
Improving Model-based Mode Estimation through Offline Compilation

Seung H. Chung, John M. Van Eepoel, Brian C. Williams

MIT Space Systems Laboratory
MIT Artificial Intelligence Laboratory

Cambridge, MA, 02139
{chung, vanny, williams}@mit.edu

Keywords Model-based, mode, estimation, dissents,
conflicts, diagnosis, best-first, search, partial diagnoses.

Abstract

Many recent and future space missions point to the need
for increased autonomy in spacecraft with an emphasis
on more capable fault diagnostic systems. The most
widely used fault diagnostic systems are rule-based.
Rule-based systems have quick response to events and
clearly present to engineers the predefined reactions to
events. These systems, however, require engineers to
manually generate all necessary rules and these do not
convey the assumed model the engineers used to
generate the rules. Contrarily, model-based systems
eliminate the need to manually generate the rules. Most
model-based system such as GDE [3], Sherlock [4], and
Livingstone [6], however, may not provide quick
response and do not specify the rules for engineers to
review and verify. Mini-ME addresses the issues of both
rule-based and model-based approaches and provides an
alternative solution to fault diagnosis. Mini-ME
provides quick response by shifting computationally
expensive tasks of model-based diagnosis offline.
Additionally, it offers the capability to inspect and
verify the rules.

1 Introduction

Recent failures in NASA’s Mars exploration program
point to the need for increased autonomy in spacecraft.
Spacecraft must be designed with the capacity to
monitor their own systems for unexpected occurrences,
and to react in a timely fashion to such conditions at the
executive layer, i.e. at the level of real-time
commanding. The ability to accurately and rapidly
determine the current state of the system is vital to the
design of fault protection systems in autonomous
spacecraft.

Many fault management systems are based on expert
systems in which a rule-based diagnostic engine is used

to detect faults. For example, the NEAR spacecraft used
such a system for limited autonomous operations. This
type of system’s capability is limited to the rules
enumerated in the database. To create these rules,
engineers must reason through system wide interactions,
consequently, the set of rules is limited by the faults that
engineers can recognize. This lack of robustness can be
detrimental to the spacecraft. Components may interact
other than expected, and a rule-based system cannot
account for this. Should such a fault occur at a critical
mission point, such as orbital insertion, the rule-based
engine cannot react, resulting in the loss of the mission.

In contrast, model-based fault protection systems
eliminate the need to enumerate all rules by reasoning
on the common-sense model of a system. Model-based
fault protection systems such as Sherlock [4] and
Livingstone [6], however, are limited by the uncertainty
in the time required to perform online automated
reasoning. Online deduction algorithms, such as those
used in the Livingstone model-based fault protection
system, are known to have worst-case performance
exponential in time. The issue of run-time uncertainty
presents a challenge to the onboard implementation of
model-based protection capabilities, a challenge certain
to be highly exacerbated as systems become more
complex and the modeling languages used in such
systems become more expressive.

As a solution to this problem, a Miniature Mode
Estimation system (Mini-ME) is introduced. Mini-ME
estimates the current mode of the spacecraft and detects
any failures through model-based reasoning. The
following sections detail the Mini-ME system beginning
with the modeling framework, followed by the offline
and online tasks of fault diagnosis. Then, an analysis is
presented using the NEAR spacecraft and how Mini-ME
is capable of diagnosing the modes of the power sub-
system.

2 Mini-ME

Mini-ME differs from previous model-based fault
monitoring systems by guaranteeing run time

performance. Through model compilation and offline
deduction, Mini-ME combines the benefits of the rule-
based system’s real time performance guarantees and
the model-based fault protection system’s capability to
reason on models.

The architecture of the Mini-ME system is shown in
Figure 1. The engineer specifies commonsense models
of the spacecraft containing the operational and fault
modes of each component and its associated behavior.
The model is then compiled into a set of rules, called
dissents. Dissents represent a mapping from
observations of the system to a set of possible diagnoses
of the component modes. This mapping is computed
offline and thus does not factor in to the real time
performance of the system.

These partial diagnosis rules are then fed into the
partial diagnosis trigger that generates a set of partial
diagnoses of the components based on the observations
in the current time step. These observations come from
the spacecraft, but are discretized through the use of
monitors. For example, voltage is read as a continuous
value, but for the spacecraft to operate properly, this
voltage need only be within a certain range, such as 24
to 32 volts. This range is discretized as nominal, and
anything else is either low or high as appropriate.

