB101A and its gearbox is part # GP013A020-
0017B1A00A.

6The linear amplifiers are model TA-100 amps from Trust Automa-
tion. The motor controller is an LC/DSP-400 4-axis motor controller
from Motion Engineering, Inc.

6 Computational Specifications

To perform a variety of active vision tasks in real time,
we desire a system that is high bandwidth, powerful, and
scalable. The system must have enough bandwidth to
handle four video streams at full NTSC resolution, and
be powerful enough to process those streams. Ideally, the
system should also be easily scalable so that additional
processing power can be integrated as other tasks are
required.

6.1 Parallel Network Architecture

Based on these criteria, we selected a parallel network
architecture based on the TIM-40 standard for the Texas
Instruments TMS320C40 digital signal processor. The
TIM-40 standard allows third-party manufacturers to pro-
duce hardware modules based around the C40 processor
that incorporate special hardware features but can still be
easily interfaced with each other. For example, one TIM-
40 module might have specialized hardware for capturing
video frames while another might have special hardware
to perform convolutions quickly. Distributed computa-
tion is feasible because modules communicate with each
other through high-speed bi-directional dedicated hard-
ware links called comports, which were designed to carry
full size video streams or other data at 40 Mbits/second.
Depending on the module, between 4 and 6 comports are
available. Additional computational power can easily
be added by attaching more TIM-40 modules to the net-
work. Each TIM-40 module connects to a standardized
backplane that provides power and support services. The
entire network interfaces to a PC through an ISA card (in
our system, we use the Hunt Engineering HEP-C2 card).

Figure 8 shows both the general network architecture,
and the specific TIM-40 modules that are currently at-
tached to one of the development platforms. In this
network, four types of TIM-40 module are used.7 The
first module type is a generic C40 processor with no
additional capabilities. In this network, the two nodes la-
beled “ROOT” and “P2” are both generic processors. The
“ROOT” node is special only in that one of its comports is
dedicated to communications to the host computer. The
second module type, labeled “VIP”, for “Visual Informa-
tion Processor”, contains dedicated hardware to quickly
compute convolutions. The third module type, labeled
“AGD”, or “Accelerated Graphics Display”, has hard-
ware to drive a VGA monitor. This module is very useful
for displaying processed images while debugging. The
fourth module type has hardware to grab frames from an
incoming video signal. The four instances of this module
are labeled “Right Wide”, “Right Fovea”, “Left Fovea”,

7The four module types are sold by Traquair Data Systems, Inc.,
with catalog numbers HET40Ex, VIPTIM, AGD, and HECCFG44
respectively.
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Figure 7: Schematic for the electrical wiring of the motor subsystem. The motor control signal (SIG) drives a linear
amplifier, which produces a differential pair of amplified signals (M+ and M-). Two encoder channels (Ea and Eb)
return feedback from the motor assembly.

and “Left Wide” in the figure. Connections between pro-
cessors are shown by single lines. Because the number
of comports are limited, the connectivity in the network
is asymmetric. As we will see in the next section, this
only presents a minor problem to programming, since
virtual connectivity can be established between any two
processors in the network.

6.2 Software Environment

To take advantage of the high-speed interprocessor con-
nections in the C40 network, we use a commercial soft-
ware package called Parallel C from 3L, Ltd. Parallel C
is a multi-threading C library and runtime system which
essentially creates a layer of abstraction built upon the
ANSI C programming language. Parallel C consists of
three main parts:

Runtime libraries and compiler macros, which pro-
vide routines for multi-threading and interprocessor
communication, as well as standard ANSI C func-
tions.

A microkernel, running on each C40 node, which
handles multitasking, communication, and transpar-
ent use of I/O throughout a network.

A host server, running on the PC, which handles the
front-end interface to the C40 network, including
downloading applications and providing a standard
input and output channels.

Compiling and linking are done with the Texas Instru-
ments C compiler.

Parallel C also provides facilities for connecting tasks
on processors that do not share a physical comport con-
nection through the use of virtual channels. Virtual chan-
nels are one-way data streams which transmit data from
an output port to an input port in an in-order, guaranteed
way. A channel might be mapped directly to a physi-
cal comport connection or it might travel through several
nodes in the network, but both cases can be treated iden-
tically in software. The microkernels on each processor
automatically handle virtual channels, ensuring that data
gets from one task’s output port to another task’s input
port, as long as some chain of available physical comport
connections exists.

7 Example Tasks

A number of research projects have made use of
these active vision platforms (Marjanović, Scassellati &
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Williamson 1996, Scassellati 1997, Banks & Scassellati
1997, Peskin & Scassellati 1997, Yamato 1997, Ferrell
1997, Kemp 1997, Irie 1997). This section makes no
attempt at summarizing these diverse projects. Instead,
we review a few examples to evaluate the capabilities of
the vision system. We focus on tasks that demonstrate
the hardware capabilities of the mechanical system rather
than complex visual processing. These examples are not
meant to be complete functional units, only as basic tests
of the vision platform.

