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Abstract 

Many recent and future space missions point to the need 
for increased autonomy in spacecraft with an emphasis 
on more capable fault diagnostic systems. The most 
widely used fault diagnostic systems are rule-based. 
Rule-based systems have quick response to events and 
clearly present to engineers the predefined reactions to 
events. These systems, however, require engineers to 
manually generate all necessary rules and these do not 
convey the assumed model the engineers used to 
generate the rules. Contrarily, model-based systems 
eliminate the need to manually generate the rules. Most 
model-based system such as GDE [3], Sherlock [4], and 
Livingstone [6], however, may not provide quick 
response and do not specify the rules for engineers to 
review and verify. Mini-ME addresses the issues of both 
rule-based and model-based approaches and provides an 
alternative solution to fault diagnosis. Mini-ME 
provides quick response by shifting computationally 
expensive tasks of model-based diagnosis offline. 
Additionally, it offers the capability to inspect and 
verify the rules. 

1 Introduction 

Recent failures in NASA’s Mars exploration program 
point to the need for increased autonomy in spacecraft. 
Spacecraft must be designed with the capacity to 
monitor their own systems for unexpected occurrences, 
and to react in a timely fashion to such conditions at the 
executive layer, i.e. at the level of real-time 
commanding. The ability to accurately and rapidly 
determine the current state of the system is vital to the 
design of fault protection systems in autonomous 
spacecraft. 

Many fault management systems are based on expert 
systems in which a rule-based diagnostic engine is used 

to detect faults. For example, the NEAR spacecraft used 
such a system for limited autonomous operations. This 
type of system’s capability is limited to the rules 
enumerated in the database. To create these rules, 
engineers must reason through system wide interactions, 
consequently, the set of rules is limited by the faults that 
engineers can recognize. This lack of robustness can be 
detrimental to the spacecraft. Components may interact 
other than expected, and a rule-based system cannot 
account for this. Should such a fault occur at a critical 
mission point, such as orbital insertion, the rule-based 
engine cannot react, resulting in the loss of the mission. 

In contrast, model-based fault protection systems 
eliminate the need to enumerate all rules by reasoning 
on the common-sense model of a system. Model-based 
fault protection systems such as Sherlock [4] and 
Livingstone [6], however, are limited by the uncertainty 
in the time required to perform online automated 
reasoning. Online deduction algorithms, such as those 
used in the Livingstone model-based fault protection 
system, are known to have worst-case performance 
exponential in time. The issue of run-time uncertainty 
presents a challenge to the onboard implementation of 
model-based protection capabilities, a challenge certain 
to be highly exacerbated as systems become more 
complex and the modeling languages used in such 
systems become more expressive. 

As a solution to this problem, a Miniature Mode 
Estimation system (Mini-ME) is introduced. Mini-ME 
estimates the current mode of the spacecraft and detects 
any failures through model-based reasoning. The 
following sections detail the Mini-ME system beginning 
with the modeling framework, followed by the offline 
and online tasks of fault diagnosis. Then, an analysis is 
presented using the NEAR spacecraft and how Mini-ME 
is capable of diagnosing the modes of the power sub-
system. 

2 Mini-ME 

Mini-ME differs from previous model-based fault 
monitoring systems by guaranteeing run time 



performance. Through model compilation and offline 
deduction, Mini-ME combines the benefits of the rule-
based system’s real time performance guarantees and 
the model-based fault protection system’s capability to 
reason on models. 

The architecture of the Mini-ME system is shown in 
Figure 1. The engineer specifies commonsense models 
of the spacecraft containing the operational and fault 
modes of each component and its associated behavior. 
The model is then compiled into a set of rules, called 
dissents. Dissents represent a mapping from 
observations of the system to a set of possible diagnoses 
of the component modes. This mapping is computed 
offline and thus does not factor in to the real time 
performance of the system. 

These partial diagnosis rules are then fed into the 
partial diagnosis trigger that generates a set of partial 
diagnoses of the components based on the observations 
in the current time step. These observations come from 
the spacecraft, but are discretized through the use of 
monitors. For example, voltage is read as a continuous 
value, but for the spacecraft to operate properly, this 
voltage need only be within a certain range, such as 24 
to 32 volts. This range is discretized as nominal, and 
anything else is either low or high as appropriate.  

