Dynamic Domain Architectures

For

Model-based Autonomous Systems

Brian C. Williams

NE43-838

Artificial Intelligence Laboratory

MIT

Cambridge, MA 02139

Contract #: F33615-00-C-1702

Progress Report ending March 2000

Unclassified

A project sponsored by the Information Technologies Office of DARPA

Contract issued by AFRL/IFSC

b. Description of progress made against milestones during the period:

This project addresses the challenge of creating model-based autonomous execution systems and dynamic, domain architectures for creating autonomous air and space vehicles that robustly achieve elaborate missions within uncertain and hostile environments. The DDA-MBA approach achieves this level of robustness by reasoning about models of physical hardware, goals and plans statically at compile-time and dynamically as novel circumstances occur. DDA-MBA includes three major elements: a model-based executive, called Titan, a model-based programming language, called the Reactive Model-based Programming Language, and a modeling framework, called the Dynamic Domain Architecture.

The Titan model-based executive achieves robustness by reasoning through system models during runtime, to fluidly coordinate the varied functions and subsystems of the vehicle. While the executing software must be highly reactive, it still will be able to present a view of its execution in terms of goals, plans, states, invariants and the like. These will be monitored at runtime and the failure to achieve expected results will trigger diagnosis, reconfiguration and recovery. In order to maintain flexibility, the system will always possess a variety of strategies and plans for achieving its goals. It attempts to achieve its goals by selecting a strategy and plan that it believes to be best suited to the task. The system monitors its progress and changes its plan and strategy if appropriate progress is not being made. To strike a balance between robustness and runtime efficiency, the model-based executive uses a blend of real-time deduction and compile-time knowledge compilation methods.

The programmer provides the model-based executive high-level guidance using the Reactive Model-based Programming Language (RMPL). RMPL specifies Plans, Goals and Monitoring conditions as a non-deterministic, embedded program that describes the allowable state evolutions of the physical hardware being controlled. These state variables are typically manipulated indirectly through sensors and actuators. The programmer also provides a model of the physical plant being controlled. To achieve the goals specified in an RMPL program, the model-based executive uses the plant model to interpret sensor information and to deduce control actions that achieve the desired goals.

Programs are non-deterministic to allow the programmer to specify a set of alternative strategies for achieving a set of goals. The model-based executive selects a set of strategies at run-time that maximizes its expected reward.

Model-based programming and execution requires a novel framework for model-based development and integration. We are incorporating RMPL and Titan into a new model-based software framework as an extension to our work on dynamic domain architectures (DDA). These frameworks capture and structure both the code and the models for a functional domain of embedded systems and present a goal-directed model of the software components to other frameworks. Programming in DDA frameworks is facilitated by extending a powerful dynamic programming language with compositional, model-based capabilities. Such an extended language will allow the behaviors and interactions between subsystems of intelligent vehicles to be easily specified at a commonsense level. A Framework Developers Toolkit is being developed that generates the code necessary to couple multiple DDA frameworks to one another and to the reactive model-based executives.

During the third quarter of this project we began to evaluate the application of our DDA-MBA approach to the Unmanned Air Vehicle and Automotive open experimental platforms, and we developed compile-time methods for model-based execution.

During the third quarter we reviewed the challenge problems and domain descriptions provided for the Boeing testbed UAV testbeds and for the automotive testbeds provided by Berkeley. We also supported a series of telecons with Dave Sharp at Boeing to assess the applicability of the DDA and MBA frameworks to the Boeing testbed. We identified potential application of isolated elements of the DDA-MBA framework for execution and scheduling analysis for the Boeing testbeds and for fault monitoring in the Berkeley automotive testbeds.