We begin with an example of adaptive saccades, and
an example of how to use this information to saccade to
salient stimuli. We also present an example that empha-
sizes the rapid response of the system for smooth pursuit
tracking. The final example is a solution to the regis-
tration problem described in section 3. All of the data
presented was collected with the desktop development
platform shown in Figure 2.

7.1 Adaptive Saccades

Distortion effects from the wide-angle lens create a non-
linear mapping between the location of an object in

the image plane and the motor commands necessary to
foveate that object. One method for compensating for this
problem would be to exactly characterize the kinematics
and optics of the vision system. However, this technique
must be recomputed not only for every instance of the sys-
tem, but also every time a system’s kinematics or optics
are modified in even the slightest way. To obtain accurate
saccades without requiring an accurate kinematic and op-
tic model, we use an unsupervised learning algorithm to
estimate the saccade function.

An on-line learning algorithm was implemented to
incrementally update an initial estimate of the saccade
map by comparing image correlations in a local field.
The example described here uses a 17 17 interpolated
lookup table to estimate the saccade function. We are
currently completing a comparative study between vari-
ous machine learning techniques on this task (Banks &
Scassellati 1997).

Saccade map training begins with a linear estimate
based on the range of the encoder limits (determined
during self-calibration). For each learning trial, we gen-
erate a random visual target location ( ) within the
128 128 image array and record the normalized im-
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Figure 10: 2 error for saccades to image positions (x,y)
after 0 training trials.

age intensities ¯ in a 13 13 patch around that point.
The reduced size of the image array allows us to quickly
train a general map, with the possibility for further refine-
ment after the course mapping has been trained. Once
the random target is selected, we issue a saccade mo-
tor command using the current map estimate. After the
saccade, a new image ¯ 1 is acquired. The normalized
13 13 center of the new image is then correlated against
the target image. Thus, for offsets 0 and 0, we seek to
maximize the dot-product of the image vectors:

max
0 0

¯ ¯ 1 0 0 1

Because each image was normalized, maximizing the dot
product of the image vectors is identical to minimizing
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Figure 11: 2 error for saccades to image positions (x,y)
after 2000 training trials.

the angle between the two vectors. This normalization
also gives the algorithm a better resistance to changes
in background luminance as the camera moves. In our
experiments, we only examine offsets 0 and 0 in the
range of 32 32 . The offset pair that maximized the
expression in Equation 1, scaled by a constant factor, is
used as the error vector for training the saccade map.

Figure 9 shows the data points in their initial linear
approximation (dashed lines) and the resulting map after
2000 learning trials (solid lines). The saccade map after
2000 trials clearly indicates a slight counter-clockwise
rotation of the mounting of the camera, which wasverified
by examination of the hardware. Figure 10 shows the 2

error distance for saccades after 0 learning trials. After
2000 training trials, an elapsed time of approximately 1.5
hours, training reaches an average 2 error of less than 1
pixel (Figure 11). As a result of moving objects during
subsequent training and the imprecision of the correlation
technique, this error level remained constant regardless
of continued learning.

7.2 Saccades to Motion Stimuli

By combining the saccade map with visual process-
ing techniques, simple behaviors can be produced. To
demonstrate this, we provide here a simple example us-
ing visual motion as a saliency test. Any more complex
evaluation of saliency can easily be substituted using this
simple formulation.

A motion detection module computes the difference
between consecutive wide-angle images within a local
field. A motion segmenter then uses a region-growing
technique to identify contiguous blocks of motion within
the difference image. The centroid of the largest motion
block is then used as a saccade target using the trained
saccade map from section 7.1.

The motion detection process receives a digitized
64 64 image from the right wide-angle camera. In-
coming images are stored in a ring of three frame buffers;



one buffer holds the current image 0, one buffer holds
the previous image 1, and a third buffer receives new
input. The absolute value of the difference between the
grayscale values in each image is thresholded to provide
a raw motion image ( 0 1 ). The dif-
ference image is then segmented using a region-growing
technique. The segmenter process scans the raw motion
image marking all locations which pass threshold with
an identifying tag. Locations inherit tags from adjacent
locations through a region grow-and-merge procedure.
Once all locations above threshold have been tagged, the
tag that has been assigned to the most locations is de-
clared the “winner”. The centroid of the winning tag is
computed, converted into a motor command using the
saccade map, and sent to the motors.