These partial diagnoses are then combined in the 
best-first kernel generation step to give the most likely 
diagnosis of the system. This diagnosis is the output of 
Mini-ME and the input to the repair manager, which 
will then use this diagnosis to take an appropriate 
recovery action to repair components. 

2.1 Example System 

The diagnostic ability of Mini-ME will be demonstrated 
in the following sections using a simplified schematic of 
a monopropellant propulsion system used for attitude 
control in the NEAR spacecraft, shown in Figure 2.  

The propulsion system comprises two overall sub-
systems, the tank of hydrazine and its associated 
pressure transducer, and the hydrazine thruster made up 
of the solenoid valve, catalyst bed and physical thruster. 
An inertial sensor is included in the system for thrust 
observation.  

The pressure transducer indicates the pressure that is 
present in pipe 1, which is downstream of the tank. As 
long as the pressure transducer is operating nominally, it 
will indicate that the pressure in pipe 1 is the same as 
the tank pressure, discretized as either nominal or low. 

 

The hydrazine thruster is made up of two main 
components, the solenoid valve and the catalyst bed. 
The solenoid valve controls the hydrazine flow into the 
catalyst bed. This is accomplished by applying an 
electric current to the valve to open it, otherwise it will 
remain closed. Downstream of the solenoid valve is the 
catalyst bed, which is needed for combustion. Over 
time, catalyst can be lost through various mechanisms, 
such as pieces breaking off due to temperature 
variations. This will cause a reduction in thrust from the 
hydrazine thruster, causing the inertial sensor to observe 
that the thrust is off. In the case that the ACS operates 
nominally, the inertial sensor’s reading will be 
discretized as on. 

2.2 Modeling 

System modeling is key to the utility of the Mini-ME 
diagnostic tool. The utility of a modeling language 
allows specification of commonsense models that are 
also reusable and compositional. The reusability comes 
from the general formulation of a model. The 
compositional aspect of the model exists at the system 
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level by specifying components of a system, but also at 
the component level by specifying the different modes 
of each component. These benefits inherent in a model-
based approach give Mini-ME the ability to perform its 
diagnosis. The following demonstrates the modeling 
approach, where sensor information is identified, 
components operational and fault modes are determined, 
and their associated models are developed. 

The propulsion system detailed above has two 
sensors. The pressure transducer measures the pressure 
in pipe 1 and the inertial sensor measures the thrust. 
There are also points in the system where information 
cannot be observed, such as the pressure in the tank and 
pipe 2. The discretized observations are detailed below. 

Observable Variables 
Pressure in Pipe 1 - P1:  {nom, low} 
 (P1 = nom) ⊗  (P1 = low) 

Engine Thrust - T:  {on, off} 
 (T = on) ⊗  (T = off) 

Unobservable Variables 
Tank Pressure - TP:  {nom, low} 
 (TP = nom) ⊗  (TP = low) 

Pressure in Pipe 2 - P2:  {nom, low} 
 (P2 = nom) ⊗  (P2 = low) 
 

The models of this system are detailed below where 
“S” represents the pressure transducer sensor, “V” 
represents the solenoid valve and “C” represents the 
catalyst bed. Each model has certain operational and 
failure modes with associated probabilities. These 
probabilities help guide the online components of Mini-
ME. In real systems, some components have a higher 
likelihood of failing than others. In this system, it is 
more common for electrical sensors to become faulty 
and give incorrect data, than for a component to enter a 
failure state. Due to this fact, the probabilities of failure 
of the pressure transducer are higher than the probability 
of failure of any single component. These probabilities 
are presented in Table 1. 

With this in mind, the modes of each component can 
now be defined. In the case of the pressure transducer 
(S), there are four modes in this variable’s domain. The 
transducer can be good (G), stuck high (SH), stuck low 
(SL) or in an unknown (U) mode. The logic that 
specifies the models of these modes is shown below. 

Pressure Transducer Model 

S:  {G, SH, SL, U} 

G(S) ⊗ SH(S)⊗ SL(S) ⊗ U(S) 

G(S) ⇒  
((TP = nom) ⇔ (P1 = nom)) ∧ ((TP = low) ⇔ (P1 = low)) 

SH(S) ⇒ (P1 = nom) 

SL(S) ⇒ (P1 = low) 

The pressure transducer can only be in one mode at a 
given time. This constraint is encoded using an 
exclusive or (⊗). To satisfy this proposition, only one of 
the values from its domain can be chosen.  