These partial diagnoses are then combined in the
best-first kernel generation step to give the most likely
diagnosis of the system. This diagnosis is the output of
Mini-ME and the input to the repair manager, which
will then use this diagnosis to take an appropriate
recovery action to repair components.

2.1 Example System

The diagnostic ability of Mini-ME will be demonstrated
in the following sections using a simplified schematic of
a monopropellant propulsion system used for attitude
control in the NEAR spacecraft, shown in Figure 2.

The propulsion system comprises two overall sub-
systems, the tank of hydrazine and its associated
pressure transducer, and the hydrazine thruster made up
of the solenoid valve, catalyst bed and physical thruster.
An inertial sensor is included in the system for thrust
observation.

The pressure transducer indicates the pressure that is
present in pipe 1, which is downstream of the tank. As
long as the pressure transducer is operating nominally, it
will indicate that the pressure in pipe 1 is the same as
the tank pressure, discretized as either nominal or low.

The hydrazine thruster is made up of two main
components, the solenoid valve and the catalyst bed.
The solenoid valve controls the hydrazine flow into the
catalyst bed. This is accomplished by applying an
electric current to the valve to open it, otherwise it will
remain closed. Downstream of the solenoid valve is the
catalyst bed, which is needed for combustion. Over
time, catalyst can be lost through various mechanisms,
such as pieces breaking off due to temperature
variations. This will cause a reduction in thrust from the
hydrazine thruster, causing the inertial sensor to observe
that the thrust is off. In the case that the ACS operates
nominally, the inertial sensor’s reading will be
discretized as on.

2.2 Modeling

System modeling is key to the utility of the Mini-ME
diagnostic tool. The utility of a modeling language
allows specification of commonsense models that are
also reusable and compositional. The reusability comes
from the general formulation of a model. The
compositional aspect of the model exists at the system

Mini-ME

Offline

Spacecraft
Model

Dissent
Generator

Model

Online

Partial
Diagnoses

Trigger

Best-first
Kernel

Diagnosis
Generator

Partial
Diagnoses

Dissents
Repair

Manager

Most Likely
Diagnosis

Monitors
Continuous

Observations
Discrete

Observations

Partial
Diagnosis

Rule
Generator

Partial Diagnosis
Rules

Figure 1: Mini-ME Architecture

N2H4

GHe

P

S

Pressure
Transducer

Solenoid Valve

Catalyst Bed

Pipe 1

Pipe 2

Hydrazine
Thruster

Inertial Sensor

Figure 2: Monopropellant Propulsion System Schematic

level by specifying components of a system, but also at
the component level by specifying the different modes
of each component. These benefits inherent in a model-
based approach give Mini-ME the ability to perform its
diagnosis. The following demonstrates the modeling
approach, where sensor information is identified,
components operational and fault modes are determined,
and their associated models are developed.

The propulsion system detailed above has two
sensors. The pressure transducer measures the pressure
in pipe 1 and the inertial sensor measures the thrust.
There are also points in the system where information
cannot be observed, such as the pressure in the tank and
pipe 2. The discretized observations are detailed below.

Observable Variables
Pressure in Pipe 1 - P1: {nom, low}
 (P1 = nom) ⊗ (P1 = low)

Engine Thrust - T: {on, off}
 (T = on) ⊗ (T = off)

Unobservable Variables
Tank Pressure - TP: {nom, low}
 (TP = nom) ⊗ (TP = low)

Pressure in Pipe 2 - P2: {nom, low}
 (P2 = nom) ⊗ (P2 = low)

The models of this system are detailed below where
“S” represents the pressure transducer sensor, “V”
represents the solenoid valve and “C” represents the
catalyst bed. Each model has certain operational and
failure modes with associated probabilities. These
probabilities help guide the online components of Mini-
ME. In real systems, some components have a higher
likelihood of failing than others. In this system, it is
more common for electrical sensors to become faulty
and give incorrect data, than for a component to enter a
failure state. Due to this fact, the probabilities of failure
of the pressure transducer are higher than the probability
of failure of any single component. These probabilities
are presented in Table 1.

With this in mind, the modes of each component can
now be defined. In the case of the pressure transducer
(S), there are four modes in this variable’s domain. The
transducer can be good (G), stuck high (SH), stuck low
(SL) or in an unknown (U) mode. The logic that
specifies the models of these modes is shown below.

