- Zachariasen, U. 1970. The palatalizing of g and k in Faroese.
  Orbis 19.1. 89-93.
- Zeps, U.L. 1962. Latvian and Finnic linguistic convergences. Indiana University Uralic and Altaic Series 9.

# Typology and Universals of Vowel Systems

JOHN CROTHERS

#### ABSTRACT

Following previous typologies I divide vowel systems into subsystems based primarily on length and nasalization, and take the number and arrangement of vowel qualities in the short oral vowel system of a language as the main classificatory parameter. For a given number of such vowels, the types of arrangements found in the languages examined were subject to severe restrictions which can be expressed in a series of universal rules. These rules, in turn, can be largely explained by a modified version of Liljencrants and Lindblom's model of dispersion of vowels in the vowel space.

VOWEL SYSTEMS

#### CONTENTS

| 3ib          | idi        |                  | á   | 88                        | 13                        |                                   |                                       |     |               |              | -                 |                                           |                                |                        |                   |                     |                     |                     | · CA       |                              |                 |                     |          | N                       |                   |                |               |         |              |
|--------------|------------|------------------|-----|---------------------------|---------------------------|-----------------------------------|---------------------------------------|-----|---------------|--------------|-------------------|-------------------------------------------|--------------------------------|------------------------|-------------------|---------------------|---------------------|---------------------|------------|------------------------------|-----------------|---------------------|----------|-------------------------|-------------------|----------------|---------------|---------|--------------|
| liogo        | end        | 1.0              | 0   | 4.7                       | 4.6                       | 4.0                               |                                       | 4   | ι.<br>(υ)     | 4.2          | Vov               |                                           | 0.0                            |                        | n 4               |                     | ) (<br>)            | ب<br>د<br>د         | Un         | 4.                           |                 | 2 1                 | 2 22     | Su                      | 1.4               | 1.0            | 1.6           |         | In           |
| Sibliography | ppendices. | runctional       | 1   | Prediction of universals. | Limits to predictability. | Comparison with random hypothesis | Comparison or predicted and empirical | 7   | Rev           | Optimal      | Vowel Dispersion: | EDC                                       | 002                            | ) !                    | 150               |                     |                     |                     | Universals |                              |                 |                     |          | Survey of Vowel Systems |                   |                |               |         | Introduction |
| `            |            | CCLO             |     | dict                      | its                       | Pdt                               | podr                                  |     | Revised model | La           | isi               | the systems of long and nasalized vowels. | Correlations between the basic | r ront and pack vowers | Interior vowels . | Height and backness | Normal vowel system | The vowel hierarchy | sals       | Comments on types of systems | Interior vowels | Peripheral vowels . | General  | 0,                      | Phonemic analysis | Types of vowel | vower quarity | 98      | acti         |
|              |            |                  |     | ion                       | 8                         | CISC                              | 180                                   |     | H :           | L model      | ers               | E III                                     | atic                           | DUR                    | A A               | ano                 | I V                 | we                  | 01         | ent                          | V               | Ter                 | aI.      | Vov                     | mic               | 10             | sup           | sample. | non          |
| •            | *00        | Da               |     | 0                         | TE                        | Ĭ                                 | Ĭ                                     |     | 2             | H            | 10                | 8 0                                       | ans                            | Od                     | wo.               | 10                  | wo                  | E                   | Vo         | 0                            | WO              | -                   |          | ve1                     | 12                | VO             | 1111          | le      |              |
| ٠            | *0         | nature           | 1   | Ē                         | di                        | WIT                               | . 7                                   | , , |               | de           |                   | 1                                         | . 50                           | CIC                    | el                | aci                 | 12                  | 0.7                 | vowel      | ח                            | els             | VOV                 |          | S                       | la l              | wel            | ×             | 1       | 53           |
|              | *17        |                  |     | 4                         | ta                        | 7 7                               | ) II                                  |     | , y           | -            | An                | gac                                       | tw                             | VO                     | ,                 | The                 | sys                 | a r                 |            | 4.                           |                 | ve]                 |          | 8                       | y sı              | 8              | i             | 8       | - 33         |
|              | •          | 2                |     | N.T.S                     | 119                       | up.                               | 105                                   |     | ě             |              |                   | 50                                        | 66                             | We                     | ÷                 | 60                  | te                  | chy                 | y s        | 13                           |                 |                     | •        | em                      | •                 | 150            |               | -       | 50           |
| •            | 1929       | of the universal |     | ž.,                       | ij                        | do                                | 913                                   | :   | e ŧ           |              | Explanatory       | D C                                       | n t                            | S                      |                   |                     | B                   |                     | systems    | O.F                          |                 | ***                 | •        |                         | 12                | systems        |               |         | 100          |
| 2            |            | E                |     |                           | •                         | 3                                 | D C                                   | 1   |               |              | an                | E E                                       | 0                              |                        |                   |                     | ,                   |                     | 8.0        | By                           | *0              |                     |          | bу                      |                   | CO             | 100           | 0       |              |
| •            |            | ATT              | ٠   |                           | •                         | byr                               | nd                                    |     |               |              | ato               | 50                                        | ba                             |                        |                   |                     |                     |                     | 0.00       | ste                          | 9               |                     |          | Type.                   | 22                | 35             | 3             | ij.     | 70.0         |
|              |            | en               | ٠   |                           |                           | 30¢                               | 2                                     | ,   | ٠             |              | ry                | 23                                        | Sic                            |                        |                   |                     |                     |                     |            | B                            |                 |                     |          | pe.                     | -                 | î              | 33            | 13.5    |              |
| •            | •          | Sa.              | •   |                           |                           | nes                               | up                                    |     |               |              | X                 | Ď,                                        | V                              | ÷                      |                   |                     |                     | ¥                   |            |                              |                 | 7.0                 | 4        | 9                       |                   | e.             | 8             | 500     |              |
| •            |            | to               | •   |                           | •                         | 118                               | 111                                   |     | ٠             | (6) <b>*</b> | Model             | VO                                        | WC                             |                        |                   |                     |                     | 4                   |            |                              |                 |                     |          | 10                      |                   | •              | •             | 100     | 12.07        |
| 3)           | 11.        | (x,y)            | ż   |                           |                           | <b>*</b> 5                        | ca)                                   |     | ٠             | 334          | <u>e.</u>         | we.                                       | vowel system                   |                        |                   |                     |                     |                     |            | 600                          | •               | •                   |          | 3                       | (5)               | :<br>:::       | ***           |         |              |
|              |            |                  | ٠   |                           | •                         | *0                                | OS.                                   |     |               |              |                   | 00                                        | sys                            |                        |                   |                     |                     |                     |            |                              |                 |                     | 07<br>64 | 2                       | - 50<br>- 50      | - 61<br>- 57   | **            |         | 35           |
|              |            |                  |     | 1                         |                           |                                   | ystem                                 |     | 3             |              |                   |                                           | te                             | •                      | 19                |                     |                     |                     |            |                              |                 | ar<br>L             | 52<br>52 | (B)                     | 99                | -0             | •0            | 0655    |              |
|              |            |                  | ٠   |                           |                           | •                                 | en                                    |     |               |              |                   |                                           |                                |                        |                   |                     |                     |                     |            |                              |                 |                     |          | 100                     | 155               | 33             | •             |         |              |
|              |            |                  | ٠   |                           | •                         | ٠                                 | 9                                     |     |               |              |                   |                                           | and                            |                        |                   |                     |                     |                     |            |                              |                 | 02                  | 3        | ٠                       |                   | •              | •             |         | 3.5          |
| - 7          |            | 30               |     |                           | 69                        | ŧ0                                | *                                     |     |               |              |                   |                                           | 9-44                           |                        |                   | Ç.                  | v.                  |                     |            | 32                           | 2               | Č.                  | Ö        |                         | *                 | :33            | •             | •       | 3.           |
|              | *          | •                | ×   |                           |                           |                                   | ٠                                     | 94  |               | 9            |                   |                                           |                                |                        |                   |                     |                     | 81                  | 50         |                              | 1               | •                   | •        | *                       | •27               | 50             | •             |         |              |
| 140          | 136        | 134              | 133 | 1 1                       | 132                       | 131                               | 129                                   | 126 | 126           | 125          | 125               | 12                                        |                                | 122                    | 121               | . 117               | . 116               | . 114               | . 114      | . 108                        | . 106           | . 106               | . 104    | . 104                   | . 102             | . 9            | . 9           | . 9     | 50           |
|              |            |                  | 1   |                           |                           |                                   | -                                     | -   | -             |              | 41                | w                                         |                                | N                      |                   | 1                   |                     |                     | -          | 00                           | 0               | 0                   | 1        | 4                       | N                 | 99             | 96            | 95      | 95           |

#### Introduction '

in the vowel space shows that with some revisions the model predicts erated by Liljencrants and Lindblom's model of dispersion of vowels spects. Further, a detailed comparison between the typology (and versal or near universal rules about such systems. The rules go and which are marginal or deviant, and to set up a number of unimost universals of vowel quality systems. universals) arrived at empirically and the theoretical typology gen-Jacobson, Hockett, Chomsky and Halle, Sedlak) in a number of rebeyond earlier proposed universals about vowel systems (Trubetzkoy, more confidence than before which types of system are more natural sentative nature of the sample makes it possible to determine with veloped by the Stanford Phonology Archiving Project. The reprean areally and genetically representative sample of languages deevidence in favor of a 'functional' approach to language universals. This paper presents a new typology of vowel systems based on I consider this to be

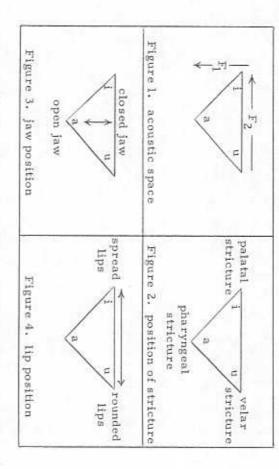
### 1. 1 The sample

mar for each language in the Archive has been read by at least two line with the principles stated in Sec. 1.4. in cases where I felt a change would bring the analyses more into of the vowel system of a language presented in this paper corresponds analysis are briefly discussed in Sec. 1.4. In general the analysis elimination of marginal phonemes. In most cases the source gramthe material I have made some changes in the phonemic analyses to the analysis in the Phonology Archive. However, in reviewing the full set of vowel symbols used). The principles of the phonemic All symbols are translated into a standard set (see Appendix I for on each language is drawn from one or more published descriptions. guages and current understanding of genetic relationships. The data balanced to the extent permitted by available descriptions of landescriptions of 209 languages, the vowel systems of which I took as the basis of my typology. The sample is areally and genetically At the time of writing the Archive contained phonetic-phonemic Stanford Phonology Archiving Project, of which I am a member. This study is made possible by the materials collected by the This generally involved

which this paper is based nology Archiving Project in gathering and organizing the data on like to acknowledge the help of all the members of the Stanford Phofor their comments on an earlier draft of this paper. I would also I am very grateful to Alan Bell, Lynn Friedman and John Chala

<sup>2</sup> See Vihman 1976 for a detailed description.

people on the staff, the second checking the analysis for consistency. I have also checked many details in preparing this paper. Doubtless, mistakes of fact and interpretation remain; still, the sample offers a large body of data that has been subjected to a fairly careful and consistent analysis.


## 1. 2 Vowel quality

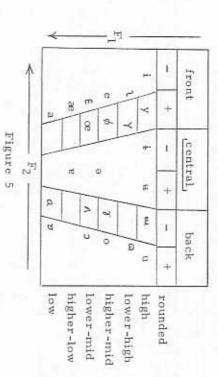
all formants, by a reduction of their amplitude, and by an upward 186H) is to classify vowels by F and a weighted average of F2 and also for vowels of opposite rounding and backness and the 'r-colored' 1975, calling the last point into question.) shift of the first oral formant. (See Ohala 1975: 294, also Wright vowels. One approach (Liljencrants and Lindblom 1972, Fant 1973; ants; F1 for first formant, F2 for second formant, etc.). The third according to the center frequency of the first two resonances (formand can be classified acoustically in terms of their resonant frequenin the middle of the oral tract (Fant 1973:176ff). The quality of vowthe addition of nasal formants, by a broadening of the bandwidth of F<sub>3</sub>. Nasal vowels differ from oral vowels (in theory at least) by formant is probably of some significance for high front vowels, and cies. Oral vowels, produced with closed velum, are often classified els with normal voicing is determined by the supraglottal resonators Vowels can be defined as syllabic sounds produced without closure

a velar vowel or a pharyngeal one. 6) Lip rounding lowers all atal or velar region gives a relatively lower F1, while pharyngeal tongue constriction raises F2 for a palatal vowel, decreases F2 for sarily) used in the production of a particular vowel. 5) Increased what and lowers F2 considerably. 4) Opening the jaw raises F1; it also lowers F2 for a palatal vowel and raises it for a velar vowel. between. 3) Retraction of the tongue constriction raises F1 someulators and the vowel formants. 1) Tongue constriction in the palof the larynx. They make the following correlations between articheight of the jaw, the amount of constriction of the tongue and the oral resonating cavity is controlled by the position of the lips, the constructed a detailed model of vowel production, the shape of the interpreted as referring to the jaw opening normally (but not neces-The traditional articulatory parameters 'open' and 'close' can be high F2; velar vowels have a low F2, and pharyngeal vowels fall in constriction produces a high F. 2) Palatal vowels have a relatively point at which it occurs (palatal, velar, pharyngeal), and the height vowel (Lehiste 1973). According to Lindblom and Sundberg, who positions of the articulating organs and the acoustic quality of a It appears that there is only a partial correlation between the

formants, primarily F<sub>3</sub> for palatal vowels, F<sub>2</sub> for velar vowels.

7) Lowering of the larynx lowers all formants. Correlations 1-6 are illustrated in the following diagrams; Fig. 1 representing an outline of the acoustic space, Figs. 2-4 the main articulatory parameters.




by tongue position. Palatal vowels are generally unrounded because tongue position, acoustically only modifies qualities determined an error. Lip rounding, although articulatorily independent of acoustic reinterpretation of the terminology actually saves it from making [a] actually further 'back' than [u] in articulation. The term is wrong, since there is considerable retraction of the tongue terms (F2 neither high nor low). Articulatorily, the traditional the independence they appear to have if interpreted literally. The esthetic experience of producing that sound. The easiest way to vowel [a], frequently referred to as central, is so only in acoustic latory labels, such as lip rounding or central tongue position, lose qualities. In the process of translation, however, certain articuis to interpret the articulatory descriptions as specifying acoustic bring outdated linguistic terminology into line with modern phonetics rate, which linguists associate with a particular sound and the kin-Since tongue position is not observable without special equipment, the position of the lips and the tongue, to identify vowel quality. its specification is just a conventional label, not necessarily accu-Descriptive linguists generally use articulatory parameters,

this leads to a higher F<sub>2</sub> and F<sub>3</sub>, which are high for palatal vowels; velar vowels are generally rounded because this causes a lower F<sub>2</sub>, which is already low for them. In other words, rounding reinforces the 'backness' of the velar vowels, and unrounding (spreading) reinforces the 'frontness' of the palatal vowels (cf. Fant 1973; 186tf). Rounded palatal vowels and unrounded velar vowels fall acoustically between 'front' and 'back.' It appears that rounded palatal vowels are closer to the unrounded palatals, and unrounded velar vowels closer to the rounded velars in the acoustic space. To this extent the traditional terminology 'front rounded' and 'back unrounded' can be taken as valid acoustically, but it must be remembered that both types are acoustically centralized with respect to their maximally 'front' and 'back' counterparts, and that rounding is not an independent perceptual dimension which can be separated from the front-back dimension.

quite similar to that found in West Africa, pharyngeal expansion that in two NILOTIC languages with vowel harmony superficially exhibit anything like the 'singing formant,' ('covered voice') which It is not yet known whether vowels produced with expanded pharynx and body of the tongue, there is no corresponding lowering of F2.) of several African languages with vowel harmony shows that for did not play a role. is also due to pharyngeal expansion (Sundberg). Lindau also found other set. (Due apparently to concomitant adjustments of the front pharynx are acoustically considerably higher (lower  $F_1$ ) than the the two harmonic sets of vowels, and that the set with expanded root advancement,' e.g. by Stewart) is the feature distinguishing several KWA languages pharyngeal expansion (also called 'tongue ulatory facts are still not entirely clear. Lindau's in-depth study in terms of the first two formants, although the acoustic and articlarynx and advancement of the tongue root, can also be described The effects of an expanded pharynx, produced by lowering of the

A traditional vowel chart, such as the IPA, can be roughly interpreted as an acoustic chart, with the articulatory terms read as acoustic ones. Thus 'high' means 'low F<sub>1</sub>,' 'front unrounded' means 'high F<sub>2</sub>,' etc. as shown in Fig. 5.