Being in the good mode, G(S) of the pressure 
transducer then means that the tank pressure can only be 
at the same pressure as the pressure in pipe 1. For the 
case of the SH(S) and SL(S) modes, the pressure 
transducer is faulty and only returning high or low 
values, respectively. These values are returned no matter 
the actual value of the pressure in the system. The 
unknown mode has no associated model, and is not 
shown for any component. This mode is included in the 
component model to cover unanticipated behaviors, 
which by definition cannot have an associated model. 

The component mode probabilities of this sensor 
must satisfy the aforementioned constraint between 
sensors and components. This gives rise to the SH(S) 
and SL(S) fault modes having a “less likely” probability 
(see Table 1) rather than an “unlikely” probability. The 
sensor probability constraint dictates that the U(S) mode 
probability also be higher than those of the component 
mode. 

 

Table 1.  Component Mode Probabilities 

very rare = 0.001 rare = 0.002 unlikely = 0.009 
less likely = 0.019 likely = 0.089 very likely ≥ 0.9 
 

Solenoid Valve Model 
V:  {O, C, U} 

O(V) ⊗ C(V) ⊗ U(V) 

O(V) ⇒  
((P1 = nom) ⇔ (P2 = nom)) ∧ ((P1 = low) ⇔ (P2 = low)) 

C(V) ⇒ (P2 = low) 

The solenoid valve has modes corresponding to its 
physical state of being open, O(V), or closed, C(V). The 
only failure mode corresponds to failure in some 
unknown way, such as breaking to remain closed, 
remain open or some other way. For an open valve, this 
implies that the pressure in pipe 1 can only be the same 
as the pressure in pipe 2. For a closed valve, it can only 
be the case that the pressure in pipe 2 is low. The 
component mode probabilities of the solenoid differ by 
an order of magnitude due to its actuation. It is more 
likely that the valve will be closed because it requires 
electrical actuation to open it, and this is less likely to 
occur. 

Catalyst Bed Model 
C:  {G, B, U} 

G(C) ⊗ B(C) ⊗ U(C) 

 Components 

 Pressure 
Transducer  

Solenoid Valve Catalyst  
Bed 

p(G) = very 
likely 

P(C) = very 
likely 

p(G) = very 
likely 

p(SH) = less 
likely p(O) = likely p(B) = unlikely 

p(SL) = less 
likely p(U) = very rare p(U) = very rare M

od
e 

P
ro

ba
bi

lit
ie

s 

p(U) = rare -- -- 



G(C) ⇒  
((P2 = nom) ⇔ (T = on)) ∧ ((P2 = low) ⇔ (T = off)) 

B(C) ⇒ (T = off) 

The catalyst bed remains functional as long as there 
is catalyst remaining to react with the incoming 
hydrazine and that the temperature is appropriate. Then, 
the good (G) mode corresponds to producing thrust only 
when the pressure in pipe 2 is nominal, and producing 
no thrust only when the pressure is low. Many factors 
can create a broken catalyst bed, and the end result is 
that the thrust is off, meaning that very low values of 
thrust are discretized to ‘off’.  

Developing these types of models represents a 
paradigm shift from rule based systems where 
previously the engineer not only had to determine the 
failure modes of components, but how a failure would 
impact the overall system. Now, the engineer need only 
determine the underlying behavior of components, or 
the models of components. 

2.3 Generating Dissents 

The first offline step in Mini-ME is compiling a model 
into dissents. Each dissent may be viewed as a rule that 
identifies a conflict between a subset of the observations 
and a subset of component modes. For example, one of 
the dissents of the aforementioned propulsion system 
model is: 
 

 (P1 = nom) ∧ (T = off) ⇒ ¬ (G(S) ∧ O(V) ∧ G(C)) 
 

which says that if the pressure in Pipe 1 is nominal and 
the thrust is off, then it cannot be the case that the 
pressure transducer is good, the latch valve is open, and 
the catalyst bed is good”. Formally, dissents are a subset 
of so-called prime implicates [1] whose clauses only 
include the observable and mode variables. The 
complete set of dissents for the aforementioned 
propulsion system model is: 

 

1.   (P1 = nom) ∧ (T = off) ⇒ ¬ (G(S) ∧ O(V) ∧ G(C)) 

2.    (P1 = nom) ⇒ ¬ SL(S) 

3.   (P1 = low) ∧ (T = on) ⇒ ¬ (G(S) ∧ O(V) ∧ G(C)) 

4. .  (P1 = low) ⇒ ¬ SH(S) 

5.    (T = on) ⇒ ¬ C(V) 

6.    (T = on) ⇒ ¬ B(C) 
 

The dissents are written in the form of observation 
implies conflicting mode(s) of component(s). 