Pressure Transducer Model

S: {G, SH, SL, U}

G(S) ⊗ SH(S)⊗ SL(S) ⊗ U(S)

G(S) ⇒
((TP = nom) ⇔ (P1 = nom)) ∧ ((TP = low) ⇔ (P1 = low))

SH(S) ⇒ (P1 = nom)

SL(S) ⇒ (P1 = low)

The pressure transducer can only be in one mode at a
given time. This constraint is encoded using an
exclusive or (⊗). To satisfy this proposition, only one of
the values from its domain can be chosen.

Being in the good mode, G(S) of the pressure
transducer then means that the tank pressure can only be
at the same pressure as the pressure in pipe 1. For the
case of the SH(S) and SL(S) modes, the pressure
transducer is faulty and only returning high or low
values, respectively. These values are returned no matter
the actual value of the pressure in the system. The
unknown mode has no associated model, and is not
shown for any component. This mode is included in the
component model to cover unanticipated behaviors,
which by definition cannot have an associated model.

The component mode probabilities of this sensor
must satisfy the aforementioned constraint between
sensors and components. This gives rise to the SH(S)
and SL(S) fault modes having a “less likely” probability
(see Table 1) rather than an “unlikely” probability. The
sensor probability constraint dictates that the U(S) mode
probability also be higher than those of the component
mode.

Table 1. Component Mode Probabilities

very rare = 0.001 rare = 0.002 unlikely = 0.009
less likely = 0.019 likely = 0.089 very likely ≥ 0.9

Solenoid Valve Model
V: {O, C, U}

O(V) ⊗ C(V) ⊗ U(V)

O(V) ⇒
((P1 = nom) ⇔ (P2 = nom)) ∧ ((P1 = low) ⇔ (P2 = low))

C(V) ⇒ (P2 = low)

The solenoid valve has modes corresponding to its
physical state of being open, O(V), or closed, C(V). The
only failure mode corresponds to failure in some
unknown way, such as breaking to remain closed,
remain open or some other way. For an open valve, this
implies that the pressure in pipe 1 can only be the same
as the pressure in pipe 2. For a closed valve, it can only
be the case that the pressure in pipe 2 is low. The
component mode probabilities of the solenoid differ by
an order of magnitude due to its actuation. It is more
likely that the valve will be closed because it requires
electrical actuation to open it, and this is less likely to
occur.

Catalyst Bed Model
C: {G, B, U}

G(C) ⊗ B(C) ⊗ U(C)

 Components

 Pressure
Transducer

Solenoid Valve Catalyst
Bed

p(G) = very
likely

P(C) = very
likely

p(G) = very
likely

p(SH) = less
likely p(O) = likely p(B) = unlikely

p(SL) = less
likely p(U) = very rare p(U) = very rare M

od
e

P
ro

ba
bi

lit
ie

s

p(U) = rare -- --

G(C) ⇒
((P2 = nom) ⇔ (T = on)) ∧ ((P2 = low) ⇔ (T = off))

B(C) ⇒ (T = off)

The catalyst bed remains functional as long as there
is catalyst remaining to react with the incoming
hydrazine and that the temperature is appropriate. Then,
the good (G) mode corresponds to producing thrust only
when the pressure in pipe 2 is nominal, and producing
no thrust only when the pressure is low. Many factors
can create a broken catalyst bed, and the end result is
that the thrust is off, meaning that very low values of
thrust are discretized to ‘off’.

Developing these types of models represents a
paradigm shift from rule based systems where
previously the engineer not only had to determine the
failure modes of components, but how a failure would
impact the overall system. Now, the engineer need only
determine the underlying behavior of components, or
the models of components.

2.3 Generating Dissents

The first offline step in Mini-ME is compiling a model
into dissents. Each dissent may be viewed as a rule that
identifies a conflict between a subset of the observations
and a subset of component modes. For example, one of
the dissents of the aforementioned propulsion system
model is:

 (P1 = nom) ∧ (T = off) ⇒ ¬ (G(S) ∧ O(V) ∧ G(C))

which says that if the pressure in Pipe 1 is nominal and
the thrust is off, then it cannot be the case that the
pressure transducer is good, the latch valve is open, and
the catalyst bed is good”. Formally, dissents are a subset
of so-called prime implicates [1] whose clauses only
include the observable and mode variables. The
complete set of dissents for the aforementioned
propulsion system model is:

1. (P1 = nom) ∧ (T = off) ⇒ ¬ (G(S) ∧ O(V) ∧ G(C))

2. (P1 = nom) ⇒ ¬ SL(S)

3. (P1 = low) ∧ (T = on) ⇒ ¬ (G(S) ∧ O(V) ∧ G(C))

4. . (P1 = low) ⇒ ¬ SH(S)

5. (T = on) ⇒ ¬ C(V)

6. (T = on) ⇒ ¬ B(C)

The dissents are written in the form of observation
implies conflicting mode(s) of component(s).