In determining the vowel systems of the sample languages I interpreted vowel tenseness in two different ways. When associated with a difference between long and short vowels; I subsumed it under the length feature. For example, languages which distinguish between long /i·/ and short /I/ (e.g. GERMAN, ENGLISH) have been interpreted as having a primary length distinction rather than a distinction



between two vowel qualities. On the other hand, in a language like PANJABI (Gill and Gleason 1963) there is said to be no appreciable length distinction between /i/ and /I/, so the difference is interpreted as one of vowel quality. Acoustically, lax vowels are more central than their tense counterparts. (See American ENGLISH formant data in Peterson and Barney 1952. /I/ and /U/ are both lower and more central than /i/ and /u/, in addition to being shorter in ENGLISH.) In general one is probably justified in interpreting lax vowels as central with respect to tense counterparts. However, in the descriptive literature [I] and [U] are frequently treated as being simply lower than [i] and [u]. In the few cases in the language sample where this raised questions about the relative position of phonemically distinct vowels of the same length, I have treated /I/ and /U/ as being both lower and more central than /i/ and /u/.

I have not included retroflex ('r-colored') vowels in the present survey. The relevant acoustic parameter is lowering of  ${\bf F}_3$  and  ${\bf F}_4$  (see Lindau 1975; 21), which involves another dimension of vowel quality. Since retroflexion of vowels is not common as an independent, contrastive feature, its omission does not greatly affect the typological picture.

## .3 Types of vowel systems

The general basis for the typology of vowel systems laid down by Trubetzkoy and Hockett seems to me to be valid. In particular, different subsystems of vowels can be separated from each other on the basis of features other than the shape of the oral resonator, giving three separate subsystems: normal length oral vowels,

as a basis for discussion.) guages. This makes it a natural basis for vowel system typology. or two arrangements occur with any frequency in the world's lannumber of vowels; for a given number of vowel qualities, only one three to about twelve distinct vowel qualities in the basic system. normal length oral vowels. Languages may have anywhere from quality system of a language is the arrangement of qualities of they are too rare to be of typological importance. The basic vowel of languages with vowel subsystems differing in voice quality, but a language. VIETNAMESE, for example, has both creaky and (1968) and Chomsky and Halle (1968) use number of vowels at least The arrangement is determined to a large extent simply by the ciated with specific tonal configurations. There are a few cases breathy voice in addition to normal voicing, but both are assointerpreted in conjunction with the consonantal or tonal system of creaky or breathy voice, but when this does occur, it can often be inclusion does not seem to add much to a typological survey. Dif-(See Sedlak 1969, Liljencrants and Lindblom 1972. Also, Jakobson ferences in voice quality may also occur, e.g. normal versus languages with both long oral vowels and nasal vowels, but their nasal vowels. Long nasal vowels may of course be found in long oral vowels (or, in a few cases, overly short vowels), and

For the purpose of further distinctions I have found it most useful to distinguish between 'peripheral' and 'interior' vowels, the former including the extreme palatal (front unrounded), the extreme velar (back rounded), and the low vowels, the latter including all acoustically more 'central' vowels, i.e. back unrounded, front rounded, and non-low central or centralized vowels. See Fig. 6.

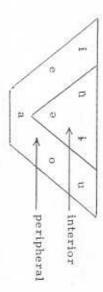



Figure 6

The number of interior vowels supplies a second typological parameter. Types of vowel systems can be identified by a pair of numbers, x:y, where 'x' is the total number of vowels and 'y' the number of interior vowels. The standard five vowel system /i e a u o/, having no interior vowels, is 5:0; the four vowel systems /i e a u/ and

apostrophe indicates systems with centralized /IU/ in contrast with trophe after the second number, x:y' (for TURKISH 8:3'). A double unrounded, as in TURKISH, with /t b i/, this is noted by an aposlanguages. If there is a distinction between front rounded and back marked in the notation: 11: 3, 7:2, and 10:2 respectively for these a vertical arrangement, as in FRENCH, GERMAN and VIETNAMguages with two or more interior vowels. The commonest type is of the gap. Several differences of arrangement are found in lanbe little point in incorporating into the notation the precise nature a single asterisk is used for one, a double asterisk for the other. /iu/, as in PANJABI, 10:3". The notation is summarized in Fig. 7. ESE, with /t 5 5/, /t 5/, and /i e/ respectively, which is left uneral system. Since such systems are not common, there seems to each with one interior vowel, but with different gaps in the periph-Thus \*5:1 and \*\*5:1 represent two different five vowel systems, asterisk preceding the number of vowels in the system (\*x:y). If at any position, are termed 'defective.' This is symbolized by an two different defective systems are found with the same number x:y, normal. Other arrangements, differing from these in having a gap certain arrangements of peripheral vowels can be established as vowels. First, on the basis of the most common systems (e.g. 5:0), number of less common ones as well. Further refinements, where cient to characterize all of the relatively common systems and a needed, /ii au/ are symbolized 4:0 and 4:1 respectively. This is suffiare based on the arrangement of the peripheral or interior



Figure 7

The systems of Trubetzkoy and Hockett for classifying vowel quality systems, based on the number of height and backness distinctions, are needlessly complex for typological purposes, since these parameters are roughly determined by the total number of vowels in a system. Trubetzkoy's distinction between linear, triangular, and quadrangular systems does not seem to be especially

useful. Linear systems either do not exist at all, or if they do, are subject to a variety of problems of interpretation (see discussion of two vowel systems below, Sec. 2.4). The distinction between triangular and quadrangular systems is based simply on whether there is one (triangular) or two (quadrangular) low vowels. Actually, due to the shape of the vowel space, all systems are roughly triangular in phonetic terms, and the overwhelming majority are triangular by Trubetzkoy's criterion.

## 1. 4 Phonemic analysis

hood the results would not be very different if more marginally phochange, may at any time contain sound differences that are neither or some special morphological pattern (e.g. reduplication), occur nemic vowels were included. vowel systems here to the more fully phonemic vowels. In all likelifully phonemic nor fully non-phonemic. I have tried to restrict the recognize that phonological systems, being always in a state of contrastively in a limited environment. In short, I think one should erally have non-contrastive distribution but, due to a sound change contexts as the result of morphophonemic fusion, sounds that genphonemes in unassimilated loans, phonemes that occur in limited adding to phonemic theory a distinction between marginal and full of phonemes, is probably sufficient in the majority of cases to dephological or lexical function. Marginal phonemes may include butional restriction in terms of phonological environment, or morphonemes, the former including all phonemes with a severe distrito the establishment of more phonemes than linguists would generally 1964), this principle, if rigorously applied, may in some cases lead But as various critics of the phoneme have pointed out (see Chomsky cide whether the difference between two sounds is phonemic or not. if they can occur in the same environment and are not generally in basic principle of phonemics is contrast; two sounds are in contrast free variation. This principle, modified to allow for partial overlap interpretation of the phoneme, and its relevance to typology. The along the lines of classical phonemic method. This is not the place for a general discussion of the pros and cons of phonemic analysis. The following remarks are offered only as a general guide to my The vowel system of each language in the sample is analyzed Criticisms of this type can be largely met, in my opinion, by

One difference between the approach used here and some other approaches to phonemic analysis is that here primary emphasis is placed on the phonetic manifestation of phonemes. Each phoneme

acterized phonetically. phoneme inventories of each language, the high back vowel is charbasically different patterns of arrangement they exhibited. In the considering all of the three vowel systems, to determine how many as being typologically /u/ was only made at the point when I was of /u/. (All these manifestations are listed in Appendix III.) However, the decision to treat the different phonetic units, [u U wo], systems in the sample are grouped into a single type: /i a u/. The systems to a general type. For example, all of the three vowel phonetic manifestations vary considerably, particularly in the case last minute, as it were, in the assignment of particular phonemic ideas into the results. Of course, for typological purposes conmeans languages employ to make distinctions, it is important not member). For example, if the only high front vowel in a language is characterized by a phonetic unit, its major realization (primary siderable normalization is necessary, but I have done this at the to normalize the data prematurely, and thus build preconceived for this is simply that if one is interested in what sorts of phonetic is phonetically [I], the phoneme is called /I/, not /i/. The rationale

Another point on which my type of analysis may differ from that of others is the phonemic status of neutral vowels, that is vowels (most often [e]) which are phonetically different from the other phonemes of a language, but do not contrast with them, the neutral vowels being restricted to unstressed position. I have tried to exclude such vowels from the phoneme inventories, although it is not always easy to determine from phonological descriptions whether a symbol /e/ represents an independent phoneme or a neutral vowel.

There are both practical and theoretical reasons for basing phonological typology on the classical phoneme, thus interpreted. On the practical level, the majority of modern language descriptions have a phonemic basis. On the theoretical level, phonemic analysis answers a basic phonological question: what phonetic features are employed distinctively in a language? The abstract systematic phonemes of generative phonology do not provide an answer to this question since they do not express phonetic features in a direct way. For example, there is no way to tell from Chomsky and Halle's systematic vowel phonemes of ENGLISH what phonetic properties are actually used to distinguish one vowel phoneme from another. Indeed, it is not possible to tell, without detailed comparison of the effects of all the complex rules on all of the vowels, which of the systematic vowel phonemes contrast with each other at the surface level.

# 2. Survey of Vowel Systems by Type

#### 2. 1 General

taken as a single, very rough norm or archetype for language in as the high point in the frequency distribution of types. It can be 5:0 system thus represents an optimum system in a special sense, the only relatively common system outside this range is 9:2. The 80% of the sample languages have from three to seven vowels, and types cluster around the 5:0 system (Figs. 8 and 9). Well over not seem to have been commented on, is that the more frequent can be observed in earlier surveys (e.g. Sedlak), though it does and 4:1 together is explained in Sec. 2.3.) These types account for The predominance of type 5:0 is well known. A further fact which ginal types, essentially deformations of the more common types. more than 3% of the total; all these others can be regarded as marover 80% of the sample languages, and no other type represents 7:2, 7:0, 9:2 and 6:0. (See Fig. 8. The reason for grouping 4:0 in descending order of frequency, are 5:0, 6:1, 3:0, 4:0 plus 4:1, gives the approximate vowel qualities found in the more common by type, including phonetic specification of each vowel.) indicated in Table 1. (See Appendix III for a full listing of languages languages ranges from three to twelve. The more common types, systems. The types of basic vowel quality systems found in the sample are The number of vowels in the basic system of the sample

Table 1. Basic vowel system types

| #5:1 5<br>##5:1 1<br>##5:1 1<br>#5:2 1 | 111   | <br>( | ·      | 1 4 4 | ×5.0 | 5:0 55 |     | 4:0 13   | 3:0  | 72:0 1 | Type languages      |
|----------------------------------------|-------|-------|--------|-------|------|--------|-----|----------|------|--------|---------------------|
|                                        | 78:1  | 8:1   | 7:2    | 47:I  | 7:0  | *6:21  | 6:1 | \$c\$6:0 | *6:0 | 6:0    | Туре                |
| 2                                      | 2     | 2     | 14     | نبا   | 11   | 2      | 29  | -        | -    | 7      | No. of<br>languages |
|                                        | 212:3 | 11:3  | ?10:3" | 10:3" | 10:3 | 10:2   | 9:3 | 169:2    | 9:2" | 9:2    | Туре                |
|                                        | ш     | _     | H      | 1     | 1    | 2      | 44  | -        | u    | 7      | No. of<br>languages |

?indicates considerable uncertainty about the analysis.

## VOWEL SYSTEMS

Table 2. Common vowel system types

| 9           | 4   | -1 | 0  | 6            | 3  | un   | 44   | 4     | (1.0 |
|-------------|-----|----|----|--------------|----|------|------|-------|------|
| :2          | 2   | 0  | ÷  | 0            | -  | 0    |      | 0     | :0   |
| <del></del> | -   | -  | ٠  | <b>j</b> -14 | н. | pote | tota | jul s | ,,,  |
| 0           | 0   | æ  | m  | æ            | m  | m    | ***  | m     | 2    |
| m           | 11" | m  | ** | m            | H* | SJ.  | pi : | pj.   | E    |
| 10-         | 9   | ĝ  | ρι | c            | ø  | =    | F    | п     |      |
| Œ,          | ш   | c  | ø  | 0            | 0  | U    |      |       |      |
| pı          | =   | 0  | O  | U            |    |      |      |       |      |
| F           | 0   | U  |    |              |    |      |      |       |      |
| 0           |     |    |    |              |    |      |      |       |      |
| 0           |     |    |    |              |    |      |      |       |      |

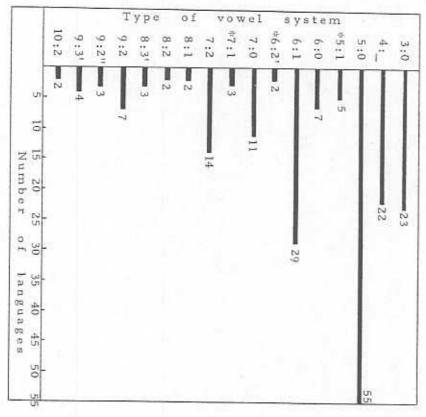



Figure 8. Frequency of vowel system types (Types represented by only one language are omitted. Types 4:0 and 4:1 are grouped together as 4:\_.)

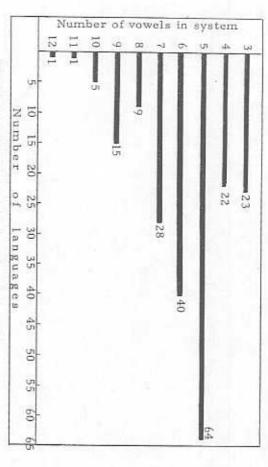



Figure 9. Frequency by size of vowel system

## Peripheral vowels

naturally interpreted as defective versions of the peripheral 5:0 systems that could be interpreted this way (\*5:1, \*6:2) are more of the sample languages have a peripheral system with one of the namely /i/ and /u/, where the vowels stay relatively fixed, forcing arrangement. There are 17 languages which I consider defective number of peripheral vowels there is only one common type of system (see Sec. 2.4 on four vowel systems). ripheral system does not occur with any interior vowels because 'triangular' patterns 3:0, 5:0 or 7:0 (see Table 3). The 4:0 pethe remaining vowels into a narrow range of positions. Fully 3/4 kind of patterning seems to be that the vowel space has 'corners,' (generally /e/, /u/ or /o/, never /i/). types, one of the common types with a vowel missing at some point the sample languages (one questionable case of nine). For a given The number of peripheral vowels ranges from three to eight in The general reason for this

## Interior vowels

those with front rounded and back unrounded vowels (1), and those three types, those with a vertical arrangement (unmarked notation), 1/4 of the sample. As noted earlier, these have been divided into Languages with more than one interior vowel make up only about

## VOWEL SYSTEMS

two cases of three height distinctions in the interior vowels are found chiefly in Europe and north Asia (see Crothers 1975). Only found in the sample, FRENCH and PACOH, and the latter is uncolumn has back unrounded vowels, /+ a/; front rounded vowels are vertical arrangement is common. Generally speaking, the interior with centralized /I U/ ("). As can be seen from Table 4, only the

| /ie g æauo p/ 11:3 | 8:0 10:2 | 10:3" | 10:3" | 9:2" | 9:2       | /ie E a u o o / 8:1 | 7:0 7:0 | 9:3       | /ie ae u o p/ 8:2 | 6:0   | 8:3  | 7:2        | /ieaus/ 6:1 | 5:0 5:0      | /icau/ | 4:0 4:0 | /iau/ 4:1 | 3:0 3:0 | vowel system system | type of found |
|--------------------|----------|-------|-------|------|-----------|---------------------|---------|-----------|-------------------|-------|------|------------|-------------|--------------|--------|---------|-----------|---------|---------------------|---------------|
| 1                  | 2        | 2     | H     | IJ   | 7         | 2                   | 11      | 4         | 2                 | 7     | w    | 14         | 29          | 55           |        | 13      | 9         | 23      | -                   |               |
|                    | *9:2     |       |       |      |           | <b>#7:1</b>         | *6:0    |           |                   | \$5:0 | #5:2 | *6:21      | **5:1       | <b>\$5:1</b> |        |         |           |         | system              | defective     |
| 1                  | 1        |       |       |      |           | ىن                  | 2       |           |                   | 1     | 1    | 2          | 2           | 51           |        |         |           |         | languages           |               |
| (H def.)           | 3        |       |       |      | (+5 def.) |                     | 26      | (+1 def.) |                   | 13    |      | (+10 def.) |             | 101          |        | 13      | 1         | 32      | TROOM               | tata          |

included

| no. of interior<br>vowels and type | found in basic<br>vowel systems | no. of<br>languages | total |
|------------------------------------|---------------------------------|---------------------|-------|
| 0                                  | 3:0                             | 23                  | 112   |
|                                    | 4:0                             | 13                  |       |
|                                    | 5:0                             | (Ji                 |       |
|                                    | 6:0                             | 7                   |       |
|                                    | 7:0                             | 11                  |       |
|                                    | 0:5**                           |                     |       |
|                                    | \$6:0°                          | 120                 |       |