Enumerating Dissents 
Several methods of generating dissents exist, including 
resolution [2], enumeration [7], and multi-resolution [1]. 
The current method used is an enumeration method. In 
this method, all possible dissent forms, i.e. all 
combinations of observation(s) imply inconsistent 
component mode(s), are systematically generated from 
smallest to largest clauses. A satisfiability engine is 
used to check if each of these dissent forms is entailed 
by the model. When, a dissent form is confirmed as 

dissent. The knowledge of the found dissents is used 
when generating more dissent forms to assure that no 
superset of the found dissent is generated. This assures 
that dissents are indeed subset of prime implicates.  

Benefits of Compiling Models into Dissents 
The advantage of compiling a model into a set of 
dissents is that all irrelevant information in the model is 
removed and only the information necessary for 
diagnosis is kept. Additionally, dissents are intuitive to 
engineers; thus, engineers can read through the dissents 
to verify the correctness and completeness of the model. 
In a rule-based fault diagnostic system, engineers would 
manually generate this type of knowledge, but 
generating complete and correct rules is difficult. In 
Mini-ME, however, the dissents are automatically 
generated and are guaranteed to be complete and correct 
for the given model.  

2.4 Mapping Dissents to Diagnostic Rules 

Mini-ME rewrites the dissents in a form that is more 
useful for diagnosis. In diagnosis the objective is to 
determine the modes of components that agree with the 
current observations. A dissent lists a set of component 
modes that are mutually inconsistent for given 
observations. To use dissent for diagnosis, a dissent is 
rewritten as a set of probable component modes that 
corresponds to the observations, i.e. the diagnosis for 
given observations. For example, consider the first 
dissent from the previous section. Intuitively, for the 
given observation, it is not the case that the sensor is 
good, the valve is open, and the catalyst bed is good. To 
remove this conflict the sensor must be either stuck 
high, stuck low, or unknown, or the valve must be 
closed or unknown, or the catalyst bed must be broken 
or unknown. The list of dissents from the previous 
section rewritten in the form “observation implies one 
of a set of component modes” for diagnostic use is as 
follows: 

 

1.  (P1 = nom) ∧ (T = off) ⇒ SH(S) ∨  SL(S) ∨  U(S) ∨   
    C(V) ∨  U(V) ∨  B(C) ∨  U(C) 

2.    (P1 = nom) ⇒ G(S) ∨  SH(S) ∨  U(S) 

3.   (P1 = low) ∧ (T = on) ⇒ SH(S) ∨  SL(S) ∨  U(S) ∨   
    C(V) ∨  U(V) ∨  B(C) ∨  U(C) 

4.    (P1 = low) ⇒ G(S) ∨  SL(S) ∨  U(S) 

5.    (T = on) ⇒ O(V) ∨  U(V) 

6.    (T = on) ⇒ G(C) ∨  U(C) 
 

In essence, this new form is the diagnosis that 
resolves a conflict of some specified observation(s). For 
a set of observations, however, multiple conflicts can 
exist. For example, consider a set of observations 
{(P1 = low), (T = on)}. The dissents list four conflicts, 
¬ (G(S) ∧ O(V) ∧ G(C)), ¬ SH(S), ¬ C(V), and ¬ B(C), that 
are associated with the set of observations. Accordingly, 
four diagnoses, SH(S) ∨  SL(S) ∨  U(S) ∨  C(V) ∨   
U(V) ∨  B(C) ∨  U(C), G(S) ∨  SL(S) ∨  U(S), 



O(V) ∨  U(V), and G(C) ∨  U(C) resolve the conflicts 
respectively, but none of the three diagnoses resolves all 
three conflicts. Since each of the rewritten dissents is a 
diagnosis of a conflict of possibly many, these rewritten 
dissents are called partial diagnosis rules. Formally, 
mapping dissents to partial diagnoses simply 
corresponds to rewriting the negation of conjunction of 
component modes (conflicts) into a disjunction of 
component modes (partial diagnosis). 