Enumerating Dissents
Several methods of generating dissents exist, including
resolution [2], enumeration [7], and multi-resolution [1].
The current method used is an enumeration method. In
this method, all possible dissent forms, i.e. all
combinations of observation(s) imply inconsistent
component mode(s), are systematically generated from
smallest to largest clauses. A satisfiability engine is
used to check if each of these dissent forms is entailed
by the model. When, a dissent form is confirmed as

dissent. The knowledge of the found dissents is used
when generating more dissent forms to assure that no
superset of the found dissent is generated. This assures
that dissents are indeed subset of prime implicates.

Benefits of Compiling Models into Dissents
The advantage of compiling a model into a set of
dissents is that all irrelevant information in the model is
removed and only the information necessary for
diagnosis is kept. Additionally, dissents are intuitive to
engineers; thus, engineers can read through the dissents
to verify the correctness and completeness of the model.
In a rule-based fault diagnostic system, engineers would
manually generate this type of knowledge, but
generating complete and correct rules is difficult. In
Mini-ME, however, the dissents are automatically
generated and are guaranteed to be complete and correct
for the given model.

2.4 Mapping Dissents to Diagnostic Rules

Mini-ME rewrites the dissents in a form that is more
useful for diagnosis. In diagnosis the objective is to
determine the modes of components that agree with the
current observations. A dissent lists a set of component
modes that are mutually inconsistent for given
observations. To use dissent for diagnosis, a dissent is
rewritten as a set of probable component modes that
corresponds to the observations, i.e. the diagnosis for
given observations. For example, consider the first
dissent from the previous section. Intuitively, for the
given observation, it is not the case that the sensor is
good, the valve is open, and the catalyst bed is good. To
remove this conflict the sensor must be either stuck
high, stuck low, or unknown, or the valve must be
closed or unknown, or the catalyst bed must be broken
or unknown. The list of dissents from the previous
section rewritten in the form “observation implies one
of a set of component modes” for diagnostic use is as
follows:

1. (P1 = nom) ∧ (T = off) ⇒ SH(S) ∨ SL(S) ∨ U(S) ∨
 C(V) ∨ U(V) ∨ B(C) ∨ U(C)

2. (P1 = nom) ⇒ G(S) ∨ SH(S) ∨ U(S)

3. (P1 = low) ∧ (T = on) ⇒ SH(S) ∨ SL(S) ∨ U(S) ∨
 C(V) ∨ U(V) ∨ B(C) ∨ U(C)

4. (P1 = low) ⇒ G(S) ∨ SL(S) ∨ U(S)

5. (T = on) ⇒ O(V) ∨ U(V)

6. (T = on) ⇒ G(C) ∨ U(C)

In essence, this new form is the diagnosis that
resolves a conflict of some specified observation(s). For
a set of observations, however, multiple conflicts can
exist. For example, consider a set of observations
{(P1 = low), (T = on)}. The dissents list four conflicts,
¬ (G(S) ∧ O(V) ∧ G(C)), ¬ SH(S), ¬ C(V), and ¬ B(C), that
are associated with the set of observations. Accordingly,
four diagnoses, SH(S) ∨ SL(S) ∨ U(S) ∨ C(V) ∨
U(V) ∨ B(C) ∨ U(C), G(S) ∨ SL(S) ∨ U(S),

O(V) ∨ U(V), and G(C) ∨ U(C) resolve the conflicts
respectively, but none of the three diagnoses resolves all
three conflicts. Since each of the rewritten dissents is a
diagnosis of a conflict of possibly many, these rewritten
dissents are called partial diagnosis rules. Formally,
mapping dissents to partial diagnoses simply
corresponds to rewriting the negation of conjunction of
component modes (conflicts) into a disjunction of
component modes (partial diagnosis).

