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b. Description of progress made against milestones during the period:

This project addresses the challenge of creating model-based autonomous execution systems and dynamic, domain architectures for creating autonomous air and space vehicles that robustly achieve elaborate missions within uncertain and hostile environments.   The DDA-MBA approach achieves this level of robustness by reasoning about models of physical hardware, goals and plans statically at compile-time and dynamically as novel circumstances occur.  DDA-MBA includes three major elements: a model-based executive, called Titan, a model-based programming language, called the Reactive Model-based Programming Language, and a modeling framework, called the Dynamic Domain Architecture.

The Titan model-based executive achieves robustness by reasoning through system models during runtime, to fluidly coordinate the varied functions and subsystems of the vehicle.  While the executing software must be highly reactive, it still will be able to present a view of its execution in terms of goals, plans, states, invariants and the like.  These will be monitored at runtime and the failure to achieve expected results will trigger diagnosis, reconfiguration and recovery.  In order to maintain flexibility, the system will always possess a variety of strategies and plans for achieving its goals.  It attempts to achieve its goals by selecting a strategy and plan that it believes to be best suited to the task.  The system monitors its progress and changes its plan and strategy if appropriate progress is not being made.  To strike a balance between robustness and runtime efficiency, the model-based executive uses a blend of real-time deduction and compile-time knowledge compilation methods.

The programmer provides the model-based executive high-level guidance using the Reactive Model-based Programming Language (RMPL).    RMPL specifies Plans, Goals and Monitoring conditions as a non-deterministic, embedded program that describes the allowable state evolutions of the physical hardware being controlled.  These state variables are typically manipulated indirectly through sensors and actuators.  The programmer also provides a model of the physical plant being controlled.  To achieve the goals specified in an RMPL program, the model-based executive uses the plant model to interpret sensor information and to deduce control actions that achieve the desired goals.  

Programs are non-deterministic to allow the programmer to specify a set of alternative strategies for achieving a set of goals.  The model-based executive selects a set of strategies at run-time that maximizes its expected reward.

Model-based programming and execution requires a novel framework for model-based development and integration.  We are incorporating RMPL and Titan into a new model-based software framework as an extension to our work on dynamic domain architectures (DDA).  These frameworks capture and structure both the code and the models for a functional domain of embedded systems and present a goal-directed model of the software components to other frameworks.  The DDA frameworks facilitate programming by extending a powerful dynamic programming language with compositional, model-based capabilities.  Such an extended language will allow the behaviors and interactions between subsystems of intelligent vehicles to be easily specified at a commonsense level.  A Framework Developers Toolkit is being developed that generates the code necessary to couple multiple DDA frameworks to one another and to the reactive model-based executives.

During the fourth quarter of this project we performed a more extensive evaluation of the application of our DDA-MBA approach to the Unmanned Air Vehicle and Automotive open experimental platforms, and we developed an initial design of the RMPL language and its corresponding model-based executive.

During the fourth quarter we continued the review of the Boeing UAV test bed with 

telecons with Dave Sharp and colleagues at Boeing.  The UAV test bed focuses on a development process in which models are reduced to code at compile-time.  This is a fairly different paradigm from the run-time approach taken by DDA-MBA, and it isn’t easy to incorporate this dynamic approach within the current UAV test bed framework.  In addition, the set of fault scenarios supported by the UAV test bed consists of a single processor fault.  Handling this fault would not constitute a major demonstration of the DDA-MBA approach to responding to failure at run time.   During our further discussions we focused on smaller demonstration that uses the dynamic domain architecture at compile time to support the analysis of interdependencies between activities residing on multiple threads.

In parallel we evaluated the two automotive test beds – the drive train test bed and the cooperative cruise control test bed.  This included reviewing the Shift models for cooperative cruise control and downloading and running the MatLab Simulink models for the drive train model.   Due to the specificity of the available simulation we chose to focus initially on the task of monitoring and diagnosing the drive train test bed.  