2.5 Triggering Rules 

The first online step in Mini-ME is triggering rules. As 
shown in Figure 3, Mini-ME’s rule trigger requires two 
inputs, current observations and the partial diagnosis 
rule database. If the observation in a partial diagnosis 
rule corresponds to the current observation, then the 
modes the rule implies are the relevant partial diagnosis. 
Consider the partial diagnosis rules listed in the 
previous section. If the current observation is that the 
pressure in pipe 1 is nominal and the thrust is off, the 
rules that contain relevant partial diagnosis are rules 1 
and 2, and the corresponding partial diagnoses in set 
notation are: 

 

{SH(S), SL(S), U(S), C(V), U(V), B(C), U(C)} 

{G(S), SH(S), U(S)} 
 

The partial diagnoses triggered by each of the four 
sets of possible observations are: 

 

• (P1 = nom) ∧ (T = off): 

{SH(S), SL(S), U(S), C(V), U(V), B(C), U(C)} 
{G(S), SH(S), U(S)} 

• (P1 = nom) ∧ (T = on) 

{G(S), SH(S), U(S)} 
{O(V), U(V)} 
{G(C), U(C)} 

• (P1 = low) ∧ (T = off) 

{G(S), SL(S), U(S)} 

• (P1 = low) ∧ (T = on) 

{SH(S), SL(S), U(S), C(V), U(V), B(C), U(C)} 
{G(S), SL(S), U(S)} 
{O(V), U(V)} 
{G(C), U(C)} 

 

Difference between Sherlock or Livingstone and 
Mini-ME 
GDE [3], Sherlock [4], Livingstone [6], and many alike 
use conflicts to generate fault diagnosis as Mini-ME 
does. The difference between these and Mini-ME is that 
while GDE, Sherlock and Livingstone use online 
satisfiability engines to generate the conflicts 
corresponding to the current observation, Mini-ME 
performs a simple partial diagnosis rule lookup to 
search for partial diagnoses that correspond to the 
conflicts. The advantage in Mini-ME is that the NP-
complete satisfiability problem is removed from online 
computation. Instead of requiring possibly an 
exponential satisfiability search, Mini-ME generates 

partial diagnoses in time that is linear in the number of 
rules associated with a set of observations.  

2.6 Generating Kernel Diagnosis 

First introduced in GDE [3], the final step in Mini-ME 
is to generate the most likely kernel diagnosis from the 
partial diagnoses. A kernel diagnosis is a minimal set of 
component modes that resolves a full set of conflicts. 
The input to Kernel Diagnosis Generation is a set of 
partial diagnoses generated from the Rule Trigger. 
Kernel Diagnosis Generation step generates a single 
most likely kernel diagnosis that concurs with all partial 
diagnoses. The following sections provide an overview 
of generating kernel diagnosis introduced in GDE. 

Kernel Diagnoses 
To generate a kernel diagnosis is to resolve all conflicts.  
Since partial diagnoses resolve the corresponding 
conflicts, some combinations all triggered partial 
diagnoses may be the kernel diagnoses. The right 
combinations are generated by choosing one component 
mode from each partial diagnosis while assuring that 
this choice does not disagree with any other chosen 
component modes, i.e. no component is assigned 
multiple modes. For example, if O(V) is chosen from 
one partial diagnosis, then C(V) or U(V) cannot be 
chosen from other partial diagnoses. This process of 
generating the kernel diagnosis is in essence generating 
the minimal set covering of the input diagnoses. 