2.5 Triggering Rules

The first online step in Mini-ME is triggering rules. As
shown in Figure 3, Mini-ME’s rule trigger requires two
inputs, current observations and the partial diagnosis
rule database. If the observation in a partial diagnosis
rule corresponds to the current observation, then the
modes the rule implies are the relevant partial diagnosis.
Consider the partial diagnosis rules listed in the
previous section. If the current observation is that the
pressure in pipe 1 is nominal and the thrust is off, the
rules that contain relevant partial diagnosis are rules 1
and 2, and the corresponding partial diagnoses in set
notation are:

{SH(S), SL(S), U(S), C(V), U(V), B(C), U(C)}

{G(S), SH(S), U(S)}

The partial diagnoses triggered by each of the four
sets of possible observations are:

• (P1 = nom) ∧ (T = off):

{SH(S), SL(S), U(S), C(V), U(V), B(C), U(C)}
{G(S), SH(S), U(S)}

• (P1 = nom) ∧ (T = on)

{G(S), SH(S), U(S)}
{O(V), U(V)}
{G(C), U(C)}

• (P1 = low) ∧ (T = off)

{G(S), SL(S), U(S)}

• (P1 = low) ∧ (T = on)

{SH(S), SL(S), U(S), C(V), U(V), B(C), U(C)}
{G(S), SL(S), U(S)}
{O(V), U(V)}
{G(C), U(C)}

Difference between Sherlock or Livingstone and
Mini-ME
GDE [3], Sherlock [4], Livingstone [6], and many alike
use conflicts to generate fault diagnosis as Mini-ME
does. The difference between these and Mini-ME is that
while GDE, Sherlock and Livingstone use online
satisfiability engines to generate the conflicts
corresponding to the current observation, Mini-ME
performs a simple partial diagnosis rule lookup to
search for partial diagnoses that correspond to the
conflicts. The advantage in Mini-ME is that the NP-
complete satisfiability problem is removed from online
computation. Instead of requiring possibly an
exponential satisfiability search, Mini-ME generates

partial diagnoses in time that is linear in the number of
rules associated with a set of observations.

2.6 Generating Kernel Diagnosis

First introduced in GDE [3], the final step in Mini-ME
is to generate the most likely kernel diagnosis from the
partial diagnoses. A kernel diagnosis is a minimal set of
component modes that resolves a full set of conflicts.
The input to Kernel Diagnosis Generation is a set of
partial diagnoses generated from the Rule Trigger.
Kernel Diagnosis Generation step generates a single
most likely kernel diagnosis that concurs with all partial
diagnoses. The following sections provide an overview
of generating kernel diagnosis introduced in GDE.

Kernel Diagnoses
To generate a kernel diagnosis is to resolve all conflicts.
Since partial diagnoses resolve the corresponding
conflicts, some combinations all triggered partial
diagnoses may be the kernel diagnoses. The right
combinations are generated by choosing one component
mode from each partial diagnosis while assuring that
this choice does not disagree with any other chosen
component modes, i.e. no component is assigned
multiple modes. For example, if O(V) is chosen from
one partial diagnosis, then C(V) or U(V) cannot be
chosen from other partial diagnoses. This process of
generating the kernel diagnosis is in essence generating
the minimal set covering of the input diagnoses.

Consider again the partial diagnoses generated when
the system observes that the pressure in pipe 1 is
nominal and the thrust is off. The partial diagnoses
generated by the conflict generation step are:

{SH(S), SL(S), U(S), C(V), U(V), B(C), U(C)}

{G(S), SH(S), U(S)}

If SL(S) were chosen from the first partial diagnosis, no
component mode can be chosen from the second partial
diagnosis without assigning the sensor a second mode.
Instead, SH(S) is chosen from the first partial diagnosis,
then the only possible choice from the second partial
diagnosis is SH(S). Hence, a kernel diagnosis is SH(S).
A third option is to choose C(V) from the first partial
diagnosis. Then, any component mode can be chosen
from the second partial diagnosis to generate a kernel
diagnosis. The complete list of kernel diagnoses is:

• [SH(S)]

• [U(S)]

• [G(S), C(V)]

• [G(S), U(V)]

• [G(S), B(C)]

• [G(S), U(C)]

Note that although [SH(S), C(V)] and many others are
also valid coverings, they are not minimal, and hence
are not listed as kernel diagnoses.