Technical development focused on the development of model-based compile-time methods for the speedup and evaluation of the Titan model-based executive. The Titan model-based executive builds upon our past work on Livingstone. Livingstone is a simpler incarnation of a model-based executive that successfully demonstrated the onboard control, monitoring diagnosis and repair of the NASA New Millennium Deep Space One spacecraft during the Spring of 1999. Livingstone is able to handle a wide range of novel failures. The space of possible failures handled by Livingstone is too large to address at compile-time. Instead Livingstone addresses situations as they arise by performing logical deduction on a set of models at run-time. Livingstone uses a core deductive component, called OPSAT to perform this run-time deduction. Using OPSAT, Livingstone demonstrated the ability to perform diagnosis and repair on the order of a few seconds, using a spacecraft model consisting of roughly 10,000 logical clauses and using only 2 MHZ of a radiation hardened RAD6000 processor. Through its flight validation Livingstone demonstrated the viability of performing logical deduction within the reactive loop of an embedded system.

One limitation of Livingstone is that the decision to defer all logical deduction until run-time can incur an undesirable performance penalty. On the other hand, performing all possible decisions at compile-time would also be intractable, hence a middle-ground is desired. During this quarter we developed an approach that splits the computational cost between run-time and compile time. We implemented a proof of concept for this approach through a system, called MiniMe, that performs a simple variant of the diagnostic problem addressed by Livingstone.

A second limitation is the ability of a programmer or systems engineer to understand at development time the responses Livingstone will generate to anomalous situations. Livingstone operates on a set of commonsense models of component behaviors. The feature of this approach is that a developer finds it easy to specify models that reflect the behavior of the underlying hardware. However, developers also want to be able to evaluate how Livingstone diagnoses and repairs common classes of failures. In traditional engineering these evaluations typically take the form of a failure modes and effects analysis (FMEA), which can be thought of as a set of fault responses or diagnostic rules. Livingstone’s responses are not directly apparent from the commonsense models of the plant. To support engineering analysis, MiniMe compiles its commonsense models into a set of rules roughly corresponding to the FMEA. A developer then reviews these rules to expose model flaws and to confirm that the responses generated are sensible.

MiniMe addresses these two limitations using a divide and conquer approach. At compile time MiniMe uses the model and sensor placement to divide a diagnosis problem into an overlapping set of sub-problems. Each sub-problem consists of a subset of the model and sensors. MiniMe compiles each sub-problem into an equivalent set of rules, called dissents, that solves the sub-problem for all possible sensor inputs. During run-time the set of dissents are applied to solve each sub-problem for a particular set of sensor inputs. The solutions to these sub-problems are then combined during run time into a set of best global diagnoses.

By decomposing the problem into a set of smaller sub-problems, the problem size addressed at compile time is substantially reduced. MiniMe avoids generating the large space of globally consistent solutions, by only generating the relevant global solutions at run-time. In addition, the set of dissents provide rules mapping from sensor readings to sets of possible diagnoses that are local to the particular sub-problem being solved. These dissents provide the developer diagnostic review information typically found in a FMEA. Problem decomposition also results in a decomposed rule set that is more modular and easier to review.

A prototype of MiniMe was implemented in a combination of C++ and Lisp. Model compilation was framed as a prime implicate generation, and was implemented in C++ based on the IPIA algorithm developed by Johan de Kleer. The on-line component of MiniMe was implemented in Lisp. The core algorithm for combining solutions of diagnostic sub-problems into a set of best global solutions is based on a best-first prime implicant algorithm developed by Brian Williams.

Model compilation was demonstrated using a model of the propulsion sub-system of the distributed satellite testbed at the MIT space systems lab. The algorithms within MiniMe were accepted for publication at the 2001 International Symposium on Artificial Intelligence and Robotics in Space, to be presented June 2001.

Future work will look to the development of compilation algorithms with improved performance on large models, and will extend the MiniMe compilation approach to the full capability for the Titan model-based executive.

c. Results, positive or negative obtained related to previously-identified problem areas with conclusions and recommendations:
No previously identified problem areas exist.

d. Any significant changes to the contractor’s organization or method of operation, to the project management network, or to the milestone chart:

None

e. Problem areas affecting technical or scheduling elements, with background and any recommendations for solutions beyond the scope of the contract:
none.

f. Problem areas affecting cost elements, with background and any recommendations for solutions beyond the scope of the contract:
none.