Consider again the partial diagnoses generated when 
the system observes that the pressure in pipe 1 is 
nominal and the thrust is off. The partial diagnoses 
generated by the conflict generation step are: 
 

{SH(S), SL(S), U(S), C(V), U(V), B(C), U(C)} 

{G(S), SH(S), U(S)} 
 

If SL(S) were chosen from the first partial diagnosis, no 
component mode can be chosen from the second partial 
diagnosis without assigning the sensor a second mode. 
Instead, SH(S) is chosen from the first partial diagnosis, 
then the only possible choice from the second partial 
diagnosis is SH(S). Hence, a kernel diagnosis is SH(S). 
A third option is to choose C(V) from the first partial 
diagnosis. Then, any component mode can be chosen 
from the second partial diagnosis to generate a kernel 
diagnosis. The complete list of kernel diagnoses is: 
 

• [SH(S)]  

• [U(S)]  

• [G(S), C(V)] 

• [G(S), U(V)] 

• [G(S), B(C)] 

• [G(S), U(C)] 
 

Note that although [SH(S), C(V)] and many others are 
also valid coverings, they are not minimal, and hence 
are not listed as kernel diagnoses. 



Most Likely Kernel Diagnosis 
Mini-ME ranks likelihood of kernel diagnoses based on 
probabilities. To compute kernel diagnosis probability, 
each component mode is assumed probabilistically 
independent. The probability of a kernel diagnosis is 
calculated by taking the product of the component mode 
probabilities. Kernel diagnosis, however, is not a 
complete diagnosis. Kernel diagnosis specifies only a 
subset of component modes such that all conflicts are 
resolved. For the components that are not associated to 
any conflicts, their modes are free to be assigned to any 
of their modes. A kernel diagnosis is extended to a full 
diagnosis by assigning the most likely modes to the 
unspecified components. The probability of the kernel 
diagnosis is defined as the probability of the full 
diagnosis that is an extension to the kernel diagnosis: 

 

 ( ) ( )( )
i

i

i
m ED

p KD p ED p m
∈

= = ∏  (1) 

 

where the KDi is a kernel diagnosis, EDi

 is the most 
likely extension of the kernel diagnosis, and m is a 
component mode in ED. For example, the probability of 
the kernel diagnosis [SH(S)] is equal to its most likely 
full diagnosis extension [SH(S), C(V), G(C)]. 
Therefore, the probability of the kernel diagnosis is 
equal to the product of the probabilities of SH(S), C(V), 
and G(C). The probabilities of each kernel diagnosis for 
the example with observations pressure in pipe 1 is 
nominal and the thrust is off are: 

 

• p([SH(S)]) = p(SH(S))⋅  p(C(V)) ⋅  p(G(C)) = 0.017 

• p([U(S)]) = p(U(S))⋅  p(C(V)) ⋅  p(G(C)) = 0.002 

• p([G(S), C(V)]) = p(G(S))⋅  p(C(V)) ⋅  p(G(C)) = 0.865 

• p([G(S), U(V)]) = p(G(S))⋅  p(U(V)) ⋅  p(G(C)) = 0.001 

• p([G(S), B(C)]) = p(G(S))⋅  p(C(V)) ⋅  p(B(C)) = 0.008 

• p([G(S), U(C)]) = p(G(S))⋅  p(C(V)) ⋅  p(U(C)) = 0.001 
 

The most likely kernel diagnosis is [G(S), C(V)] which 
says that the pressure transducer is good and the 
solenoid valve is closed. Its most likely extended 
diagnosis is pressure transducer is good, solenoid valve 
is closed, and the catalyst bed is good. 

Generating Kernel Diagnosis using Best-first Search 
The objective is to find the minimal set covering in the 
best-first order such that the search time is minimized. 

Similar to Livingstone, minimal set covering is 
accomplished through a conflict-directed best first 
search. The key to formulate minimal set covering as a 
tree search problem and search the tree in the best-first 
order. 

Generating Minimal Set Covering Tree 
Minimal set covering is achieved through constructing a 
tree of partial diagnoses. The tree’s branches correspond 
to component modes of the partial diagnoses. The path 
from the root to a leaf represents minimal set covering 
of partial diagnoses, i.e. a kernel diagnosis. For 
clarification, consider the previous propulsion system 
example with a set of observations {(P1 = nom), 
(T = off)}. Figure 3 illustrates the tree generated for the 
kernel diagnoses of the set of observations. Again, the 
partial diagnoses for this set of observations are: 
 