(continued next page)

Table 4 cont.

| 3**   | 2"   |       |      | يد   | 21    |       | tu.  |      |      |     |     |     | 2    |      |      |      |        |       | jed. | vowels and type | no. of interior |
|-------|------|-------|------|------|-------|-------|------|------|------|-----|-----|-----|------|------|------|------|--------|-------|------|-----------------|-----------------|
| 10:3" | 9:2" | 10:3' | 9:31 | 8;31 | #6;Z1 | 212:3 | 11:3 | *9:2 | 10:2 | 9:2 | 8:2 | 7:2 | *5:2 | 8: 1 | 7:1  | 6: 1 | **5: [ | *5: [ | 4: 1 | vowel systems   | found in basic  |
| 2     | Çi . | ju j  | 4    | دي   | 2     | 1     | 1    | 1    | 2    | 7   | 2   | 14  | 1    | 44   | (J.) | 29   | 12     | i,    | 9    | languages       | no. of          |
|       | 55   |       |      |      | 10    |       |      |      |      |     |     |     | 29   |      |      |      |        |       | 52   | total           |                 |

# 4 Comments on types of systems

2.4.1 Two vowels The sample contains one language with a two vowel system, KABARDIAN, with /‡ = /. In my opinion this is not a clear case, because, according to Kuipers, there is a normal set of five long vowels of the type 5:0. He analyzes these as phonemic diphthongs of one of the two short vowels plus /y/, /w/ or /h/: phonetically, however, they are simple vowels. Further, the long vowels have about the same duration as short vowels in other (European) languages, while the two short vowels are extremely short. In fact /‡/ seems to be little more than a transitional sound between consonants, and is regularly lost under certain conditions. For these reasons I think it would be preferable to regard the five 'long' vowels as forming the basic vowel system of KABARDIAN, treating the two short vowels as a reduced or 'overshort' system. This is not to deny that KABARDIAN has a peculiar vowel system;

the peculiarity, however, lies in the high frequency of the reduced vowels, and not in the structure of the basic vowel quality system. A similar reinterpretation can probably be made of other linear vowel systems mentioned by Trubetzkoy. In any case, this type of phenomenon has been found only in a few CAUCASIAN languages, and, though interesting as an extreme, has little bearing on the general picture of vowel system typology.

part of the vowel space. No such system has ever been reported. back, high versus low), they are bunched up much too closely in one relative position of the vowels in the system is correct (front versus complex system. In other words, a hypothetical three vowel system vowel system the areas are larger and more vague than in a more /i u  $\varepsilon$  / does not fall within the basic 3:0 type, because although the volve specific areas of the vowel space; it is just that in a three central /a/. These oppositions are not simply relative; they inhigh front /i/ versus roughly high back /u/ versus roughly low eral character of the phoneme oppositions remains the same; roughly languages to the basic 3:0 type (4:0 for ALAWA), because the gendetails, however, they will not prevent the classification of these tual quality with little or no lip rounding. Whatever the phonetic himself, it is possible to produce vowels of 'back rounded' percepthe lips. This question is relevant, since, as anyone can tell for question is an acoustic quality or is just based on observation of the descriptions whether the 'unrounded' quality of the vowels in feature of the vowel system. Unfortunately, one cannot tell from languages in the sample which do not have lip rounding as a phonetic gether with ALAWA (4:0) and possibly ONEIDA, these are the only last being found in two languages, JAQARU and NUNGGUBUYU. Tolast ranges most widely, from [o] through [U] and [u] to [w], the regions of the vowel space. Of the three vowel types, /i a u/, the vowels stand in the same relative relationship and occupy the same in phonetic quality of the phonemes, because in all cases the three in the sample to the same type, in spite of a number of differences 2.4.2 Three vowels I have assigned all three vowel systems

The vowels of three vowel systems often show considerable sub-phonemic variation. For example, in GREENLANDIC ESKIMO, /i/ includes [i], [e] and [ə], /u/ includes [t], [u], [o] and [ə], and /a/ includes [æ] and [a] (Thalbitzer 1904).

2.4.3 Four vowels By my system of classification there are two types of four vowel systems, 4:0 (/i £ a u/) and 4:1 (i i a u/), which probably should be regarded as subtypes of a single type, which might be characterized as /i a a u/. The peculiarity of four

it exists, is a very marginal one.) free variation (Gieser 1958). In any case, this type of system, if ent minimal pairs for /u/ and /o/, the two vowels are mostly in infrequent (Kaschube 1954). In KALINGA, in spite of some appardoubt; there is an [e] of uncertain status, and /o/ appears to be CEBUANO BISAYAN, and by Sedlak for KALINGA and CROW. tem /i a u o/, not found in the sample, but reported by Hockett for all fall within the range of 4:0 or 4:1, with the exception of the sys-(Note: the interpretation of the CROW vowel system remains in here too. The types of vowel systems reported in the literature specific phonetic character of vowels in a three vowel system apply back vowel, and the general statements made with regard to the vowel to move into different positions. As in three vowel systems, there is considerable variation, especially in the position of the into the vowel space, and this leaves room for the fourth or central space (see Sec. 4.3), is that four vowels do not pack very efficiently The reason for this, according to my revised model of the vowel mid or even low front, through mid central, up to high central. system, they have a fourth vowel which may range anywhere from vowel systems is that in addition to the vowels of the basic 3:0

6:0 with /u/ missing, an isolated type. a defective 6:1, since the long vowel system has /E'/ in addition to common modern reflex.) The EVENKI system /i æ a u n/ is clearly implausible on typological grounds, and also because /E/ is the more oped into /ɛ/ in the AZTEC and SONORAN branches, strikes me as and Hale 1962). The Voegelins' and Hale's interpretation, that the PAderives from a normal 5:0 with /E/ becoming /i/ (Voegelin, Voegelin /æ·/. SENECA, with /i e æ a a/(also in the long vowels) resembles found only in the SHOSHONEAN branch of UTO AZTECAN, devel-PAGO system represents PROTO-UTO AZTECAN, and that /4/, PAGO. (Note: comparative evidence indicates that the system in the sample have a back unrounded vowel. The peculiar system the interior vowel in TABARASSAN and KYURI; all the languages vowels removed. (It might also be interpreted as a 5:0 system with guages in the sample, resembles the 6:1 system with one of the back three and four vowel systems. The system \*5:1, found in five lan-/i i a u o/, which looks like 6:1 with /£/ removed, is found in PAtypical vowel positions is considerably smaller than that found in that occurs with any frequency. The degree of deviation from the /u/ fronted to /i/.) Trubetzkoy reports such a system with /u/ as 2.4.4 Five vowels The system 5:0 is the only five vowel system

MANDARIN CHINESE, with /i u e a u/ (5:2) is another isolated type. (Hockett adds a retroflex vowel /r/, which I am regarding

as part of the consonant system.) This is closer to the 6:1 system than to any other common type, and it is notable that /ë/ has allophones [£] and [o]. Still, by any phonemic analysis these are variants of /ë/. A similar system, with interior vowels /i ə/ is reported for MANOBO, in a very brief article (Meiklejohn 1961). Sedlak has reported a 5:2' system (with /u i/) for CHACOBO, but this must be due to a mistaken transcription; the system is 4:1, without /t/.

2.4.5 Six vowels The most frequent six vowel system in the sample is 6:1, the second most frequent of all vowel systems, while the type 6:0 is represented by seven languages. Other six vowel systems may be considered typologically unimportant. Until recently (cf. Ruhlen, to appear), the typological importance of the scl system does not seem to have been recognized. The interior vowel of the system is generally a central unrounded vowel (/i/ or /o/) while the remainder of the system consists of the vowels of 5:0. One language in the sample, the WU dialect of CHINESE, has /u/ as the interior vowel, a type mentioned by Sedlak for BASQUE, and by Trubetzkoy for UKRANIAN. TAKI-TAKI, cited by Hockett and Sedlak, has /u/, but only rarely, and exclusively in DUTCH words (see Hall 1948 for TAKI-TAKI). Medieval GREEK is supposed to have had /u/, but of course there is no way of knowing the actual phonetic character of this vowel.

The 6:0 system is the only type of any frequency that could be regarded as a clear representative of Trubetzkoy's quadrangular type, but it is not frequent enough to figure prominently in a typology. In addition to the languages in the sample, 6:0 has been found by Hockett in DARGWA, MENOMINI and UKRANIAN; by Sedlak in BATS, GALLA and ZAPOTEC; and by Trubetzkoy in UZBEK, without major deviations from the pattern described here.

Two languages, CHUVASH and HOPI, which can be classed as \*6:2', are peculiar in having only one back rounded vowel, and in distinguishing a front rounded from a back unrounded vowel. In the interior vowel area the closest thing to this would be the 8:3', 9:3' or 10:3' systems (eight languages altogether) which have both front rounded and back unrounded. CHUVASH in particular seems to represent an extreme typological deviation in having so few peripheral vowels for the arrangement of interior vowels.

There are two defective 6:0 systems, ENGLISH (RP) with /I E æ & U p / (%6:0) (Note: the long and short vowel systems are separated), which looks most like a 7:0 system with /o/ removed, and EWE, with /i g a u o o/(%%6:0), again resembling 7:0, with /e/

removed. (Note: in fact some dialects do have /e/, but in the dialect described, it has merged with  $/\epsilon$ / (see Stahlke 1971)).

2.4.6 Seven vowels Eoth 7:0 and 7:2 are not uncommon systems. Liljencrants and Lindblom find 7:0 to be the most common seven vowel system in the literature, and Ruhlen (to appear) also finds 7:0 to be relatively common (by implication more common than 7:2). I find that 7:0 and 7:2 are about equally common. This is due to my grouping together two subtypes, those with front rounded and those with back unrounded interior vowels, into the 7:2 system. This grouping has been used before (e.g. by Hockett) and is well motivated acoustically.

The system \$7:1 is found in three sample languages and resembles 6:1 with an extra front vowel /e/, or 8:2 with an interior vowel removed. Sedlak finds this system in TAMIL and LIFU. (He also mentions SINHALESE, with the interior vowel /ə/, interpreted in this survey as 6:0. See footnote 19:) Hockett and Trubetzkoy mention BULGARIAN dialects and VOTYAK. In any case it is not very common compared to 7:0 and 7:2.

enough to be important typologically. The 8:1 type resembles 7:1, and 8:2 resembles the more common 7:2 and 9:2. The 8:3' system is the smallest found with three interior vowels. No languages with 8:0 were found in the sample, though this type has been reported by Trubetzkoy and Hockett for POLISH dialects. Other systems reported in the literature can be classed with 8:1, 8:2 or 8:3', but there are not many beyond the nine languages in the sample.

2.4.8 Nine vowels 9:2 is the only common type with more than seven vowels, with a vertical arrangement of the two interior vowels. All seven languages in the sample with this system have back unrounded vowels. Such systems seem to be found chiefly in Central America and Southeast Asia. Another subtype with front rounded vowels is mentioned in the literature for several GERMANIC and URALIC languages (e.g. ESTONIAN, NORWEGIAN, ICELANDIC). In the present sample several similar systems are found, but not the 9:2 system.

The reasons for treating /I U/ of the 9:2" system as interior vowels are given in Sec. 1.2. The only other system that resembles it is the 10:3" system.

The \*9:2 system of SOMALI is peculiar in having four front vowels and only two back (rounded) vowels. This is due to a skewed

vowel harmony system of the basic African type: there are four pairs of vowels which differ roughly on a back to front axis, e/ɛ, æ/ə, â/ɔ, Ü/U, except that for the first pair the difference is exclusively one of height, to judge from the rather explicit phonetic characterization by Armstrong. (Note: these vowels alternate in suffixes. /i/ does not occur in suffixes, but as a stem vowel short /i/ generally takes back harmonic suffix forms, and long /i·/ takes front harmonic forms.)

cializing in slightly different techniques for developing the extra type of 'large vowel system,' with different areas of the world speabout 15% of the sample, one might lump them all into a general languages with more than seven vowels altogether make up only tral America, while 9:2" is restricted to Africa. Considering that are found in northern Eurasia, along with cases of 9:2 which have of areal and typological counterpart of 8:3' and 9:3'. The latter (with back unrounded vowels) are found in Southeast Asia and Cenfront rounded vowels (see Crothers 1975); remaining cases of 9:2 harmony in palatal umlaut. The 9:2" and 9:2 systems form a kind third, NORWEGIAN, of course historically had a form of palatal and two of those with 9:3' do (AZERBAIJANI and OSTYAK). The All three languages in the sample with 8:3' have palatal harmony, like 8:3', occurs chiefly in languages with palatal vowel harmony. type of URALIC, ALTAIC and early GERMANIC. The 9:3' system, African pharyngeal (or height or tenseness) type, or the palatal contrast in the interior vowels have vowel harmony, either the trast. It is notable that many of the languages with this kind of with the 9:2" system, in which /I/ and /U/ show a backness coninterior vowels, and this type of arrangement bears comparison The 9:3' system, like 8:3', has a backness distinction in the

2.4.9 Ten or more vowels Languages with more than nine basic vowel qualities are quite uncommon. (There are only seven in the sample, and the typological summary by Liljencrants and Lindblom has only a few.) The types found closely resemble the different types of nine vowel system in the arrangement of the interior vowels, with the exception of FRENCH (11:3), with three distinct vowel heights in the interior vowels. (PACOH (212:3) may have such a system with back unrounded vowels, but the data is suspect.) A few cases are cited by Liljencrants and Lindblom: NORWEGIAN dialects and MARATHI. I do not regard VIETNAMESE (cited by Sedlak 1969) as a case of this type because, although it has /I e /, it does not have a clear /a/ which would be below /n/ in the vowel space. Instead, it has a somewhat retracted /æ/, which seems to be opposed to /n/ more as front to back. Thus /æ/ and

only two interior vowels, /I e/. /n/ seem to be functioning as the low vowels in the system, leaving

# Universals of Vowel Systems

have no rank with respect to each other, by this definition. Thus through x. Due to branches in the chart, many pairs of vowels higher rank than a vowel Y if Y can only be reached by passing of implicational hierarchy, is that a vowel  $\underline{x}$  on the chart has a /i/, even though it occurs high on the chart, has no hierarchical A strict definition of hierarchical rank, corresponding to the notion other values stand in a cluster around this point in the vowel space. sense that they usually stand for the phonetic value indicated, and tween it and /i/. The symbols also have an absolute value in the or even higher mid vowel in a system without a higher vowel betypically stands for a lower mid vowel, may also stand for a mid vowel in contrast with /E/, whereas the latter symbol, though it to  $(\epsilon)$ , which precedes it; /e/ thus means a specifically higher mid the hierarchy. The symbol /e/ must be interpreted with reference be interpreted in relation to all the other symbols that precede it in approximate absolute value. In the relative sense each symbol must head of the arrow.' The vowel symbols have both a relative and an be read with the following meaning: 'beginning with the system phoneme of type z, it also has one of type w.' (See Greenberg et al. on implicational statements of the form: 'if a language has a vowel /i a u/ construct a larger vowel system by adding the vowel at the 1966.) This hierarchy is represented in Fig. 10. The arrows can vowel systems, it is possible to set up a hierarchy of vowels based 3. 1 The vowel hierarchy On the basis of the observed types of

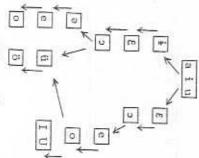



Figure 10

dix I for a restatement of universals. ler vowel systems than y. The implicational universals on which the chart is based are given as universals 1-7 below. (See Appenfewer steps than y. This simply means that x may occur in smalthat x has precedence over y if x can be reached on the chart in 'precedence') by which /i/ 'has precedence over' /e/. We can say However, it is possible to define a weaker sort of rank, (call it existence of /e/ in a language does not imply the existence of /i/. rank relative to /e/, which stands much lower. In other words the

# All languages have /i a u/.

another eleven cases that may be regarded as borderline, or, incases (1.5% clear exceptions, 7% borderline). cluding the cases mentioned under a), a total of fourteen borderline clear exceptions to the rule (SENECA, NEZ PERCE, OCAINA), and with the high front vowel. We thus have three languages which are a mid back rounded vowel, but no high back rounded vowel paired position, since there is in each case a mid front vowel paired with case of the five vowel systems, there is clearly a gap at the /u/ variation in such systems, and can be interpreted as /u/. In the seems to me that this [o] is reasonably close to [u], given typical or free variant. In the case of three and four vowel systems, it the /u/ area; often one of these phonemes has [u] as an allophone OCAINA. In all of these cases we find an /i/ or /o/ bordering on HUACA, CHACOBO; with \*5:0, SENECA; with \*5:1, NEZ PERCE HUPA, MAZATEC, CAMPA; with 4:1, ADZERA, SQUAMISH, AMAwith 3:0, ALABAMAN and AMUESHA; with 4:0, NAVAHO, ONEIDA, languages in which the only back rounded vowel is [o] or lower; found in three and four vowel systems. b) There are a number of cases to be reasonably close to [u], given the range of variation BUYU, ALAWA). As noted earlier (Sec. 2.4), I take [m] in these have only one back vowel, which is unrounded (JAQARU, NUNGGUment are the following cases. a) Three languages in the sample The closest one comes to finding counterexamples to this state-

up by Jakobson. On the typological level one might take the fact consistent pattern a > i > u, which corresponds to the hierarchy set tion. The frequency counts by Greenberg (1966) clearly indicate a there being no systems of a smaller type, so that a ranking must /i a u/ as a reason to rank it lower than the other two. that /u/ comes closest to being an exception to the universality of be established by other criteria, such as frequency or neutraliza-The typology of vowel systems does not allow a ranking of /iau/,

All languages with four or more vowels have /i / or /e/.