7.3 Smooth Pursuit Tracking

While saccades provide one set of requirements for our
motor system, it is also necessary to examine the perfor-
mance of the system on smooth pursuit tracking. 8 Our
example of smooth pursuit tracking acquires a visual tar-
get at startup and attempts to maintain the foveation of
that target.

The central 7 7 patch of the initial 64 64 image is
installed as the target image. In this instance, we use a
very small image to reduce the computational load neces-
sary to track non-artifact features of an object. For each
successive image, the central 44 44 patch is correlated
with the 7 7 target image. The best correlation value
gives the location of the target within the new image, and
the distance from the center of the visual field to that lo-
cation gives the motion vector. The length of the motion
vector is the pixel error. The motion vector is scaled by a
constant (based on the time between iterations) and used
as a velocity command to the motors.

While simple, this tracking routine performs well for
smoothly moving real-world objects. Figure 12 shows
the cumulative pixel error while tracking a mug moving
continuously in circles in a cluttered background for ten
seconds. An ideal tracker would have an average pixel er-
ror of 1, since the pixel error is recorded at each timestep
and it requires a minimum of one pixel of motion before
any compensation can occur. In the experiment shown
here, the average pixel error is 1.23 pixels per timestep.
(This may result from diagonal movements of the target
between consecutive timesteps; a diagonal movement re-
sults in a pixel error of 2.) This example demonstrates
that the motor system can respond quickly enough to track
smoothly.

8Given saccades and smooth pursuit, vergence does not place any
additional requirements on the responsiveness of the motor system.
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Figure 12: Cumulative 2 pixel error accumulated while
tracking a continuously moving object. There are thirty
timesteps per second.

7.4 Registering the Foveal and Peripheral Im-
ages

Using two cameras for peripheral and foveal vision al-
lows us to use commercial equipment, but results in a
registration problem between the two images. We would
like a registration function that describes how the foveal
image maps into the peripheral image, that is, a function
that converts positions in the foveal image into positions
in the peripheral image. Because the foveal image has
a small aperture, there is little distortion and the image
linearly maps to distances in the environment. The pe-
ripheral image is non-linear near the edges, but was de-
termined to be relatively linear near the center of the field
of view (see section 7.1). Because the relevant portions
of both images are linear, we can completely describe a
registration function by knowing the scale and offsets that
need to be applied to the foveal image to map it directly
into the peripheral image.

One solution to this problem would be to scale the
foveal image to various sizes and then correlate the scaled
images with the peripheral image to find a correspond-
ing position. By maximizing over the scale factors, we
could determine a suitable mapping function. This search
would be both costly and inexact. Scaling to non-integer
factors would be computationally intensive, and exactly
how to perform that scaling is questionable. Also, arbi-
trary scaling may cause correlation artifacts from features
that recur at multiple scales.

Another alternative is to exploit the mechanical system
to obtain an estimate of the scale function. Since both
cameras share the pan axis, by tracking the background as
we move the eye at a constant velocity we can determine
an estimate of the scale between cameras. With the eye
panning at a constant velocity, separate processors for the
foveal and peripheral images track the background, keep-



ing an estimate of the total displacement. After moving
through the entire range, we estimate the scale between
images using the following formula:

2

While the tilt axis does not pass through the focal points
of both cameras, we can still obtain a similar scaling
factor for the tilt dimension. Because we average over
the entire field, and do not compare directly between the
foveal and peripheral images, a similar equation holds for
the tilt scaling factor. Once the scaling factor is known,
we can scale the foveal image and convolve to find the
registration function parameters.

Figure 13: Registration of the foveal and peripheral im-
ages. The foveal image (top) correlates to a patch in
the 128 128 peripheral image (bottom) that is approxi-
mately one-fourth scale and at an offset of 2 pixels above
and 14 pixels right from the center.

We have experimentally determined the registration
function parameters for the desktop development plat-
form using this method. Over a series of ten experimental
trials using the above method, the average scale factor for
both the pan and tilt dimension were both determined to
be 4.0, with a standard deviation of .1. The scaled foveal
image was best located at a position 2 pixels above and 14
pixels from the center of the 128 128 peripheral image
(see Figure 13). As a control, the same experiment pro-
duced on the cameras of the other eye produce exactly the
same scaling factor (which is a product of the camera and

lens choices), but different offset positions (which are a
result of camera alignment in their respective mounts).

8 Conclusions

This report has documented the design and construction
of a binocular, foveated active vision system. The vision
system combines a high acuity central area and a wide
peripheral field by using two cameras for each eye. This
technique introduces a registration problem between the
camera images, but we have shown how simple active
vision techniques can compensate for this problem. We
have also presented a number of sample visual behaviors,
including adaptive saccading, saccades to salient stim-
uli, and tracking, to demonstrate the capabilities of this
system.
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