{SH(S), SL(S), U(S), C(V), U(V), B(C), U(C)} 

{G(S), SH(S), U(S)} 
 

Starting From the root, branches corresponding to 
each component modes in a set of partial diagnosis are 
expanded. In Figure 3, the first level branches 
correspond to each component modes of the partial 
diagnosis {G(S), SH(S), U(S)}. Then from each of the 
leaf nodes next partial diagnosis’ component modes are 
expanded into branches. This process is repeated until 
all partial diagnoses have been covered. In Figure 3, the 
second level branches correspond to each component 
modes of the partial diagnosis {SH(S), SL(S), U(S), 
C(V), U(V), B(C), U(C)}. Note that the three leftmost 
branches on the second level are crossed off. This 
corresponds to the case in which two different modes 
are assigned to the sensor. In general, if a component 
mode is specified in the parent branches, no children 
branches with the same component but with a different 
mode are expanded. Also, in Figure 3, the middle and 
the rightmost branches of the first level, SH(S) and 
U(S), are not expanded further on the second level. 
Since both SH(S) and U(S) are a member of the second 
level branches, SH(S) and U(S) alone are the minimal 
set coverings, so no other branches need to be expanded. 
In general, if parent branch’s component mode is 
repeated in the child branch, no sibling branches are 
expended. 

Searching the Tree in Best-first Order 
A* [5] search algorithm is used to generate kernel 
diagnoses from most likely to least likely. A* search, 

P1 = nom, T = off

U(S)SH(S)

U(S) U(V)C(V)SL(S) B(C) U(C)SH(S)

0.017 0.0020.865 0.001 0.008 0.001

0.865 0.017 0.002

[G(S), SH(S), U(S)]

[SH(S), SL(S), U(S), C(V), U(V), B(C), U(C)]

Partial Diagnoses

G(S)

Probability of a Kernel
Diagnosis  

Figure 3:  A* search tree for kernel diagnosis 



however, assumes additive property of the edge weights 
to calculate the total cost while the probabilities of 
independent events are multiplicative as shown in 
Eq (1). The multiplicative probability is reframed as an 
additive edge weight by taking the logarithm of the 
probability and multiplying by -1: 

  

 ( )( )( ) log−=w m p m  (2) 
 

where w(m) is the edge weight of the component mode 
m that the branch represents. The sole purpose of 
multiplying by –1 is to maintain positive cost. Then, the 
cost function f(n) is: 
 

 
( ) ( )

( ) ( ) ( )
l SC n m USC n

f n w l w m
∈ ∈

= +∑ ∑  (3) 

 

were n is a node in the tree, SC(n) are the specified 
component modes on the path from the root to the node 
n and USC(n) are the most likely modes of components 
that are unspecified on the path from the root to the 
node n. Formally, the first part is the path cost from the 
root to the node n and the second part is the estimated 
cost from the node n to the goal, a full diagnosis.  

Note that when a component mode is repeated more 
than once, the cost of that component mode is added 
only once or any repeating component mode’s edge 
weight is assumed to be zero, and equivalently, the 
probability is considered to be one. This is necessary 
since if a component mode is repeated more than once 
this should not decrease the probability of the diagnosis 
rather it should remain the same. This is equivalent to 
calculating p(m|m) which is equal to one. Furthermore, 
no other sibling branches at this level should be 
searched since no other sibling branches can have 
higher edge weight than one.  

Then, the path corresponding to the minimal cost 
corresponds to the most likely minimal set covering, i.e. 
most likely kernel diagnosis. This best-first kernel 
diagnosis search method is guaranteed to be complete 
and optimal as A* search algorithm is known to be 
complete and optimal. 

3 Rule System Analysis 

A comparison to a real system is the best validation for 
the Mini-ME fault diagnosis tool. For verification, a 
NEAR-like power system and its associated rules were 
analyzed to develop appropriate Mini-ME models to 
obtain diagnoses of particular faults. The NEAR-like 
power storage subsystem schematic is shown in Figure 
4. The associated rules of the system are shown in Table 
2. 

These rules have several characteristics relating to 
Mini-ME, the first being the dependency on time. In all 
of the rules, the observation must be made for a certain 
length of time before it is triggered. This dependency is 
moved outside of Mini-ME through the use of the 
monitors. Monitors can be designed with a counter that 

is incremented when an observation falls in a certain 
range, such as if the charger current exceeds 0.8 A. Only 
when the counter reaches a certain value, corresponding 
to 10 seconds for rule 3, then would the monitor send 
the observation that the charger current is “high”. This 
use of discretization allows the modeling to be more 
intuitive and understandable as the model is now 
specified in a more qualitative way.  