All of the 185 languages in the sample which are subject to this rule obey it. The system /i a u o/, not found in the sample, but cited in the literature (see Sec. 2.4), is an exception.

- Languages with five or more vowels have /ɛ/. They generally also have /ɔ/.
- Of 163 sample languages subject to this rule, one, PAPAGO, with \*\*5:1, violates the first part. Nine languages violate the second part, the five languages with \*5:1, one with \*5:2, one with \*5:0, and two with \*6:2'. (The chart of the vowel hierarchy is constructed to reflect only the first part of this rule, i.e. it allows for the \*5:1 system without /ɔ/.)
- Languages with six or more vowels have /o/ and also either /i/ or /e/, generally the former.

Of 108 languages in the sample subject to this rule, two (both languages with \*6:2') are exceptions to the first part. One language, EWE (\*6:0) lacks both /i/ and /e/.

 Languages with seven or more vowels have /e/ and /o/, or /i/ and /a/ (/ti/ and /8/ may represent the types /i/ and /a/).

Of 68 sample languages subject to this rule, there are four exceptions, the three languages with \*7:1, and ALBANIAN (7:2) which has /tl/ and /ə/. All four have two of the six vowels mentioned in the rule, but not in the proper pairing.

Languages with eight or more vowels have /e/.

Of 40 sample languages subject to this rule, three, with 8:3', are exceptions.

Languages with nine or more vowels generally have /o/.

There are enough exceptions to this rule to make it a 'tendency' rather than a 'near universal.' Of 22 sample languages subject to it, five are exceptions, four with 9:3' and one with #9:2. In addition to the vowels mentioned in rule 5, languages with nine or more vowels may also have /I U/. The situation is summed up in Table 5.

## 3.2 Normal vowel system

My remaining generalizations are quantitative, concerning the number of vowel contrasts in a system or in different parts of a

### VOWEL SYSTEMS

| Rule | applies to | no. of | % exceptions |
|------|------------|--------|--------------|
| -    | 204        | עו     |              |
| 2    | 185        | 0      |              |
| 30   | 163        | 1      |              |
| 36   | 163        | 10     |              |
| 4a   | 108        | 2      |              |
| 4b   | 108        | w      |              |
| ເກ   | 68         | 4      | -            |
| 6    | 40         | بی     | m            |
| 7    | 22         | UI     | 23%          |

Withe letters a and b indicate the narrower and wider interpretations of the rules, respectively.

system. The dominant fact, with respect to quantity, is the general preference for the 5:0 system (Sec. 2.1) restated as follows:

- 8. A contrast between five basic vowel qualities is the norm for human language, and in general the most common systems are those that have close to this number of basic vowels.
- 3. 3 Height and backness
- ?. The number of height distinctions in a system is typically equal to or greater than the number of backness distinctions.

and Halle's rule (1968; 410, rule no. 9) to the effect that an interior degrees of backness and two degrees of height, violates Chomsky languages). (Note: the 4:1 system, if interpreted as having three than high, so that in these cases the violation is marginal (seven is a tendency for the central /i/ or the back /u/ to be mid rather exceptions (see Table 6), although for the languages with 4:1 there very rough way. There are 18 languages in the sample that are It has to be understood that this rule can be interpreted only in a a backness opposition would be even more unrealistic acoustically. Clearly, however, to regard the opposition /E/-/a/-/o/as strictly is interpreted as having more height than backness distinctions. the data in favor of more height distinctions. Thus, the 5:0 system I have interpreted it as a height distinction, which of course biases In terms of the acoustic space both height and backness are involved. the opposition of /a/ to  $/\epsilon$ / and /ɔ/ is taken as a height opposition. backness and rounding. For example /u/ is further 'back' than /i/ (see Sec. 1.2).) The interpretation of this rule depends on whether (The 'backness' dimension is here understood to include both

must be interpreted as having three degrees of backness, as illusit may be interpreted as having only two degrees of height, but general rule 9.) (Note: the 6:1 system is a borderline case, since as a general tendency, and in fact is just a special case of my more convention thus has a number of exceptions, although it is still true mid vowel. If interpreted as a universal implication, the marking vowel (front rounded or back unrounded) is more marked than a

1 + 1

(a) 이

above in connection with the role of /a/ in the 5:0 system.) The two height interpretation is rejected here for the reason given

| height      | height = backness   | height | height > backness   | height < backness | D,                  |
|-------------|---------------------|--------|---------------------|-------------------|---------------------|
| type        | no. of<br>languages | type   | no. of<br>languages | type              | no. of<br>languages |
| 3:0         | 23.                 | 5:0    | 55                  | 4:1               |                     |
| 4.0         | 13                  | %5:0   | -                   | *6:21             |                     |
| *5:1        | ы                   | 6:0    | 7                   | .α<br>.α          |                     |
| **5: 1      | 2                   | *6:0   | <b>[2</b>           | 9:3               |                     |
| <b>*5:2</b> | 1                   | 7:0    | 11                  |                   |                     |
| 6; 1        | 29                  | 7:1    | w                   | 12101             |                     |
| 7:2         | 13                  | 8: 1   | 4                   |                   |                     |
| 10:3        | نیا                 | 8:2    | 2                   |                   |                     |
|             | 90                  | 9:2    | 7                   |                   |                     |
| TIPLOT      | 07                  | 9:2"   | W                   |                   |                     |
|             |                     | #9:2   | <b>.</b>            |                   |                     |
|             |                     | 10:2   | 2                   |                   |                     |
|             |                     | 11:3   | part                |                   |                     |
|             |                     | total  | 99                  |                   |                     |

about 2.7, just a little larger than the backness dimension of distance from /i/ to /u/, from /i/ to /a/, and from /u/ to /a/, and and vertical dimensions of the vowel space. I considered the of vowels, based on the whole sample, found on the horizontal 'vowel space,' it has a 'height,' a distance from /a/ to /i/ of /u-a/ 2.9. If these figures are taken as defining a triangular found the following average number of vowels: /i-u/ 2.5, /i-a/3.1, Another approach to this rule is to find the average number

> of backness, so that one might say that the limit on heights comes mum degrees of backness, 35 with four heights, 14 with four degrees closer to being exceeded than that on backness. languages with the maximum number of heights than with the maximore than four backness distinctions. Also there are more sample lute maximum, while there are no reported cases of languages with It seems at least that four heights cannot be regarded as an absoof pharyngeal expansion. Moulton reports cases of five heights. six in GWEABO; this, however, involves the problematic feature cases. Hockett also finds four contrasting degrees to be the maxican be found in the maximum number of contrasts, four in both Still another measure of the horizontal and vertical dimensions Trubetzkoy says that five heights are quite rare, but finds

the relation between the two dimensions has to be established by other means. linear systems and the associated universal are at best problematic plicational universal: backness implies height.) However, since have height distinctions, not all have backness distinctions, an imbackness on the existence of linear vowel systems. (All languages apparently Jakobson) based the notion of the primacy of height over typological studies and work on feature systems. Trubetzkoy (and maximum number of distinctions in each has been commented on in The relation between height and backness and the minimum and

SOMALI (\*9:2), IAI and VIETNAMESE (10:2), and FRENCH (II:3). languages in the present sample for which this would not work, for the overwhelming majority of languages. There are only four vowels, distinguished by backness and rounding only (e.g. in the willing to live with the classification of /£ a o/ as equally 'low' guages have more than three height distinctions, and that if one is in Principles of Phonology. Still, it is notable that not many lan-7:0 and 9:2 systems), the three height system can be made to work these feature systems do not go beyond what Trubetzkoy claimed three additional vowel 'heights,' so that despite initial appearances Jakobson, Fant and Halle 1951: 37), and in principle could generate distinctions (cf. the treatment of the FRENCH e/£ distinction by in both systems the feature of tenseness is available for further which allow for a maximum of three height distinctions. However, Jakobson, Fant and Halle (1951), and of Chornsky and Halle (1968), apparently different view is expressed in the feature systems of for height mentioned above. The present results confirm this. An of height distinctions is two, and that the maximim number of distinction is four for both height and backness, with the exceptions There seems to be general agreement that the minimum number

a third degree of backness out of the possible four. The fact that and would be most simply and accurately characterized as having interesting, but does not affect universals or typology. means than the more usual unrounding of a back vowel is of course this position in the vowel space is achieved by different articulatory the vowel space /u/ is simply a central vowel, between /u/ and /u/, by linguists for the sake of an ideal of classificatory neatness. In phonological features." The features, I might add, are made up eter space," rather than by "a strict decomposition in terms of identification of its approximate place in a multidimensional paramadds that "perception of a vowel probably operates with a direct has found approval elsewhere (see Anderson 1975; 299), Fant also unless some other feature distinguishes it from /ti/ or /u/. While problem is that /u/ cannot be either back rounded or front rounded has been much discussed (see Fant 1973; 192-201). The general i.e. a set like /i û u u/. The corresponding problem in SWEDISH Fant's suggestion of an additional 'classificatory' feature labial both the interior vowels of a set of four high vowels are rounded, problem, found only in NORWEGIAN in the sample, occurs when ize the different degrees of backness in nearly all languages. A binary features, backness and rounding, is sufficient to charactertion does not express why this is so (see Sec. 1.2). Use of two than front unrounded or back rounded, though of course the convensaying that front rounded and back unrounded are more marked Halle, for example, have a marking convention (1968: 405, no. XI) establish the connection between the two features. Chomsky and feature system, some kind of separate statement is necessary to no doubt chiefly for articulatory reasons. When this is done in a ship of backness and rounding, but to continue to use two features, has become a kind of tradition in phonology to notice the relationsame time he remained reluctant to use a single feature, and in and back rounded as the 'extreme' degrees of the feature; but at the subsumed them under the notion of 'timbre,' with front unrounded tems whether backness or rounding was a distinctive feature. It fact made a major point of determining for particular vowel sysrealized that the two articulatory features were interrelated, and pretation of the features of backness and rounding. Trubetzkoy maximum of four degrees conceals some problems in the inter-As for the 'backness' dimension, general agreement on the

A related problem for feature systems is the interpretation of the vowels /I U/ in the systems 9:2" and 10:3". Doubtless these would be classified by the tenseness or pharyngeal expansion feature, but the problem remains that the contrast between these vowels and /i u/ is one of vowel quality, i.e. a difference in acoustic height

and backness. Surely, the relative rarity of such systems and their complementary distribution with vowel systems containing front rounded or back unrounded vowels has to be explained in terms of the place of these vowels in the vowel space. The atomistic feature approach, in separating tenseness (or pharyngeal expansion) from the general vowel quality features, fails to express a significant fact about vowel system typology.

## 3.4 Interior vowels

mid interior vowels and only one high one. interior vowel /e/, CHEREMIS (8:3') and KOREAN (9:3') with two are some exceptions. I find, in addition to these cases with one at the lower positions than at the higher ones, but he notes that there states a similar rule: that there are not more backness distinctions evidence one would look for to test the validity of the proposed stances, five languages (out of nine) with 4:1, three (of five) with interior vowel system, it is phonetically mid in about half the ining an 'indeterminate' vowel /ə/, as Trubetzkoy does. Hockett rule, it will hardly do to reclassify these counterexamples as havkind of system (or one with /8/ but not /8/) is the main kind of \*5:1, 12 (of 29) with 6:1, and two (of three) with 7:1.) Since this mid rather than high. (Note: in languages with only /i/ in the vowel column must have a high vowel. This is only trivially true has often been commented on. Trubetzkoy says that an interior in that the /i/ of systems 4:1, 6:1, 7:1, etc. is often more like /a/, The relation of the interior vowels to the front and back vowels

A weaker version of these rules, stated as 10., seems to be generally valid:

 Languages with two or more interior vowels always have a high one.

There are 31 such languages in the sample and one exception, HOPI with  $/\delta/$  and  $/\delta/$  (type \*6:2).

Another of Trubetzkoy's rules is restated here as 11.

 The number of vowels in a column of interior vowels cannot exceed the number in the front or back columns (low vowels excluded).

There are 39 languages in the sample with a height contrast in the interior vowels; one, MANDARIN CHINESE (#5:2), with /inbau/

is an exception to the rule. MANOBO, with a similar arrangement in the literature (see Sec. 2.4 on the \*5:2 system) is the only other exception cited

a back rounded vowel of the same height. (This rule, of course, again, six languages with 4:1 in which the /i/ and /u/ differ subnon-low back unrounded vowel of a given height generally implies leaving another 59 languages for which the rule holds true. stantially in height, and all five languages with \*5:1 (a total of 11). pletely for /a/.) There are some exceptions, MANDARIN CHINESE cannot be generalized to the low vowels, since it would fail comholds true. A corresponding rule, not stated by Sedlak, is that a remain 65 languages with back unrounded vowels for which the rule languages with 4:1 which have /ə/ as the interior vowel. There MANDARIN CHINESE is an exception to this rule, as are the five of a given height implies a front unrounded vowel of the same height. present sample (the rule applies to 21 languages, including two with back rounded vowel at the same height. This is always true in the vowel of a given height implies both a front unrounded vowel and a be stated separately. Sedlak, for example, says that a front rounded 'central' rounded vowels). He also says that a back unrounded vowel The relation of interior vowels to front and back vowels can also

## Front and back vowels

The number of height distinctions in front vowels is equal to or greater than the number in back vowels.

and back vowels. There is thus a general tendency toward symmesymmetry there. In the vertical arrangement of interior vowels, try in this sense, though other factors contribute to overall symtypes except 4:0) show equal numbers of height distinctions in front seen from Table 7, the great majority of languages (all common vowel, I have counted it in the back series. On the other hand, in both front rounded and back unrounded) are asymmetrical. It is (7:2), MANDARIN (\*5:2). However, all eight languages with the or back unrounded), though there are some exceptions: ALBANIAN they generally all have the same degree of backness (front rounded metry. Systems with two or more interior vowels generally show to be low central, while the latter is front (lower-mid). As can be the 4:0 system, /a/ is typically lower than  $/\mathcal{E}/$ , and I have taken it from both. In the 6:0 system, where /a/ contrasts with a low front can be either included in both front or back series, or excluded ;3' interior vowel system (i.e. three interior vowels including This rule presents no real interpretation problems, since /a.

be found in vowel systems (cf. Chomsky and Halle's rule (10), 1968: difficult to say to what degree a property of overall symmetry is to

Table 7. Height contrasts in front and back vowels

|             | front = back        | back  |                     | fron         | front > back        | front < back |
|-------------|---------------------|-------|---------------------|--------------|---------------------|--------------|
| type        | no. of<br>languages | type  | no. of<br>languages | type         | no. of<br>languages | type         |
| 3:0         | 23                  | 8:3   | w                   | 4:0          | 13                  | **5:1        |
| 4:1         | 9                   | 9:2   | 7                   | <b>%5:0</b>  |                     | **6:0        |
| 5:0         | បា                  | 9:2"  | w                   | #5: <u>1</u> | (J)                 |              |
| **5:1       | 4                   | 9:31  | 4                   | *6:0         |                     |              |
| <b>*5:2</b> | _                   | 10:2  | 2                   |              |                     |              |
| 6:0         | 7                   | 10:31 | -                   | #6:21        | 2                   |              |
| 6:1         | 29                  | 10:3" | 2                   | <b>*7:1</b>  | w                   | T            |
| 7:0         | 11                  | 11:3  | ,,                  | *8:2         | 2                   |              |
| 7:2         | 14                  | 1     |                     | *9:2         | 1                   |              |
| 8: 1        | **                  | total | 177                 | total        | 28                  | total        |

## 3.6 Correlations between the basic vowel system and the systems of long and nasalized vowels

short /a/ is reported to be more centralized than the long /a//. lower than the corresponding short vowel. In seven languages the Other quality differences are not common enough to make generali another 5% (five languages) one or both of the long high vowels is simply overlooked in many phonemic descriptions.) However, in that the real proportion would be higher, and that this detail is of corresponding positions is centralization (laxing) of the short vowels of the two systems are equal in number and arrangement, zation worthwhile. (19 languages) of the languages with long vowels. (It seems likely high vowels, i.e. short /IU/ versus long /i' u'/, reported in 20% monly reported difference of quality between long and short vowels while 8% have more short than long vowels. By far the most com-19% the long vowel system is larger than the short vowel system, either identical in quality or showing minor differences. In another have contrasting long and short vowels. In most cases (70%) the 3.6.1 Long vowels Nearly half (45%) of the sample languages

There is a tendency for high and low vowels of a short long vowels. vowel system to be more central than the corresponding

- 3.4.2 Nasal vowels As for the nasal vowel systems, the well known universal stated as 14. (cf. Ferguson 1966, Ruhlen 1975) is confirmed by the sample.
- 14. The number of vowels in a nasal vowel system is equal to or smaller than the number in the oral vowel system.