Most Likely Kernel Diagnosis
Mini-ME ranks likelihood of kernel diagnoses based on
probabilities. To compute kernel diagnosis probability,
each component mode is assumed probabilistically
independent. The probability of a kernel diagnosis is
calculated by taking the product of the component mode
probabilities. Kernel diagnosis, however, is not a
complete diagnosis. Kernel diagnosis specifies only a
subset of component modes such that all conflicts are
resolved. For the components that are not associated to
any conflicts, their modes are free to be assigned to any
of their modes. A kernel diagnosis is extended to a full
diagnosis by assigning the most likely modes to the
unspecified components. The probability of the kernel
diagnosis is defined as the probability of the full
diagnosis that is an extension to the kernel diagnosis:

 () ()()
i

i

i
m ED

p KD p ED p m
∈

= = ∏ (1)

where the KDi is a kernel diagnosis, EDi

 is the most
likely extension of the kernel diagnosis, and m is a
component mode in ED. For example, the probability of
the kernel diagnosis [SH(S)] is equal to its most likely
full diagnosis extension [SH(S), C(V), G(C)].
Therefore, the probability of the kernel diagnosis is
equal to the product of the probabilities of SH(S), C(V),
and G(C). The probabilities of each kernel diagnosis for
the example with observations pressure in pipe 1 is
nominal and the thrust is off are:

• p([SH(S)]) = p(SH(S))⋅ p(C(V)) ⋅ p(G(C)) = 0.017

• p([U(S)]) = p(U(S))⋅ p(C(V)) ⋅ p(G(C)) = 0.002

• p([G(S), C(V)]) = p(G(S))⋅ p(C(V)) ⋅ p(G(C)) = 0.865

• p([G(S), U(V)]) = p(G(S))⋅ p(U(V)) ⋅ p(G(C)) = 0.001

• p([G(S), B(C)]) = p(G(S))⋅ p(C(V)) ⋅ p(B(C)) = 0.008

• p([G(S), U(C)]) = p(G(S))⋅ p(C(V)) ⋅ p(U(C)) = 0.001

The most likely kernel diagnosis is [G(S), C(V)] which
says that the pressure transducer is good and the
solenoid valve is closed. Its most likely extended
diagnosis is pressure transducer is good, solenoid valve
is closed, and the catalyst bed is good.

Generating Kernel Diagnosis using Best-first Search
The objective is to find the minimal set covering in the
best-first order such that the search time is minimized.

Similar to Livingstone, minimal set covering is
accomplished through a conflict-directed best first
search. The key to formulate minimal set covering as a
tree search problem and search the tree in the best-first
order.

Generating Minimal Set Covering Tree
Minimal set covering is achieved through constructing a
tree of partial diagnoses. The tree’s branches correspond
to component modes of the partial diagnoses. The path
from the root to a leaf represents minimal set covering
of partial diagnoses, i.e. a kernel diagnosis. For
clarification, consider the previous propulsion system
example with a set of observations {(P1 = nom),
(T = off)}. Figure 3 illustrates the tree generated for the
kernel diagnoses of the set of observations. Again, the
partial diagnoses for this set of observations are:

{SH(S), SL(S), U(S), C(V), U(V), B(C), U(C)}

{G(S), SH(S), U(S)}

Starting From the root, branches corresponding to
each component modes in a set of partial diagnosis are
expanded. In Figure 3, the first level branches
correspond to each component modes of the partial
diagnosis {G(S), SH(S), U(S)}. Then from each of the
leaf nodes next partial diagnosis’ component modes are
expanded into branches. This process is repeated until
all partial diagnoses have been covered. In Figure 3, the
second level branches correspond to each component
modes of the partial diagnosis {SH(S), SL(S), U(S),
C(V), U(V), B(C), U(C)}. Note that the three leftmost
branches on the second level are crossed off. This
corresponds to the case in which two different modes
are assigned to the sensor. In general, if a component
mode is specified in the parent branches, no children
branches with the same component but with a different
mode are expanded. Also, in Figure 3, the middle and
the rightmost branches of the first level, SH(S) and
U(S), are not expanded further on the second level.
Since both SH(S) and U(S) are a member of the second
level branches, SH(S) and U(S) alone are the minimal
set coverings, so no other branches need to be expanded.
In general, if parent branch’s component mode is
repeated in the child branch, no sibling branches are
expended.