Our analysis included a slide presentation for the April 10th and 11th OEP Working group meeting.  This presentation outlined three approaches to the monitoring and diagnosis task.  The first approach used Livingstone’s mode estimation capability to perform online monitoring and diagnosis of the automotive drive train based on a set of discrete models.  The second approach used the MiniMe mode estimation capability to transform at compile time a discrete model into a set of codes for perform monitoring and diagnosis, MiniMe is outlined in the third quarter report and accompanying publication.  The third approach proposed to perform online monitoring and diagnosis by taking as input a set of hybrid discrete/continuous models, and by performing monitoring by reconfiguring a bank of Kalman Filters online.    

Note that the demonstration of DDA-MBA hinges upon the availability of fault simulation models.  The current drive train OEP lacks a set of defined fault cases.  Our presentation proposed a set of possible failure modes that the automotive OEP developers might incorporate within their test bed.  To demonstrate a robust fault response capability the OEP would also need to define a set of repair or control responses as part of the challenge problem.  Also note that a fault monitoring demonstration on the drive train test bed could be a somewhat limited demonstration of the DDA-MBA capabilities.   The drive train contains a small set of components (an engine and transmission, plus sensors and actuators), while the DDA-MBA model-based executive was developed for multiple fault diagnosis and repair of large collections of components, on the order of hundreds to thousands of components.  

During the April OEP meeting we discussed diagnosis applied to both the drive train and cooperative adaptive cruise control test beds.  It was also identified that the cooperative cruise control test bed includes interesting examples of diagnosis and reconfiguration involving coordination between multiple vehicles. 

As a follow up to the April OEP meeting, on May 11th we participated in a fault diagnostics challenge problem telecon including Brian Williams and Michael Hofbaur of MIT, Mark Wilcutts of Berkeley, Stephen Hary of Wright Patterson AFB, Kenneth Henry of GM and Bill Milam or Ford.  During the telecon the importance of fault monitoring and diagnosis for the auto industry was reiterated.  Two significant issues were raised in the creation of a challenge problem.  The first is that proprietary concerns might make it difficult to disclose information about failure modes for the OEP drive train.  We suggested that the OEP developers might extract this information from publicly available repair manuals.  The second issue was the availability of time by the OEP team to develop a set of failure models and to incorporate them into the MatLab Simulink models, given their other program responsibilities.  We suggested that a simple approach might suffice.  For example, a variety of failures modes are common and easy to model, such as actuators being stuck, floating sensors and clogged filters.  These models could be adequate for the Mobies demonstration objectives, and simple for the OEP developers to implement.

Technical work during the fourth quarter focused on the development of the RMPL language, and its incorporation within a lisp prototype of the Titan model-based executive.  An RMPL program is a conditional specification of a set of time-evolving goals that the model-based executive must achieve over time.  These goals are specified within RMPL as an embedded program that specifies the time evolution of abstract state variables that may be hidden within the physical plant being controlled.   RMPL control constructs are similar in expressiveness to those of embedded languages like Esterel, and include constructs for concurrency, conditionality and preemption.    During the fourth quarter we defined the primitive and higher level constructs of the RMPL language.  We developed a compiler that maps an RMPL program into a compact encoding in terms of hierarchical, constraint-based automata (HCA).  The execution of an HCA generates a trajectory of goals to be achieved.  A first prototype of the Titan model-based executive was implemented by coupling the execution of HCA to queries to Livingstone’s model-based mode estimation and reconfiguration capabilities.  The RMPL language and the Titan prototype are described in a publication to appear in the ISAIRAS 01 conference.  

Future work will include the extension of compilation algorithms demonstrated in MiniMe (third quarter) to Titan, a re-implementation of Titan in C++ and the integration of Titan with the dynamic domain architecture.

c. Results, positive or negative obtained related to previously-identified problem areas with conclusions and recommendations:
No previously identified problem areas exist.

d. Any significant changes to the contractor’s organization or method of operation, to the project management network, or to the milestone chart:

None

e. Problem areas affecting technical or scheduling elements, with background and any recommendations for solutions beyond the scope of the contract:
none.

f. Problem areas affecting cost elements, with background and any recommendations for solutions beyond the scope of the contract:
none.