The sample has 50 languages (24%) with nasal vowel systems, which compare with the basic systems as shown in Table 8.

| 30    |   | 22                | n of languages | Z o |
|-------|---|-------------------|----------------|-----|
| > v v | ٧ | $V=\widetilde{V}$ |                |     |

The one apparent exception to the rule, OJIBWA, is not a real one since, although the short vowel system is 3:0 and the nasal vowel system 4:0, the long vowel system is also 4:0, and the nasal vowels are actually long. (There is, in addition, a system of short nasal vowels, only marginally contrastive and not counted as part of the phonemic system, of the type 3:0.) So actually, the nasal vowel system is identical in structure, if not contrastive function, to the oral vowel system. As for the 28 languages in which the nasal system is smaller than the oral, the following tendency, in agreement with previous work (Ruhlen 1975), is found:

15. If a nasal vowel system is smaller than the corresponding basic vowel system, it is most often a mid vowel (front, back, or both) that is missing from the nasal system.

This is shown in Table 9. The numbers do not add up because some languages fall into two categories.

Table 9. Relation of nasalized systems to larger basic systems

# Vowel Dispersion: An Explanatory Model

Vowel system typology and the associated universals can be explained, in large part, by the principle that the vowel phonemes of a language tend to disperse evenly in the available phonetic space. Using a characterization of the vowel space in terms of the first three formants, and a measure of dispersion, Liljencrants and Lindblom were able to construct theoretical vowel systems that corresponded closely to a substantial number of actual vowel systems, though there were some discrepancies, especially in the interior vowels of larger systems.

I have made some revisions in the model which lead to a better fit; in this section I present my revised model and examine the extent to which it predicts actual vowel system typology. Lindblom, in a recent paper, has incorporated several revisions into the original model which correspond roughly to the ones I have made, though mine are mathematically cruder. As far as I can see my results are similar to, but not the same as Lindblom's. Since his new model has not been presented in detail, and since my own beginning point was the original L&L model, in what follows I compare my revised model chiefly with the original.

eleven vowel system. Only a few systems in the sample approach the high vowels, and an interior mid vowel appears first in the eleven and twelve vowel systems have five degrees of backness in in the high vowels, with no interior mid vowels. The nine, ten, and 6:1 (i.e. over half the sample languages). For larger systems points to the perimeter of the space, and too much space between eral defects of the model seem to be a tendency to push all vowel (interior vowels /I U/) and CHUVASH (+6:2') with /ti i/. The genthis arrangement of interior vowels, three languages with 9:2" the model is defective in producing too many interior high vowels. which are close matches for the empirical systems 3:0, 4:0, 5:0 the optimal arrangement. This model generates vowel systems a point in the space. For a given number of vowel points, the conaverage of F2 and F3. To disperse vowels in this space L&L set The seven and eight vowel systems have four degrees of backness figuration giving the maximum sum of distances between vowels is tween all pairs of vowels in the space, with each vowel defined as up a computer program to maximize the sum of the distances besional space in which one dimension is F<sub>1</sub> and the second is a weighted /i/ and /u/. 4.1 The L&L model The vowel space is defined as a two dimen

4.2 Optimal vowel system. A further point which L&L did not try to account for is the optimal size for vowel quality systems (five vowels), which must, in some sense not yet defined, depend on a balance between the maximization of perceptual distance between vowels and maximization of the information content of the speech signal, the former favoring fewer vowels further apart, the latter more vowels. Theoretically, this optimal size should be predictable from such factors as the limits on the human ability to distinguish vowels, the average amount of noise in the speech situation, the average information content of spoken communications, the relative contribution of consonants and vowels to the total information content, and so on. Since a number of these factors seem difficult to quantify, much less to relate to each other in a principled way, we have to be content for the moment simply to observe that the preference for five vowel systems is a fact.

it might reduce the number of vowels on the perimeter of the space. to be a plausible technique for dispersing the vowels, and I thought space (if it is adjacent) to an equal degree, but exerts no repulsive which 'repels' its nearest neighbors and the perimeter of the vowel in the vowel space, then each vowel can be thought of as a point of the vowel space. The checkers are pushed around until a smallneeded for this is a set of checkers and a set of graduated outlines are allowed to grow until they bump into each other or the sides of force on vowels further away in the system. This seemed to me rapidly.) If the center of each vowel circle is considered its locus est vowel space is found, and one generally becomes apparent quite until the smallest possible vowel space was achieved. All that is stant diameter, and the vowel space was 'shrunk' around them the vowel space. Actually, I kept the vowels as circles of a conthat a number of vowel circles are set into the vowel space, and for a given number of vowels in the vowel space. (One can imagine optimal arrangement is that which allows the maximum diameter the vowels as (equal) circular areas rather than as points, and the 4.3 Revised model In my revision of the L&L model I define

The relative dimensions of the perceptual vowel space are a problem because it is not known how the acoustic signal is modified perceptually. I think there is some basis for reducing the  $F_2$  dimension in the perceptual space (distance from /i/ to /u/) to about half the scale it has in the acoustic space, i.e. to half the scale of the  $F_1$  dimension (distance from /a/ to /i/). Flanagan has found that it takes a considerably greater change in  $F_2$  than in  $F_1$  to make a perceptible difference in vowel quality. (While Flanagan's figures for different vowels vary considerably, the average change in  $F_1$ 

needed to get 80% judgments of a change in vowel quality was about 30 hz, while the change in  $F_2$  needed to get similar judgments averaged about 75 hz.)

Lindblom, in coming to grips with this problem, has made a similar, though more complex, change in the model, reducing the contribution of  $F_2$  (and higher formants) to the perceptual space in proportion to how low  $F_1$  is. High vowels /i u/ with low  $F_1$  suffer the greatest reduction in the theoretical perceptual salience of higher formants; i.e. the distance between /i/ and /u/ is considerably reduced. As an empirical basis for this change Lindblom cites data on DUTCH vowels, showing that confusions between vowels are correlated strongly with differences in  $F_1$ , but weakly with distance in an  $F_1$ - $F_2$ - $F_3$  acoustic space.

This change of scale makes the theoretical model of the vowel space correspond much more closely than a strictly acoustic scale to the empirically determined average dimensions of vowel systems As observed earlier (Sec. 3.2), the horizontal distance /i-u/ is empirically more or less equal to the vertical distance /a-i/, whereas in the original L&L model the former is about twice the latter. It would be nice to be able to say that this change in scale is directly motivated by our understanding of vowel perception. However, as it stands we only have a few general indications, just cited, that  $\mathbf{F}_{l}$  is more important perceptually than higher formants. The proper weighting remains to be determined.

In Fig. 11 the vowel systems predicted by the revised model are compared with the predictions of the original model. An advantage of the revised model is that it allows construction of 'reasonably good' non-optimal systems, some of which are offered for comparison in Fig. 11. The general criterion I adopted for such systems was that the diameter of the vowels should be larger than in the next larger optimal system. For example, the alternate seven vowel system is better (the vowels have a larger diameter) than what one would obtain by simply removing a suitable vowel from the optimal eight vowel system.

(continued next page)

No. of vowels L&L's mode £ d

m 4 ü 0 ŝ

(alternate)

e/ö 23 u/o u/u o

G O 8 0 Ė 0 5

e/ö 4 U 0 5

6/6 0/0 1 0/0 8 m p 1/11 Ü

0

20

2

G

F

14

E

Ξ

5

T.

F

c

p 0/5 \*\*\* B

P

Revised model

e/3 90 F

12

e/ n/n o c

þ u n/u

ø 8 e/\* 0 Œ

e/8

0

(alternate)

8

0/11

8

è

Ü

c

p

F

5

No. of vowels

Lå L's model

p

11 + 11

VOWEL SYSTEMS

Revised model

0 p) o: 6 P u F 0

Figure 11

20

# 4.4 Comparison of predicted and actual systems

and agree with actual types. Three vowels The predictions of the two models are the same

very difficult to reposition the remaining four vowels so that they way, if you remove a vowel, say /2/, from the 5:0 system, it is number of vowels. the 3:0 or 6:1 systems, even though they are close to the optimal will make use of the extra space; most of it just goes to waste. tem, but much smaller than in the 3:0 system. To put it another diameter in this system is only slightly larger than in the 5:0 sys generates 4:0. An additional contribution of the revised model is This may explain why four vowel systems are less common than that it shows the four vowel system to be inefficient — the vowel for both the 4:0 and 4:1 systems, whereas the original model only range anywhere from  $/\epsilon$  / through /ə/ to nearly / $\pm$ /. This allows Four vowels The revised model allows the fourth vowel to

closely to the 5:0 type. The revised model shows a slight shift of NESE and GARO), but it is not a general trend. /u/ toward /u/. Two languages in the sample show this (JAPA-Five vowels Both predictions are similar, and correspond

alternate system is reasonably close to the less common 6:0 type

Six vowels Both models predict the common 6:1 system.

generates a relatively unnatural system with both /u/ and /i/. (ALtem (found in three languages in the sample), while L&L's model comes a good deal closer, in generating the intermediate 7:1 sysfairly close to 7:0. seven vowel systems, 7:2 and 7:0. However, the revised model the predicted eight vowel system by removing a low vowel. BANIAN, with 7:2, comes closest to this.) An alternate system is Seven vowels Both models fail to generate either of the common The empirical 7:2 system can be obtained from

VOWEL SYSTEMS

8:2' with both /u/ and /i/, as predicted by the original model. since 8:1, 8:2 and 8:3' are all attested. There are no cases of revised model seems to be reasonably close, in predicting 8:2, Eight vowels There are no common eight vowel systems. The

being only two interior high vowels. closest to the original model, but is still not a good match, there dicting three interior high vowels /h u i/. The 9:2" system comes common 9:2 system. The original model is badly off here in pre-Nine vowels The revised model offers a good match for the

actual systems 10:2 and 11:3 are predicted by the revised model. of the interior vowels, which is closer to the actual systems. Both original model again predicts too many high interior vowels, while the revised model generates a more nearly vertical arrangement tems of these sizes to make detailed comparison worthwhile. The Ten, eleven and twelve vowels There are too few actual sys-

also given, showing that the improvement is found in the larger comparison the number of good matches for the original model is vowels, or low vowels; in a few cases /u/, but never /i/). For most cases the vowels to be removed are interior vowels, mid vowel systems. 3) obtainable by removing two vowels from an optimal system. (In ing one vowel from the optimal system of the next larger size, and 1) good matches for the predicted systems, 2) obtainable by remov-I give the types and numbers of actual vowel systems which are vowel system types can be judged in the following table, in which The general success of the revised model in predicting actual

Table 10 a

| 14 (7%)                               |            | 46 (23%)            | total       | 144 (70%) | total       |
|---------------------------------------|------------|---------------------|-------------|-----------|-------------|
|                                       |            | -                   | 10:3        |           |             |
|                                       |            | -                   | <b>*9:2</b> | -         | 11:3        |
|                                       |            | -                   | 0:9**       | 2         | 10:2        |
|                                       |            | -                   | *6:0        | 7         | 7:2         |
| -                                     | 10:31      | -                   | *5:0        | 1 10      | 7.0         |
| 4                                     | 9:31       | 2                   | 8:1         | ين ل      | ) ;;<br>, , |
| w                                     | 9:2"       | 2                   | **5:1       | 62        | 1 0         |
| w                                     | 8:31       | Un                  | 1:5: I      | 0 0       |             |
| 2                                     | *6:21      | 14                  | 7:2         | n 4       | , H         |
|                                       |            | 11                  | 7:0         | 1.0       | 4 4         |
| ,                                     | #5:2       | 7                   | 6:0         | 2 2 3     | 2 2         |
| no. of<br>languages                   | type       | no. of<br>languages | type        | languages | type        |
| remove two V from<br>predicted system | remove two |                     | predicto    |           | 800         |

| no. of languages | type  | Table 10.b L&L m                             |
|------------------|-------|----------------------------------------------|
| 23               | 3:0   | odel                                         |
| 13               | 4:0   | related to                                   |
| 55               | 5:0   | L&L model related to empirical vowel systems |
| 29               | 6:1   | vowel                                        |
| 120 (58%)        | total | systems                                      |

vowels qualities known to be distinct in some of the world's lanimagine the vowel space divided into 16 compartments representing guages (see Fig. 12). ble random arrangements of a certain number of vowels. Let us arrangement of vowels. This can be done by an example of possisome clear way from what would be predicted by a more random this it is necessary to show that the systems predicted differ in predict possible vowel systems, in order to actually demonstrate vious that in some sense the L&L model (and the revised version) 4.5 Comparison with random hypothesis. While it seems ob-

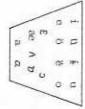



Figure 12

obtained by the following combinations: arrangements of perceptibly different vowels. Given the 16 vowels. persion theory, and explain vowel system typology as due to random percentage which the 5:0 system represents of all actual five vowel which is reasonably close to a 5:0 system, when compared with interpreted somewhat loosely, matches for the 5:0 system could be the total possible number of five vowel systems is 16://11:5:=4,368. systems (86%), then obviously we can dispense with the vowel disthe total number of combinations, comes anywhere near the actual bination of five of the 16 vowels. If the number of such systems We then consider possible five vowel systems containing any com-

| (28 co | combinations) | (33 comb |
|--------|---------------|----------|
| · />   | /a/a/a /      | a/v      |
| \E/æ   | /a/c/o        | \e/£/æ   |
| e      | u /           | i        |

$$\begin{cases} e & u/o \\ \frac{e}{a/a/a/a} & a/c \end{cases}$$

etc.), which still adds up to less than 10% of the possible random combinations. Another 300 or so possible combinations come reasonably close to some other attested five vowel system (\*5:1, The total of 61 vowel systems represents just 1% of all possible

combinations. In other words, 10% of the random possibilities account for 100% of attested five vowel systems. Clearly, the random hypothesis is untenable in anything like this form.

## 4.6 Limits to predictability

if it just showed snow falling in the right parts of the world at the fall within a few feet. In fact, a model might be judged a success probably be quite a success just to predict the average annual snowdict the skiing conditions in Sun Valley in January, 1980. It would would be unreasonable to judge a model a failure if it failed to predensity of the atmosphere, rates of water evaporation, etc. of weather systems. It is possible for such models to simulate ogy might be the kinds of predictions made by theoretical models right times of year. tion at different seasons, distribution of continents and oceans, the earth, rate of rotation, amount and distribution of solar radiareal weather conditions, beginning with factors such as the size of model lies in the fact that it separates these norms (the predicted rangements which are abnormal or altogether unattested. An analvowel systems) on a principled basis from other conceivable arbut clustering of types around general norms. The success of the not be overemphasized. What we find is not absolute predictability The extent to which vowel quality systems are predictable must

of the systems which can only be obtained by altering a predicted 9:2, 10:2 and 11:3, so this remains a random element. Third, all degree is built into the whole classification of vowel systems I have mid' /e/ and /o/, rather than /E/ and /o/. Variability of about this Of 55 actual systems, 13 are explicitly described as having 'higher ical model predicts /E/ and /ɔ/ as the mid vowels of a 5:0 system. phonetic value of the vowel phonemes of any particular type of systhat the most frequently utilized vowels in any language are likely for the model. Finally, it must be remembered that a set of system (30% of the sample of course represent a degree of randomness between these two vowels in the predicted systems 6:1, 7:1, 8:2, model are judged. Another instance is the assignment of /i/and presented, and has to be kept in mind when the predictions of the tem varies from one language to the next. For example, the theoretdegree of randomness in vowel system typology. Second, the exact nasal /ieauo/ (Greenberg 1966), this still represents a considerable to be those that are typologically the most common, i.e. short, nonranges from three to about twelve. Even if we take note of the fact typology. First, the number of basic vowel qualities in languages /ü/ to the same general position. The model makes no distinction Randomness is found in several different aspects of vowel system

complicating factors has been ignored. Vowel quality may play an auxiliary role in distinguishing short oral vowels from other vowel types, such as long vowels, nasal vowels and diphthongs. Languages which have similar basic vowel quality systems may differ considerably in the employment of vowel quality in any of the other functions.