Searching the Tree in Best-first Order
A* [5] search algorithm is used to generate kernel
diagnoses from most likely to least likely. A* search,

P1 = nom, T = off

U(S)SH(S)

U(S) U(V)C(V)SL(S) B(C) U(C)SH(S)

0.017 0.0020.865 0.001 0.008 0.001

0.865 0.017 0.002

[G(S), SH(S), U(S)]

[SH(S), SL(S), U(S), C(V), U(V), B(C), U(C)]

Partial Diagnoses

G(S)

Probability of a Kernel
Diagnosis

Figure 3: A* search tree for kernel diagnosis

however, assumes additive property of the edge weights
to calculate the total cost while the probabilities of
independent events are multiplicative as shown in
Eq (1). The multiplicative probability is reframed as an
additive edge weight by taking the logarithm of the
probability and multiplying by -1:

 ()()() log−=w m p m (2)

where w(m) is the edge weight of the component mode
m that the branch represents. The sole purpose of
multiplying by –1 is to maintain positive cost. Then, the
cost function f(n) is:

() ()

() () ()
l SC n m USC n

f n w l w m
∈ ∈

= +∑ ∑ (3)

were n is a node in the tree, SC(n) are the specified
component modes on the path from the root to the node
n and USC(n) are the most likely modes of components
that are unspecified on the path from the root to the
node n. Formally, the first part is the path cost from the
root to the node n and the second part is the estimated
cost from the node n to the goal, a full diagnosis.

Note that when a component mode is repeated more
than once, the cost of that component mode is added
only once or any repeating component mode’s edge
weight is assumed to be zero, and equivalently, the
probability is considered to be one. This is necessary
since if a component mode is repeated more than once
this should not decrease the probability of the diagnosis
rather it should remain the same. This is equivalent to
calculating p(m|m) which is equal to one. Furthermore,
no other sibling branches at this level should be
searched since no other sibling branches can have
higher edge weight than one.

Then, the path corresponding to the minimal cost
corresponds to the most likely minimal set covering, i.e.
most likely kernel diagnosis. This best-first kernel
diagnosis search method is guaranteed to be complete
and optimal as A* search algorithm is known to be
complete and optimal.

3 Rule System Analysis

A comparison to a real system is the best validation for
the Mini-ME fault diagnosis tool. For verification, a
NEAR-like power system and its associated rules were
analyzed to develop appropriate Mini-ME models to
obtain diagnoses of particular faults. The NEAR-like
power storage subsystem schematic is shown in Figure
4. The associated rules of the system are shown in Table
2.

These rules have several characteristics relating to
Mini-ME, the first being the dependency on time. In all
of the rules, the observation must be made for a certain
length of time before it is triggered. This dependency is
moved outside of Mini-ME through the use of the
monitors. Monitors can be designed with a counter that

is incremented when an observation falls in a certain
range, such as if the charger current exceeds 0.8 A. Only
when the counter reaches a certain value, corresponding
to 10 seconds for rule 3, then would the monitor send
the observation that the charger current is “high”. This
use of discretization allows the modeling to be more
intuitive and understandable as the model is now
specified in a more qualitative way.

Figure 4 - NEAR-like Power Storage Sub-system

Table 2. NEAR-like Power Storage System Rules

A second characteristic of a NEAR-like rule is that
different symptoms can lead to the same recovery
action, such as the conditions for switching to the
redundant charger (rules 3 and 4). These types of rule
combinations may have the same resulting action, but
lead to a different state for the component. Hidden in
these rules then is the state of the power system that the
engineer had to determine. For instance, in the case of
rule 3, this would mean that the charger has become
broken in some way, thus identifying the state, and the
model of this mode would come from these symptoms.

Rules are easier to assess if they are atomic, which is
done by making the state of the system explicit. Mini-
ME achieves this by separating state determination from
a recovery action through the use of models. Models are
more intuitive and compositional, making the mapping
from symptoms to system states to recovery actions
easier to specify. A systems engineer can reason through
the model of a component as it is based on the physical
behavior of the component, as opposed to the

No. Symptom Recovery Action

1 (Battery Current > 0.6A)
for 60 sec

Turn off the charger

2 (Redundant battery
charger is ON) for 5 sec

stop rules 2 and 3

3 (Charger current > 0.8 A)
for 10 sec

Switch to the redundant
charger, and disengage the
primary.

4 (Charger current > 0.07A)
and (Bus Voltage > 24 V)
for 10 sec

Same recovery as rule 2.

5 (Battery Temp > 30 C) for
1 hour

Switch to the redundant
charger and turn its trickle
charge on

interactions of components. The latter approach has
great potential for error and overlooked interactions.