 

 

Figure 4 - NEAR-like Power Storage Sub-system 
 

Table 2.  NEAR-like Power Storage System Rules 

 

A second characteristic of a NEAR-like rule is that 
different symptoms can lead to the same recovery 
action, such as the conditions for switching to the 
redundant charger (rules 3 and 4). These types of rule 
combinations may have the same resulting action, but 
lead to a different state for the component. Hidden in 
these rules then is the state of the power system that the 
engineer had to determine. For instance, in the case of 
rule 3, this would mean that the charger has become 
broken in some way, thus identifying the state, and the 
model of this mode would come from these symptoms.  

Rules are easier to assess if they are atomic, which is 
done by making the state of the system explicit. Mini-
ME achieves this by separating state determination from 
a recovery action through the use of models. Models are 
more intuitive and compositional, making the mapping 
from symptoms to system states to recovery actions 
easier to specify. A systems engineer can reason through 
the model of a component as it is based on the physical 
behavior of the component, as opposed to the 

No. Symptom Recovery Action 

1 (Battery Current > 0.6A) 
for 60 sec 

Turn off the charger  

2 (Redundant battery 
charger is ON) for 5 sec 

stop rules 2 and 3 

3 (Charger current > 0.8 A) 
for 10 sec 

Switch to the redundant 
charger, and disengage the 
primary. 

4 (Charger current > 0.07A) 
and (Bus Voltage > 24 V) 
for 10 sec 

Same recovery as rule 2. 

5 (Battery Temp > 30 C) for 
1 hour 

Switch to the redundant 
charger and turn its trickle 
charge on 



interactions of components. The latter approach has 
great potential for error and overlooked interactions. 

The Mini-ME system is able to determine the 
intermediate states for each fault in the power system 
rules given the appropriate symptoms specified in each 
rule and a model for the system. As an example, the 
model for a battery charger will contain information 
about the values of its inputs such as its current reading, 
allowing for diagnosis of rule 3. Demonstration of this 
similarity between NEAR-like autonomy rules and rules 
specified by the Mini-ME tool is crucial in 
demonstrating parity of the two systems, but a full 
explanation of this analysis is deferred due to the 
limited scope of this paper. 

Mini-ME has also been used as a tool to understand 
model compilation techniques and its applications. 
Other such applications that use this technique include a 
mode estimation capability for the Reactive Model-
based Programming Language (RMPL) [8], and a 
reactive planning system, Burton [7]. 

4 Conclusions 

Fault protection in spacecraft is a must as missions 
venture further into space and space systems increase in 
complexity. The necessity of a system that can perform 
this fault diagnosis in real time is then a key component. 
The Mini-ME fault protection system has been shown to 
meet this goal without any loss of information from a 
rule-based system. 

The utilization of system models in Mini-ME allows 
it to perform diagnosis of components. A model-based 
approach has many benefits including reusability, 
compositionality and specification of intuitive models. 
The use of these models to perform reasoning and 
deduction has been shifted to an offline operation, an 
approach that differs from previous systems such as 
Sherlock and Livingstone. This offline compilation of 
the models to rules, called dissents, allows Mini-ME to 
perform fast diagnosis of faults online. Using these 
models and observations from the system, Mini-ME 
generates a diagnosis of the system’s components using 
a best first search to generate the most likely diagnosis.  

This diagnosis gives the state of the system, which is 
not available in a rule-based system. In rule-based 
systems, the mapping from symptoms to recovery action 
is apparent, but not the mapping from symptoms to the 
system state. Making this step explicit leads to rules that 
are easier to analyze for completeness, and a rule set 
smaller in size. In the case of the example system in 
section 2, it requires only 6 dissents to represent the 
faults, whereas a rule-based system would require 32 
rules to represent all of the possible faults. These 
characteristics lead to more reliable fault protection as it 
makes the process of rule generation modular by using 
models of the system, monitors that discretize 
observations and repair actions based on the diagnoses, 

all of which are designed by the engineer in a clear 
manner. 

A key benefit of the Mini-ME system and the use of 
associated repair manager, aside from the model-based 
approach, is that they give the spacecraft the ability to 
remain operational in the face of component failures. 
This ability is crucial as space exploration expands. The 
same individuals who designed the spacecraft may not 
be around when it lands, which necessitates fault 
diagnosis ability. 
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