## 4.7 Prediction of universals

Since the dispersion model generates the major empirical vowel system types, and since universal rules are derived from typology, it obviously follows that many of the empirical universals are in fact predicted by the model. This is my justification for saying that the universals do not have any kind of independent status, but are simply instances of much more general principles, namely those built into the dispersion model. This can be seen in detail in the vowel hierarchy based on vowel systems generated by the model (see Fig. 13). This ordering of vowel types corresponds pretty closely to the empirically based orderings presented in Fig. 10.

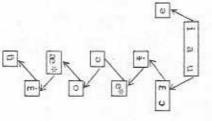



Figure 13. Vowel hierarchy predicted by model (\*These two vowels could be interchanged.)

To put it another way, most universals which concern the quality of the vowels in a system of a given size are predicted by the model, the seven vowel systems being an exception. On the other hand, universals concerning the number of vowels in a basic system are not predicted. The situation is summarized in the following table (Table 11).

Table 11. Comparison of actual universals with predictions of model

|         | Universal*                                                                                                | Prediction                                                                                                                                            |
|---------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| - 5     | <ol> <li>All languages have /i a u/.</li> </ol>                                                           | -Three vowel minimum not predictedPredicted for languages with three or more vowels.                                                                  |
| N       | Four V include /i/ or /e/.                                                                                | -Predicted.                                                                                                                                           |
| ÇQ<br>- | Five V include $/\varepsilon/$ , generally also $/5/$ .                                                   | -Both $/\epsilon/$ and $/\circ/$ predicted, but not ranked.                                                                                           |
| 4       | Six V include $/5/$ , also $/\frac{1}{4}/$ or $/e/$ .                                                     | -Predicted. Model prefers /i/as sixth V.                                                                                                              |
| ÚI.     | 5. Seven V include /e o/ or /i e/.                                                                        | -Model predicts /e i/, which is wrong, but at least involves two of the correct V.                                                                    |
| ō,      | 6. Eight V include /e/.                                                                                   | -Predicted (for seven V).                                                                                                                             |
| 7.      | 7. Nine V include /o/.                                                                                    | -Predicted (but note high number of actual exceptions).                                                                                               |
|         | 8. Five V is optimal number.                                                                              | -Not predicted.                                                                                                                                       |
| 9.      | <ol> <li>Height distinctions equal<br/>or exceed backness dis-<br/>tinctions.</li> </ol>                  | -Not predicted. (This feature is<br>built into the model on the basis<br>of typological evidence. There<br>is some experimental basis<br>(Sec. 4.3).) |
|         | <ol> <li>Interior height distinctions<br/>do not exceed front or back<br/>height distinctions.</li> </ol> | -Predicted.                                                                                                                                           |
| :       | Two interior V include one high V.                                                                        | -Predicted.                                                                                                                                           |
| 12.     | Height distinctions in front V equal or exceed those in back V.                                           | -Predicted.                                                                                                                                           |

\*See Appendix II for a restatement of universals. Those dealing with the relation of the basic vowel system to other systems are not included in this chart.

# 4.8 Functional nature of the universals

The model of vowel systems presented above is a functional one in the sense that it relates phonological structure to factors operating

will tend to converge on the same range of types or norms, in spite me to believe that large collections of this sort of descriptive data pected before, on the basis of other data collections, encourages of a number of methodological and theoretical uncertainties. of accurate linguistic descriptions. I have tried to show, in this tions arrived at here concerning vowel systems were known or susing. The notion of 'dominant type of sound system' has to be estabbehind it clearly show how this notion can be given a concrete meanvowel space and the achievements of modern phonetics which stand and perception of human speech sounds. The L&L model of the stract; it has to be exemplified by close study of the production nological system to be those which make the most efficient use of since the linguistic function of sounds is to distinguish different paper, how a data base such as the Stanford Phonology Archive can lished by collection of a sufficiently large and representative group general notion like 'efficient use' cannot be appealed to in the abthe human sound production and perception abilities. Of course a meaningful elements, one would expect the dominant types of phoin the ordinary use of language. Stated simply, the idea is that be used for this purpose. The fact that a number of the generaliza-

sense a functional model achieves a type of explanation which lies on to an explicit phonetic model that we can justify either. In this tually true or appropriate for human language. It is only by moving an opposite marking convention, should be the ones which are actures or this marking convention, rather than different features or facts, however elegantly expressed, fails to explain why these feathe generative model, in stopping with the mere statement of these unrounded vowels reflects a well established typological fact. But effect that mid vowels are less complex than front rounded or back in the world's languages; similarly, the marking convention to the ficient for characterizing the kinds of vowel contrasts that occur round), interpreted as binary features, are obviously largely suffeatures themselves. For example, the features [high, low, back, particular system of features and the system of relations between of rules that typically occur in languages, the justification for a have the virtue of characterizing the kinds of contrasts or types 'classificatory' level). While features, when properly defined, of features and distinctions within each feature (only two at the description to feature systems, with a relatively limited number In contrast generative phonologists have sought to reduce phonetic explicit phonetic models, in this case a model of the vowel space. generative phonology. First, the functional approach includes highly I discuss briefly here, from the major current phonological theory, features (marking conventions, etc.) is not readily apparent in the The functional approach differs in several respects, two of which

beyond the range of the formal descriptive devices of generative

give a sufficient basis for explaining phonological systems. that explicit phonetic models and the concept of perceptual contrast is quite successful, and this confirms, for this area, the assumption guages is just that this organization constitutes a set of limitations on the contrastive role of the phonetic materials. To put it another However, in the limited area of vowel systems, a functional model ing for the entirety of phonological universals remains to be seen. not. Which of these viewpoints will prove most revealing in accountin addition to innate phonetic capacities, while the functionalist does way, the generativist assumes complex, innate phonological structure what is important in the phonological organization of individual lanfunctional principle of perceptual contrast. From this point of view in contrast, emphasizes the centrality of phonetics and the single formal devices in linguistic discriptions. The functionalist approach, phonological universals simply by investigating the interaction of and the phonologist can expect to learn something important about of a language constitutes a highly complex formal organization imthen of course special attention must be given to this formal level, posed on the raw phonetic materials. If this assumption is true, in the human mind is highly formal, that the phonological structure this appears to be that the organization of phonological information for description of phonological processes. The assumption behind catory feature system and development of the proper formal devices logical universals has been given to definition of the right classifigenerative literature, primary emphasis in the search for phonoof distinctive features gives evidence of this. However, in the careful attention given by Chemsky and Halle to the phonetic basis phonetics plays a prominent role in phonological universals. The of phonological universals. Most phonologists would agree that A second difference concerns the character and assumed basis

#### Universals restated APPENDIX I

- All languages have /i a u/.
- ω N :-All languages with four or more vowels have /i/ or /e/.
- also have /5/. Languages with five or more vowels have /ɛ/. They generally
- Languages with six or more vowels have /o/ and also either /i/ or /e/, generally the former.

- Languages with seven or more vowels have /e o/ or /i a/. (The types /+o/ may be represented by /tt 5/.)
- 6. Languages with eight or more vowels have /e/.
- Languages with nine or more vowels generally have /o/.
- are those with close to this number of basic vowels. human language, and in general, the most common systems A contrast between five basic vowel qualities is the norm for
- The number of height distinctions in a system is typically equal to or greater than the number of backness distinctions.
- 10. Languages with two or more interior vowels always have a high
- The number of vowels in a column of interior vowels cannot exceed the number in the front or back columns.
- The number of height distinctions in front vowels is equal to or greater than the number in back vowels.
- There is a tendency for high and low vowels of a short vowel system to be more central than the corresponding long vowels.
- 14. The number of vowels in a nasal vowel system is equal to or less than the number in the corresponding oral vowel system.
- If a nasal vowel system is smaller than the corresponding basic vowel system, it is most often a mid vowel that is missing from the nasal system.

## Vowel categories used by Stanford Phonology Archive APPENDIX II

| 11000      | Y    | 1  | 1   |         |       | 1   |
|------------|------|----|-----|---------|-------|-----|
| Low        | R    | a  | a.  | 20      |       | 201 |
| Higher-low | Ω    |    |     | 8.      |       | 36  |
| Lower-mid  | 0    | >  |     | ÷       | Ç!    | en  |
| Mid        | 0    | Ħ: | ò   | 9       | Ö     | Ħ   |
| Higher-mid | 0    | C# | 0.  | e.      | Ö:    | 0   |
| Lower-high | U    | H  | ņ   | Ŧ       | Ü     | j-q |
| High       | п    | m  | ů   | 19-1    | ū     | ₩•  |
|            | Back | Ba | ral | Central | Front | FT  |

is not meant to present a phonetic or phonological theory of vowels the kinds of things that descriptive linguists say about vowels, and chart merely represents a convenient set of categories for labelling ways explained in the notes. It should be remembered that this tion by a tilde ("). The symbol (>) for 'retraction' is used in ad hoc Length is indicated in Appendix III by a raised dot ('), nasaliza-

## APPENDIX III List of sample languages by basic vowel system type

(Notes at the end of the list) ? Z:0 KABARDIAN<sup>1</sup>

i € // i· E· a· u· O·

|                   |              |                     |                |         |                       |      |         |          |                 |          |        |       | 4:0      |             |                |             |             |                      |        |         |                    |                                |            |            |                 |              |                  |                    |           |       |                    |              |           |              |       |                | 3:0            |  |
|-------------------|--------------|---------------------|----------------|---------|-----------------------|------|---------|----------|-----------------|----------|--------|-------|----------|-------------|----------------|-------------|-------------|----------------------|--------|---------|--------------------|--------------------------------|------------|------------|-----------------|--------------|------------------|--------------------|-----------|-------|--------------------|--------------|-----------|--------------|-------|----------------|----------------|--|
| WICHITA           | PAEZ         | CNETCA              | NOOLNA         | A TOTAL | NAVAHO                | MOXO | MAZATEC | MALAGASY | HUPA            | CHAMORRO | CAYAPA | CAMPA | ALAWA8   | LANGUAGE    | WESTERN DESERT | TOTONAC     | TELEFOL     | TAGALOG'             | SHILHA | QUECHUA | PUGET SOUND SALISH | OJIBWA                         | NYANGUMATA | NUNGGUBUYU | MOROCCAN ARABIC | MANTJILTJARA | LAK <sup>4</sup> | KAROK              | JAQARU    | HAIDA | GREENLANDIC ESKIMO | GADSUP       | DIEGUENO" | AMUESHA      | ALEUT | ALASKAN ESKIMO | ALABAMAN       |  |
| 14.               | H            | -                   | -              |         | +                     | *    | jade .  | ۳.       | ۳               | jete     | 100    | 1     | 1-4-     | м           |                | #           | 1           | H                    | gala   | Н       | Н                  | н                              | H          | н          | ٠.,             | н.           | ***              | jan                | ju.       | μ.    | pde                | -            | -         | 0            | -     | pale           | н              |  |
| m                 | 6            | E                   | 1 17           |         |                       | 7    | (5)     | m        | H               | B        | E U    | 0 0   | [7]      | a U//i∙a•u• |                | iau//i·a·u· | 9           | 9                    | B      | Di .    | n                  | n                              | D          | g.         | ae u            | 2 1          | 3 6              | a I                | 2         | a     | a                  | m.           | ы         | μ            | DJ.   | Di .           | μ              |  |
| 8                 | 2 2          | 0                   | 6              |         |                       | E    | 0       | D        | a (             | u ox     | 0      | 0     | <u>p</u> | 7.          |                | 7           | U//i·       | 0                    | П      | C       | C                  | 0/                             | 9/         | F          | -               | //           | 1                | 1//                | 1/1       | d     | 1/                 | 4/           | S.        | 0//          | п     | a//            | 0//            |  |
| π α// e. ε. ο. α. | a u//i E a u | 110                 | 1              | 1       | 2                     | -    | 0//i    | C        | 0// E · a · O · | ٩        |        | 7     | E        | j           |                |             | *           | 0                    |        |         |                    | **                             | U//i·a·u·  | ae щ∥/a•   |                 | a u//i·a·u·  | a u// i· a· u·   | U// i. e. a. U. o. | m//i·a·m· |       | a u// I·a·U·       | u// e- 3- o- | U//e a o  | o// e. a. o. |       | a u//i·a·      | a o// e- a- o- |  |
| ū                 | (7)          | 2                   |                |         |                       |      | (D)     |          | Ħ               |          |        |       |          | ņ           |                | •           | m           | X                    |        |         |                    | ņ                              | D)         | •          |                 |              |                  | i.                 | 12        |       |                    | pri<br>*     | ça        | 20           |       | <b>13</b>      | 73<br>•        |  |
| ú                 | рэ           | F                   | B              | р       |                       |      | 91      |          | gu              |          |        |       |          | ÷           |                | •           | 121         |                      |        |         |                    | 3.                             | £.         |            |                 | 7            | -                | ÷.                 | Ę         |       | Ģ                  | 0            | 0         | 0            |       | E.             | 0              |  |
| 9                 | F            | , m                 | р              |         |                       |      | 01      |          | 0               |          |        |       |          |             |                |             |             | . 2                  |        |         |                    | 0.                             |            |            |                 |              |                  | Ģ                  |           |       |                    |              |           |              |       |                |                |  |
| Š                 |              | O//i· E· a· O·//e u | U/1: 20: a. n. | 1       | 3// i. f. a. a.// F E |      |         |          | •               |          |        |       |          |             |                |             | £* a* u* o* | U(e o)//i·a·u·(e·o·) |        |         |                    | 1                              |            |            |                 |              |                  | 0                  |           |       |                    |              |           |              |       |                |                |  |
|                   |              | 1/a                 | U              |         | 1.0                   |      |         |          |                 |          |        |       |          |             |                |             | **          | 0                    |        |         |                    | (q)                            |            |            |                 |              |                  |                    |           |       |                    |              |           |              |       |                |                |  |
|                   |              | ¢                   | ì              |         | 10                    |      |         |          |                 |          |        |       |          |             |                |             |             | 0:                   |        |         |                    | U// i. E. a. o. // ī. ē. ā. ō. |            |            |                 |              |                  |                    |           |       |                    |              |           |              |       |                |                |  |
|                   |              |                     |                |         | 11                    |      |         |          |                 |          |        |       |          |             |                |             |             |                      |        |         |                    | 01                             |            |            |                 |              |                  |                    |           |       |                    |              |           |              |       |                |                |  |
|                   |              |                     |                |         |                       |      |         |          |                 |          |        |       |          |             |                |             |             |                      |        |         |                    |                                |            |            |                 |              |                  |                    |           |       |                    |              |           |              |       |                |                |  |

| ,i         |                        |              |       |              |            |         |               | 4:1          |
|------------|------------------------|--------------|-------|--------------|------------|---------|---------------|--------------|
| A WIV ALO  | WAPISHANA              | PASHTO       | MARGI | KWAKIUTL     | JIVARO     | CHACOBO | AMAHUACA      | ADZERA       |
| <br>:<br>: | ia iu//i a· i·u·//fāfű | iaeu//E·O·a· | iaeu  | iaou//i·a·u· | iamu//iãmū | 1340    | Ia wo // Ĩawo | iamo//i·a·o· |

| 250                         |       | 25          |                  | 5                 |                        |      |              |                            |                            |        |           |                             |                             |                            |         |         |          |       |                          |                                   |                    |            |                     |                     |                         |        |           |           |        |           |                           |                 | 5:0     |
|-----------------------------|-------|-------------|------------------|-------------------|------------------------|------|--------------|----------------------------|----------------------------|--------|-----------|-----------------------------|-----------------------------|----------------------------|---------|---------|----------|-------|--------------------------|-----------------------------------|--------------------|------------|---------------------|---------------------|-------------------------|--------|-----------|-----------|--------|-----------|---------------------------|-----------------|---------|
| MAORI                       | MAUNG | MIXTEC      | LUISENO          | TUVALE            | LAKKIA                 | KOTA | KHARIA       | KHASIIO                    | KALIAI                     | KUNJEN | KUNIMAIPA | JAPANESE                    | HAWAIIAN                    | HAUSA                      | HAKKA   | GARO    | GEORGIAN | GBARI | FULANI                   | EGYPTIAN ARABIC15                 | DIDO <sup>14</sup> | DAKOTA     | CANTONESE (TAISHAN) | BURUSHASKI          | BULGARIAN <sup>12</sup> | BASQUE | BATAK     | AINU      | AUYANA | ASMATIL   | AROSI                     | ATAYAL          | AWIYA10 |
| i E u o a // i· E· u· o· a· | ieauo | ieauo//īāŭō | IEaUO//I·E·a·U·o | ieauo//i.e.a.u.o. | 1 E a u 3 // 1 E a u 5 |      | ieauo//îĉaŭō | I E a U o// i. E. a. u. o. | i E a u O// i· E· a· u· O· | IEaUO  | ieauU     | i E a u o // i· E· a· u· ɔ· | i E a u O // i· E· a· u· O· | IE a U O // i· E· a· u· O· | c u s i | i Eau o | IEBUO    | ieauo | Ie ae Uo//i· £· a· u· ɔ· | IE a U O (a)// i. E. a. u. O'(a.) | iEnoce//E·ce·      | ieauo//īãũ | i æau o             | 13 EauO//i·E·a·u·O· | i E u o a               | IEauO  | 1 € a u o | i E a u o | ieauO  | i e a u ɔ | i & a u ɔ//i· &· a· u· ɔ· | i £ a u ɔ//i·u· | iEauO   |