The Mini-ME system is able to determine the
intermediate states for each fault in the power system
rules given the appropriate symptoms specified in each
rule and a model for the system. As an example, the
model for a battery charger will contain information
about the values of its inputs such as its current reading,
allowing for diagnosis of rule 3. Demonstration of this
similarity between NEAR-like autonomy rules and rules
specified by the Mini-ME tool is crucial in
demonstrating parity of the two systems, but a full
explanation of this analysis is deferred due to the
limited scope of this paper.

Mini-ME has also been used as a tool to understand
model compilation techniques and its applications.
Other such applications that use this technique include a
mode estimation capability for the Reactive Model-
based Programming Language (RMPL) [8], and a
reactive planning system, Burton [7].

4 Conclusions

Fault protection in spacecraft is a must as missions
venture further into space and space systems increase in
complexity. The necessity of a system that can perform
this fault diagnosis in real time is then a key component.
The Mini-ME fault protection system has been shown to
meet this goal without any loss of information from a
rule-based system.

The utilization of system models in Mini-ME allows
it to perform diagnosis of components. A model-based
approach has many benefits including reusability,
compositionality and specification of intuitive models.
The use of these models to perform reasoning and
deduction has been shifted to an offline operation, an
approach that differs from previous systems such as
Sherlock and Livingstone. This offline compilation of
the models to rules, called dissents, allows Mini-ME to
perform fast diagnosis of faults online. Using these
models and observations from the system, Mini-ME
generates a diagnosis of the system’s components using
a best first search to generate the most likely diagnosis.

This diagnosis gives the state of the system, which is
not available in a rule-based system. In rule-based
systems, the mapping from symptoms to recovery action
is apparent, but not the mapping from symptoms to the
system state. Making this step explicit leads to rules that
are easier to analyze for completeness, and a rule set
smaller in size. In the case of the example system in
section 2, it requires only 6 dissents to represent the
faults, whereas a rule-based system would require 32
rules to represent all of the possible faults. These
characteristics lead to more reliable fault protection as it
makes the process of rule generation modular by using
models of the system, monitors that discretize
observations and repair actions based on the diagnoses,

all of which are designed by the engineer in a clear
manner.

A key benefit of the Mini-ME system and the use of
associated repair manager, aside from the model-based
approach, is that they give the spacecraft the ability to
remain operational in the face of component failures.
This ability is crucial as space exploration expands. The
same individuals who designed the spacecraft may not
be around when it lands, which necessitates fault
diagnosis ability.

Acknowledgements

We would like to thank Kenneth Heeres and Dave
Watson of the Johns Hopkins Applied Physics
Laboratory, and Michel Ingham, Samidh Chakrabati,
Alvar Otero, and Michael Hofbaur of MIT. This
research was supported in part by the DARPA MO-
BIES program under contract F33615-00-C-1702 and
by NASA’s Cross Enterprise Technology Development
program under contract NAG2-1466.

References

[1] P. Chatalic and L. Simon, “Multi-Resolution on
Compressed Sets of Clauses,” In Proc. of 12th
International Conference on Tools with Artificial
Intelligence, (ICTAI-2000), Vancouver, 2000.

[2] J. de Kleer, “An improved incremental algorithm
for generating prime implicates,” In Proceedings of
the Tenth National Conference on Artificial
Intelligence (AAAI-92), 780-785, 1992

[3] J. de Kleer and B. Williams. “Diagnosing Multiple
Faults,” Artificial Intelligenc, 32:100-117, 1987.

[4] J. de Kleer and B. Williams, “Diagnosis with
Behavioral Modes,” In Proceedings of the 11th
International Joint Conference on AI (IJCAI-89),
Detroit, MI, 1989.

[5] S. Russel and P. Norvig, Artificial Intelligence:
Amodern Approach, Prentice Hall, 1995, New
Jersey, Chap. 4 pp. 96-101.

[6] B. Williams and P. Nayak, “A Model-based
Approach to Reactive Self-Configuring Systems,”
In Proceedings of AAAI-98, 971-978, 1996.

[7] B. Williams and P. Nayak. 1997. “A Reactive
Planner for a Model-based Executive.” In
Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI-97).

[8] B. Williams, S. Chung, and V. Gupta. Mode
Estimation of Model-based Programs: “Monitoring
Systems with Complex Behavior,” To appear in
Proceedings of the International Joint Conference
on Artificial Intelligence, Seattle, WA. 2001.