VOWEL SYSTEMS

| IEææŪα//i·ə·u·Ο·α·                                 | ENGLISH (RP)          | *6:0          |
|----------------------------------------------------|-----------------------|---------------|
| uon//îEāŪĈ                                         | YUCHI                 |               |
| ie E a u o//i· E· a· n· o·                         | SONGHAI <sup>20</sup> |               |
| : 22                                               | SELEPET               |               |
| 108000                                             | PERSIAN               |               |
| i E ae U o a // i+ e+ ae+ u+ o+ a+                 | LITHUANIAN            |               |
| ie£auo//i· ɛ· a· u·//īgāŭ                          | CHIPEWYAN             | 6:0           |
| iüaëu                                              | MANDARIN              | 95:2          |
| ia i u o// i a i u o o                             | PAPAGO                | ***5:1        |
| iæəuO//i·E·æ·ə u·O·                                | EVENKI                | **5:1         |
| iEa a u//i·E·a·u·//īãű                             | TOLOWA                |               |
| i EawO//ĩã mõ                                      | OCAINA                |               |
| - CO                                               | NEZ PERCE             |               |
| i as a su U                                        | MARANUNGKU            |               |
| i Ea 並 u// i 丘 ā 差 ū                               | ISLAND CARIB          | <b>%5</b> ; 1 |
| ie ze a O//i'e e æ a · O · // $\tilde{\epsilon}$ 5 | SENECA                | *5:0          |
| i Eau o // i· g· a· u· o·                          | INDZ                  |               |
| 1 c 1                                              | ZULU                  |               |
| D 9                                                | ZOQUE                 |               |
| ieauo//?i·e·a·u·o·                                 | ZAN                   |               |
| iEauO// i·E·a·u·o·                                 | WALAMO                |               |
| i E a U n// i. E. a. U. n.                         | WIK MUNKAN            |               |
| IEaUO                                              | TZELTAL               |               |
| i Eau O//i e a u o //i g aŭ                        | TEWA18                |               |
| - H - //                                           | TELIGI                |               |
| р                                                  | SMADIL I              |               |
| n:                                                 | RYUKYUAN              |               |
| 1 E # u O                                          | RUSSIAN               |               |
| I E a U o// I· E· a· U· o·                         | POMO                  |               |
| i E a u O// i· E· a· u· O·                         | NUBIAN                |               |
| itauo//itea.u.o.                                   | NASIOI                |               |
| auo//fauo                                          | NAMA <sup>17</sup>    |               |
|                                                    | Ħ                     |               |
|                                                    | MALTESE ARABIC        |               |
| IEaUO                                              | MUNDARI               | 5:0           |
|                                                    |                       |               |

| 7:0                                                                                                                                                                                                                                                                                   | *6:21                                        | 6:1                                                                                                                                                                                                                                                                                                                                          | **6:0                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| BENGALI BURMESE 31 GA GBEYA 32 ITALIAN KPELLE NENGONE PORTUGUESE SEDANG 33                                                                                                                                                                                                            | HOPI<br>CHUVASH                              | ANGAS ARAUCANIAN BARASANO BODO CARIB CHONTAL CHUKCHI DAGBANI <sup>22</sup> DELAWARE <sup>23</sup> GILYAK <sup>24</sup> GOAJIRO <sup>25</sup> GUARANI IRAQW ITONAMA KANURI KET <sup>26</sup> KURUX MALAY MALAYALAM PICURIS POLISH SA'BAN SIRIONO <sup>27</sup> TARASCAN <sup>28</sup> TICUNA WU YUKAGHIR <sup>29</sup> YUKAGHIR <sup>29</sup> | EWE <sup>21</sup>                              |
| i E æ a u o o// i £ æ a û o i e £ a u o o// i æ û i e £ a u o o// i æ û û o i e £ a u o o// i æ a û o o i e £ a u o o// i · e · £ · a · u · o · o · i e £ a u o o// i e č ũ o i e £ a u o o// i e č ũ o i e £ a u o o// i e č ũ o i e £ a u o o// i e č ũ o i e æ a u o o// i e č ũ o | i E B a B o// i ä+ ö+ a+ ë+ o+<br>i E B wu a | E a w u o /                                                                                                                                                                                                                                                                                                                                  | i £ a u o ɔ//i· ¿· a· u· o· ɔ· (e·)//fe a uōɔ̃ |

(7:0)

TUNICA

(3)

cone 3

78:1 8:31 **#7:1** 9:2" 9:2 8: 1 8:2 7:2 AKAN<sup>41</sup> LUO43 RUMANIAN YAY<sup>39</sup> GREBO42 LAO APINAYE 40 IMOTO MAZAHUA KAREN CHEREMIS NUNG LAHU CHAM ICELANDIC JAVANESE EWONDO SUNDANESE 38 TURKISH KIRGHIZ TIBETAN MIANKA MONGOLIAN КОНО37 HUNGARIAN GERMAN<sup>36</sup> RAWANG NAGA KOMI DAFLA BRETON 35 AMHARIC ALBANIAN WOLOF34 SENTANI MAO WASHKUK 10 E E E 1 e ie E & 3 u o & i. E. ac. U. 5. a. u. 5.// i e ie Eaeuos//i·e· E·a·e·u·o·s· ? i. E. a. u. u. a. a. ifa we out O//a i e a i a u o i E a we u O ie g a в ц э//i·e· g· u·o·э· tion has Ie gaudo o//IIãûû e e>gaudo> o//Iĕgããão 9.0 0 28 0 0 0 Q €а≟опо EaiauO//i E a i e u O e ú Ó U o a // I· e· ú· Ó· o· a· EaieuO Еашвис//i·е· Е·а·ш·в·и·о·ос EÜSaeUs/ire.u. 8. a. u. o. E m A 11 3 a // i. E. m. A. 11. 3. a. eat a u o £ th b u o ∞ // i· e· th· b· a· u· o· 0 O Eaunos//IEāmūs Eaw臣uoc//i e·E·a·w·臣·u·O·ɔ·c· Ealeuoo ubaluo//I.e.u.b.i.u.o. спуеоп Eateuoo E a o Eateuoo 115awu0 ă 11 0 11 0 // i· €· 11· 8· 11· 0· a· // a· попоа asauoo//a. c neg 3 EauUO 110 0 0 5 U D.

| 2:2                                    |
|----------------------------------------|
| SOMALI                                 |
|                                        |
| 22                                     |
|                                        |
| 10                                     |
| Lo.                                    |
| B                                      |
| d.                                     |
| ~                                      |
| o.                                     |
| 2                                      |
|                                        |
| I e ε ae Ú Ó a U ɔ//I·e·ε·a·û·Ó·a·U·ɔ· |
| 8                                      |
| ÷                                      |
| Ô.                                     |
| 50                                     |
| Ċ                                      |
| ů.                                     |

VOWEL SYSTEMS

\$9

10:2 9:31 IAI KOREAN AZERBAIJANI OSTYAK NORWEGIAN 1 e IE ae Üβaŭun//i e ae ω· ω· ë· u· ο· SOU TO O BB a th B th U o c

VIETNAMESE 1-1 0 E æ 1 δ a u ο ο//i' e ε æ α· û' 5' a · u· o' ο Ε æ 1 ε ∧ U ο ο// å·

10:31 AKHA 1 0 coneme 63

10:3" PANJABI i I E æa e u Ü Oα//ÎÎĒ æā ēū Ū Ō

? 10: 3" LOGBARA ile i. I. e. g. a. g. u. U. o. o. Eaku Uoo//

11:3 FRENCH e m ρus . a 8 u o 2 ox // ae 5 21

PACOH i ene E Frana ar ur on or or lc o von ne e ve i 3 a va

? 12: 3

Notes:

I have analyzed DIEGUENO /a/ as a neutral vowel.

The HAIDA vowel system presented here is not certain.

are pharyngealized (cf. DIDO (5:0)). Depending on the details, this could be a six vowel system. 4 LAK has three 'guttural' (gortanye) vowels. Possibly they

before /s/. word finally. Short nasalized vowels are the result of loss of /n/ OJIBWA long nasal vowels occur as independent phonemes

6 /E O/ occur in SPANISH loans.

parently, there is still some instability. TAGALOG /e o/ occur in ENGLISH and SPANISH loans. Ap-

a new contrast, /E/, though it is not an especially common vowel. 8 ALAWA probably derives from a 3:0 system, but has developed

after /i/ in a preceding syllable, but there is a certain amount of æ/ has a somewhat marginal status; it is chiefly derived from /a ò CHAMORRO /e o/ have been set aside as SPANISH loans.

consonant clusters. 10 AWIYA has a /a/, but it seems to be a transitional sound in

can find it only in unaccented position in the examples given. 11 The grammar says that /ə/ is an independent phoneme, but I

system. See Sec. 2.4 on two vowel systems. 1 The short vowels of KABARDIAN seem to form a reduced

A neutral vowel /a/ occurs unstressed in BULGARIAN.

Other CANTONESE dialects have quite different vowel systems.

allophonic variants adjacent to pharyngealized consonants. If not, this is a ten vowel system. seems to be a question as to whether they can be interpreted as DIDO has a full set (5) of pharyngealized vowels. There

tween / \( \) and /\( \), which are chiefly in complementary distribution. According to the grammar, there is a marginal contrast be-

This is difficult to evaluate.

though, apparently, it is not as long as the other long vowels. I treat /i/ as long. Phonemic status of long vowels uncertain. 16 The grammar treats /i/, which contrasts with /I/ as /ii/,

bution with [i]. 17 NAMA has an [e] which seems to be in complementary distri-

reported). 18 TEWA also has /œ/, which is at best marginal (three instances

contrast only finally. 19 SINHALESE has a /e/ that may be marginally contrastive. 20 The contrast of /e/ and / $\epsilon$ / is hard to evaluate. They may

21 Stahlke (1971) calls /E/ and /o/ 'retracted.'

tially in complementary distribution with /i/, but there seems to be 22 DAGBANI /e/ does not occur in open syllables and is par-

a certain amount of contrast.

23 It is not clear that DELAWARE /e/ is phonemic.

followed by velar spirant before consonant. 24 GILYAK has four unstable long vowels deriving from vowel

25 While /5/ is rare, /5i/ is very common.

phoneme /i/, though there is no clear evidence for this. very hard to judge. I have tentatively grouped them into a single unrounded vowels given in the grammar as distinct phonemes are seem clearly to be initial allophones of /E >/. The three central The grammar gives a ten vowel system for KET. But /e o/

unrounded vowel with friction and back tongue rounding or grooving ... not the same as the back unrounded vocoid found in other TUPI. 27 The symbol /i / represents "a voiced, high, close, front

GUARANI languages,"

after sibilants, sometimes being replaced by a long sibilant. The distribution seems suspicious, but there are minimal pairs with most of the other vowels. The situation is difficult to evaluate; in 28 The vowel /4/ is described as 'retroflexed,' and occurs only

any case the system borders on being 5:0. 29 The /e/ of YUKAGHIR is described as slightly retracted from

the position of  $/\mathcal{E}/$  and weakly labialized. Only four long vowels are

it appears that they must be in complementary distribution, with 30 The grammar lists both /i/ and /w/, but from the discussion

/i/ after palatalized consonants, /w/ elsewhere. 31 BURMESE has, in addition, four nasalized diphthongs.

/£ 3/ are harmonic pairs of /e o/, probably 'retracted.'

supposed to be six nasal vowels, but only four are exemplified. have creaky voiced counterparts which are distinctive. There are 33 According to the grammar, all the oral vowels of SEDANG

34 WOLOF /e/ has also been described as /b/.

BRETON /a/ seems to be a neutral vowel.

37 The long vowels always have falling pitch. /8/ and /∞/ merge 36 In some types of GERMAN, /E'/ is marginally distinctive.

in one dialect.

which can be considered nondistinctive, except for one very marginal environment 38 Nasal consonants cause extensive nasalization of vowels,

39 YAY /a/ is rare in closed syllables.

40 The grammar gives three back unrounded vowels, /w e A/,

but the examples do not establish a contrast.

42 GREBO /e o / are 'retracted' or 'muffled.' 41 The vowels /I & a U o/ form a harmonically 'retracted' set.

vided into tense and lax, or advanced and retracted sets. 43 LUO has extensive vowel harmony. The vowels can be di-

#### Language references APPENDIX IV

of Linguistics, Stanford University, Stanford, California 94305. quest from the Stanford Phonology Archiving Project, Department cating that it is given below under "Bibliography." A complete there. References not to be found there are marked a code letter. bibliography for the sample languages can also be obtained on refor all other languages referred to in this paper can also be found Working Papers on Language Universals (Fahrenholz 1976). References sample. Most can be found in their full form in the Bibliography to (R) indicating that the full reference is in Ruhlen 1975a;(B) indi-Abbreviated references are given here for all languages in the

AKHA Katsura 1973 ADZERA Holzknecht 1973 ALABAMAN Rand 1968 AKAN (FANTI) Welmers 1946 (R) AINU Simeon 1969 (R)

> ALEUT Menovshchikov 1968 (R) ALBANIAN Newmark 1957 ALAWA Sharpe 1972

ALASKAN ESKIMO Mattina 1970 (R) AMUESHA Fast 1953 AMHARIC Leslau 1968 AMAHUACA Osborn 1948

DAKOTA Boas and Deloria DAGBANI Wilson and Bendor-DAFLA Ray 1967 (R) CHUVASH Andreev 1966 (R) CHUKCHI Skorik 1968 (R) CHIPEWYAN Li 1946 DELAWARE Voegelin 1946 CHONTAL Keller 1959 CHINESE Chao 1968; Cheng CHEREMIS Ristinen 1960 CHAMORRO Topping 1973 CHAM Blood 1967 CAYAPA Lindskoog and Brend CARIB Peasgood 1972 (R) CHACOBO Prost 1967 CANTONESE (TAISHAN) Cheng BURUSHASKI Morgenstierne 1945 CAMPA Dirks 1953 BURMESE Okell 1969 BULGARIAN Aronson 1968 (R), BRETON Ternes 1970 BENGALI Ferguson and BEEMBE (BEMBA) Jacquot 1962 BODO (BORO) Bhat 1968 (B) BATAK (TOBA BATAK) Tuuk 1971 BASQUE N'diaye 1970 BARASANO Stolte and Stolte 1971 AZERBAIJANI Householder 1965 GA Berry (no date) AWIYA (AGAW) Hetzron 1969 (B) AUYANA (USARUFA) Bee 1965 ATAYAL Egerod 1966 (R) ASMAT Voorhoeve 1965 AROSI Capell 1971 ARAUCANIAN Echeverria and APINAYE Burgess and Ham 1968 ANGAS Burquest 1971 1939 (B) Samuel 1969 (R) 1973 (B); Dow 1972 (B) 1962 Hoff 1968 Klagstad 1958 (B) Chowdhury 1960 Contreras 1965 GBARI (GWARI) Hyman and GADSUP Frantz 1966 ITONAMA Liccardi and Grimes GREENLANDIC Rischel 1974 (B); JAQARU Hardman 1966 JAPANESE Bloch 1950; Jorden ITALIAN Agard and DiPietro 1969 HUPA Golla 1970 (B); Woodward HAUSA Greenberg 1941; Kraft GILYAK Panfilov 1968 FULANI Stennes 1967 ISLAND CARIB Taylor 1955 IRAQW Whiteley 1958 HOPI Whorf 1946 HAWAIIAN Pukui and Elbert GUARANI Gregores and Suarez DIEGUENO Langdon 1970 ICELANDIC Malone 1952 IAI Tryon 1968 HUNGARIAN Hall 1944 (B) HAKKA (CHINESE) Hashimoto 1973 HAIDA Sapir 1923 GOAJIRO Holmer 1949 GERMAN Moulton 1962 GEORGIAN Robins and Waterson GREBO Innes 1966 GBEYA Samarin 1966 GARO Burling 1961 FRENCH Sten 1963 EWONDO Abega 1970 (R) EWE Berry 1951, Stablke 1971 EGYPTIAN ARABIC Mitchell 1962 ENGLISH O'Connor 1973 (R) EVENKI Konstantinova 1968 (R) DIDO Bokarev 1967 (R) and Kraft 1973 (R) 1967; Lunt 1973; Uldall 1956 Magaji 1970 1965 (B) 1952; Vogt 1938, 1958, 1971 Thalbitzer 1904

MIANKA Prost 1964 (B) MAZATEC Pike and Pike 1947 MAZAHUA Spotts 1953 MARGI Hoffman 1963 MARANUNGKU Tryon 1970 MAORI Biggs 1961 MANTJILTJARA Marsh 1969 MALTESE ARABIC Borg 1973 MALAYALAM Sreedhar 1972 (B) MALAY Verguin 1967 MALAGASY Dahl 1952 (R) MAIDU Shipley 1956, 1964 LUVALE Horton 1949 LUO Gregersen and Alstrup 1961 LOGBARA Crazzolara 1960 LUISENO Bright 1965; Kroeber LITHUANIAN Ambrazas 1966 (R) LAKKIA Haudricourt 1967 (R) KWAKIUTL Boas 1947 LAO Roffe 1946 (R) LAK Murkelinskij 1967 (R) LAHU Matisoff 1973 (R) KURUX Pfeiffer 1972 (R) KUNJEN Sommer 1969 KUNIMAIPA Pence 1966 KPELLE Welmers 1962 KOTA Emeneau 1944 KOREAN Cho 1967; Martin 1951 KOHO (SRE) Manley 1972 KIRGHIZ Hebert and Poppe 1963 JIVARO Beasley and Pike KOMI Lytkin 1966 KHARIA Biligiri 1965 KET Krejnovich 1968 (R) KAROK Bright 1957 JAVANESE Horne 1961 KHASI Rabel 1961 KAREN Jones 1961 KALIAI Counts 1969 (R) KANURI Lukas 1937 KABARDIAN Kuipers 1960 and Grace 1960; Malecot 1963 1957 (R)

MOXO (IGNACIANO) Ott and Ott MUNDARI Gumperz 1957 MOROCCAN ARABIC Abdel-MONGOLIAN Hangin 1968 1965 Massin 1973 (B); Harrell 1962

NENGONE Tryon 1967 NOOTKA Sapir and Swadesh NEZ PERCE Aoki 1966, 1970 NAVAHO Sapir and Hoijer 1967 NASIOI Hurd 1966 (R) NAMA (HOTTENTOT) Beach 1938 NAGA Bhat 1969 (R) 1955 (R)

OTOMI Blight and Pike 1976 (R. PANJABI Gill and Gleason 1963 ONEIDA Lounsbury 1953 PAEZ Gerdel 1973 PACOH Watson 1964 OSTYAK Gulya 1966 OJIBWA Bloomfield 1956 OCAINA Agnew and Pike 1957 NYANGUMATA O'Grady 1964 Leeding 1971 (R)

NUNGGUBUYU Hughes and

NUNG Freiberger 1964 (R)

NUBIAN Bell 1971

NORWEGIAN Vanvik 1972

PAPAGO Hale 1959 (B); Saxton PERSIAN Obolensky, Panah and PASHTO Shafeev 1964 1963

PICURIS Trager 1971 PUGET SOUND SALISH PORTUGUESE Head 1964 (R) POMO Moshinsky 1974 (B) POLISH Wierzchowska 1965 Snyder 1968 (R) Nouri 1963

MAUNG Capell and Hinch 1970 (R) QUECHUA Bills 1969; Lastra 1968 RYUKYUAN Martin 1970 (R) RUSSIAN Jones and Ward 1969 RUMANIAN Agard 1958 RAWANG Morse 1963

MIXTEC Hunter and Pike 1969

SA'BAN Clayre 1973
SEDANG Smith 1968
SELEPET McElhanon 1970
SENECA Chafe 1967
SENTANI Cowan 1965
SHILHA Applegate 1958
SINHALESE Coates and
de Silva 1960
SIRIONO Priest 1968
SOMALI Armstrong 1964
SONGHAI Prost 1956 (B)
SPANISH Navarro 1961
SQUAMISH Kuipers 1967
SUNDANESE Anderson 1972;
Robins 1953, 1957; Van Syoc

SWAHILI Polome 1967 TAGALOG Schachter and Otanes 1972 TARASCAN Foster 1969 (R)

TIBETAN Chang and Shefts 1964 YURAK Decsy 1966
Roerich and Dhuntshok 1957 (B) ZAN Kizirin 1967 (R)
TICUNA Anderson 1959 (B) ZOQUE Wonderly 1951
TOLOWA Bright 1964
TOTONAC Aschmann 1946
ZUNI Newman 1965

TEWA Hoijer and Dozier 1949

YUKAGHIR Krejnovich 1968 (R)

YAY Gedney 1965 YUCHI Ballard 1975 (B):

Purnell 1965

Crawford 1973

TELUGU Lisker 1963

WU (CHINESE) Chao 1970 (R) WOLOF Manessy and Sauvageot WOLIO Anceaux 1952 WESTERN DESERT Douglas WASHKUK Kooyers, Kooyers and WALAMO Tucker and Bryan TZELTAL Kaufman 1971 TURKISH Lees 1961; Swift 1963 WIK MUNKAN Sayers and WICHITA Garvin 1950 WAPISHANA Tracy 1972 VIETNAMESE Thompson 1965 TUNICA Haas 1940 1963; Sauvageot 1965; Ward 1939 (B) Godfrey 1964 (B) 1966 (R) Bee 1971 (R)

### BIBLIOGRAPHY

- Abdel-Massih, E.T. 1973. An introduction to Moroccan Arabic.
  Ann Arbor: Center for Near Eastern and North African Studies,
  University of Michigan.

  Anderson, L. 1959. Ticuna vowels with special regard to the
- Anderson, L. 1959. Ticuna vowels with special regard to the system of five tonemes. Publicacoes de Museu Nacional, Serie Linguistica Especial I.
- Anderson, S. 1975. The organization of phonology. New York Academic Press.
- Armstrong, L.E. 1934. The phonetic structure of Somali. Mitteilungen des Seminars für Orientalischen Sprachen 37, 116-61.
- Ballard W.L. 1975. Aspects of Yuchi morphonology. Studies in Southeastern Indian languages, ed. by J.M. Crawford, 164-187.

- Bhat, D.N.S. 1968. Boro vocabulary. Poona: Deccan College.
- Blight, R.C. and E.V. Pike. 1976. The phonology of Tenango Otomi. International Journal of American Linguistics [IJAL] 42. 51-57.
- Boas, F. and E. Deloria. 1939. Dakota grammar. Memoirs of the National Academy of Sciences, Vol. xxiii, second memoir.
- Bright, W. 1965. Luiseno phonemics. IJAL 31.4. 342-345.
- Cheng, C.C. 1973. A synchronic phonology of Mandarin Chinese.

  Monographs on Linguistic Analysis 4. The Hague: Mouton.
- Chomsky, N. 1964. Current issues in linguistic theory. The structure of language, ed. by Fodor and Katz, 50-118.
- and M. Halle, 1968. The sound pattern of English. Harper.
- Crothers, J. 1975. Areal features and natural phonology: the case of front rounded vowels. Proceedings of the Second Annual Conference of the Berkeley Linguistic Society, 124-136.
- Douglas, W.H. 1955. Phonology of the Australian Aboriginal language spoken at Ooldea, South Australia. Oceania 25. 216-229.
- Dow, F.D.M. 1972. An outline of Mandarin phonetics. Oriental Monograph Series 10. Canberra: Australian National University Faculty of Asian Studies.
- Fahrenholz, V. 1976. Bibliography to Working Papers on Language Universals. Supp. to WPLU 20. Stanford Dept. of Linguistics.
- Fant, G. 1973. Speech sounds and features. Cambridge, Mass.: M.I.T. Press.
- Ferguson, C.A. 1966. Assumptions about nasals. Universals of language, ed. by J. H. Greenberg. Cambridge, Mass.: M.I.T. Press, 2nd ed.
- Flanagan, J.L. 1955. A difference limen for vowel formant frequency. Readings in acoustic phonetics, ed. by Lehiste, 288-292
- Gieser, C. Richard. 1958. The phonemes of Kalinga. Studies in Philippine Linguistics, Oceania Linguistic Monographs 3.13-28.
- Gill, H.S. and H.A. Gleason. 1963. A reference grammar of Panjabi. Hartford.

- Golla, V.K. 1970. Hupa grammar. Doctoral dissertation, University of California, Berkeley.
- Greenberg, J. 1966. Language universals, with special reference to feature hierarchies. The Hague: Mouton.
- , C. Osgood and J. Jenkins. 1966. Memorandum concerning language universals. Language universals, ed. by J.H. Greenberg. Cambridge, Mass.: M.I.T. Press.
- Hale, K. 1959. A Papago grammar. Doctoral dissertation, Indiana University.
- Hall, Robert A. Jr. 1944. Hungarian grammar. Language Monograph 21, LSA. Reprinted by Kraus Reprint Co.
- 24.1.92-116. The linguistic structure of Taki-Taki. Language
- Hockett, C.F. 1955. A manual of phonology. IJAL Memoir 11.
- Jakobson, R. 1968. (tr. by Keiler) Child language, aphasia, and phonological universals. The Hague: Mouton.
- , G. Fant and M. Halle. 1951. Preliminaries to speech analysis. Cambridge, Mass.; M.I.T. Press.
- Kaschube, Dorothea. 1954. Examples of tone in Crow. IJAL 20.1. 34-37.
- Klagstad, H. Jr. 1958. The phonemic system of colloquial standard Bulgarian. The Slavic and East European Journal 16, 42-54.
- Kuipers, A.H. 1965. Phoneme and morpheme in Kabardian. The Hague.
- Ladefoged, P. 1964. A phonetic study of West African languages.

  Cambridge University Press.
- of Chicago Press. University
- Lehiste, I. (ed.) 1967. Readings in acoustic phonetics. Cambridge, Mass.: M.I.T. Press
- . 1973. Review of Sweet and Russell. IJAL 39. 2.123-126.

- Liljencrants, J. and B. Lindblom. 1972. Numerical simulation of vowel quality systems: the role of perceptual contrast. Language 48.4.839-862.
- Lindau, M. 1975. Features for vowels. UCLA Working Papers in Phonetics 30.
- Lindblom, B. 1975. Experiments in sound structure. Paper read at the Eighth International Congress of Phonetic Sciences, Leeds.
- and J. Sundberg. 1971. Acoustical consequences of lip, tongue, jaw and larynx movement. Journal of the Acoustical Society of America 50. 1166-1179.
- Meiklejohn, P. and K. Meiklejohn. 1961. Accentuation in Sarangan Manobo. Oceania Linguistic Monographs 3, 1-5.
- Moshinsky, J. 1974. A grammar of Southeastern Pomo. University of California Publication in Linguistics 72.
- Ohala, J. 1975. Phonetic explanations for nasal sound patterns.

  Nasalfest, ed. by Ferguson, Hyman and Ohala, 289-316. Papers
  from a symposium on nasals and nasalization, Berkeley, Nov. 2324, 1974.
- Peterson, G.E. and H.L. Barney. 1952. Control methods used in a study of the vowels. In Lehiste 1967; 118-127.
- Prost, R.P.A. 1956. La langue songay et ses dialectes. Mémoire de l'Institut Français d'Afrique Noire 47. Dakar.
- Memoires de l'Institut Français d'Afrique Noire 70. Dakar.
- Pukui, M. and S.H. Elbert, 1965. Hawaiian-English dictionary.
  Honolulu: University of Hawaii Press.
- Rischel, J. 1974. Topics in West Greenlandic phonology. Copenhagen: Akademisk Forlag.
- Roerich, G.N. and T.L. Dhunsthok. 1957. Textbook of Colloquial Tibetan, dialect of Central Tibet. Government of West Bengal, Education Department, Education Bureau.
- Ruhlen, M. 1975a. Guide to the languages of the world. Stanford University Press.

- Ruhlen, M. 1975b. Patterning of nasal vowels. Nasalfest, ed. by Ferguson, Hyman and Ohala, 333-352. Stanford Univ. Press.
- Ruhlen, M. (to appear) The geographical and genetic distribution of linguistic features. Linguistic studies presented to Joseph H. Greenberg on the occasion of his 60th birthday, ed. by A. Juilland. Saratoga, Calif.: Anma Libri.
- Sayers, B. and M. Godfrey. 1964. Outline description of the alphabet and grammar of a dialect of Wik-Munkan, spoken at Coen,
  North Queensland. Occasional Papers in Aboriginal Studies 2.
  Canberra: Australian Institute of Aboriginal Studies.
- Sedlak, P. 1969. Typological considerations of vowel quality systems. WPLU 1.1-40.
- Sreedhar, M.V. 1972. Phonology of the Cochin dialect of Malayalam. International Journal of Dravidian Linguistics 1.100-125.
- Stahlke, Herbert. 1971. Topics in Ewe phonology. Doctoral dissertation, University of California, Los Angeles.
- Stewart, J.M. 1967. Tongue root position in Akan vowel harmony. Phonetica 16.185-204.
- Sundberg, J. 1977. The acoustics of the singing voice. Scientific American 236.3.82-91.
- Thalbitzer, W. 1904. A phonetical study of the Eskimo language. Meddeledser om Grønland 31.
- Trubetzkoy, N.S. 1969. (tr. Baltaxe) Principles of phonology. University of California Press.
- Vihman, M. (ed.) 1976. A reference manual and user's guide for the Stanford Phonology Archive, Part I. Stanford University
- Voegelin, C.F., F.M. Voegelin and K.L. Hale. 1962. Typological and comparative grammar of Uto-Aztecan: I. IJAL Memoir 17.
- Ward, I.C. 1939. A short phonetic study of Wolof (Jolof) as spoken in Senegal. Africa 12. 320-324.
- Wright, J. 1975. Effects of vowel masalization on the perception of vowel height. Nasalfest, ed. by Ferguson, Hyman and Ohala, 373-387. Sympos. on masalization, Berkeley, Nov. 23-24, 1974.

## Syllabic Consonants

#### ALAN BELL

#### ABSTRACT

nants and obstruents, may function as syllable peaks. Resonants stops were found, all possessing syllabic fricatives also. atives dominate stops as syllabics; six languages possessing syllabi nasal-vowel combinations to be affected. Among obstruents, fricwhen syllabic nasals are formed, mu, um, gu, and un are the first currence of nasal syllabics is not conclusive in this regard. The that m and n are dominant, although the synchronic pattern of ocby most scales of sonority, nasal syllabics are preferred to liquid the only syllabic consonants are obstruents. Contrary to predictions are preferred to obstruents as syllabics, although in some languages low phonological level. A wide variety of consonants, both resoguages the syllabicity of consonants is predictable at a relatively generalize easily to wider contexts, however, so that in most lanfairly commonly in favored environments. It apparently does not concomitant shift of syllabicity to an adjacent consonant, occurs consonants are presented, based on a comparison of 85 languages preference largely derives from the diachronic generalization that ones. Detailed diachronic examination of nasal syllabics shows The main process of their formation, which is loss of a vowel and Some synchronic and dischronic generalizations about syllabic

A preliminary version of this paper appeared in Working Papers on Language Universals 4, November 1970. The investigation was supported by NIMH Fellowship 1-F1-MH-40, 650-01 (CUAN) and the Stanford Universals Project, NSF Grant GS 1880. I am grateful to the project members, especially J.H. Greenberg and Edith Moravcsik, and to W. S-Y. Wang for their help.