

(1972), "The
ig Papers in
f California,

"Acoustical
nx movement",
ca 50, pp. 1166-

Verona.

feature
28, pp. 97-120.

e sanvi, Annales
c. 1, University

ord University

owel harmony",

J. Tucker and
Bantu languages
d University
ondon.

is", in:
Migrations in
University
es), Khartoum.

, Linguistic
o. 39,

rsity of

NEZ PERCE VOWEL HARMONY:
AN AFRICANIST EXPLANATION
AND SOME THEORETICAL QUESTIONS

Beatrice L. Hall
State University of New York at Stony Brook

&

R. M. R. Hall
Queens College, City University of New York

1. *Introduction.* The question of the proper description of the vowel harmony system of Nez Perce¹ has already engaged the attention of a number of linguists: Aoki (1966, 1970), Rigsby (1965), Jacobsen (1968), Rigsby and Silverstein (1969), Chomsky and Halle (1968:377f.), Kiparsky (1968), Zwicky (1971), Kim (1978). There is no disagreement about either the phonetic facts or about the working of the vowel harmony process; however, there has been considerable debate about the question of the natural relationship between any possible underlying phonological system which can be derived from these phonetic facts and a principled explanation for the operation of the vowel harmony rules. We have decided to enter this debate because we believe that a simple and unitary explanation is possible from a different perspective, that of tongue-root position based vowel harmony systems.

In Nez Perce there are five surface vowels: [i], [ə], [a], [o], [u]~[u], all of which may occur either long or

short. For the purposes of the vowel harmony rule they are divided into two sets:

(1) DOMINANT	RECESSIVE
ɪ	ɪ
ə	ə
ɛ	ɛ

The vowel harmony rule states that if any morpheme in a word has a vowel of the Dominant series, then all Recessive vowels in the word become Dominant. If no morpheme containing a Dominant vowel is present then, naturally, all vowels in the word are Recessive. Morphemes whose vowels are inherently Dominant can occur as either roots, or as suffixes.² [ɪ] is a member of both series in that some [ɪ]'s cause harmonic shift, while others do not, and [ɪ] thus co-occurs with both sets of vowels.

An example³ of a root with a Recessive vowel is

(2) mæq 'paternal uncle'.

When affixes with Recessive vowels are added, there is no vowel harmony change. For example, the first person possessive prefix nə?- added to this root yields

(2a) nə?mæx 'my paternal uncle'.

The vocative suffix -ə? yields

(2b) mæqə? 'paternal uncle!'.

However, if nə?- is prefixed or -ə? is suffixed to a root with a Dominant vowel, as, for example,

(3) to-ɪ 'father',

the affix vowel changes to its Dominant counterpart, yielding

(3a) nə?to-ɪ 'my father'
(3b) to-ɪ-ə? 'father!'.

Harmony can be caused by a dominant suffix, e.g. -?ayn 'for', which, when suffixed to

(4) cəqət¹

causes harmonic :

(4a) cəqət?

Harmonic sh

For example, if

(5) wə-yik

go across

yielding, by its

(5a) wə-yik

is prefixed wat-

(5b) watwə-

That [ɪ] is

examples in (6),

(6) ?i-c

(6a) nə?i-c

(6b) ?i-ca?

where the [ɪ] is

(7) ci-c

(7a) nə?ci-

(7b) ci-ca?

where the [ɪ] is

Previous li

seen three major

of this phonolog

1) the pro

for handling the

tation they must

there seems to be

from Recessive [i]

ny rule they are

(4) *caqə:t* 'raspberry'

causes harmonic shift, yielding

(4a) *caqə:tayn* 'for a raspberry'.

Harmonic shift can also result from compounding.

For example, if to

(5) *wa:yik* + *s* + *ə* + *na*
go across stem 1st long
formant person ago

yielding, by itself,

(5a) *wa:yiksəna* '(I) went across long ago'

is prefixed *wat-* 'to wade', one gets

(5b) *watwa:yiksəna* '(I) waded across long ago'.

That [i] is a member of both series is shown by the examples in (6),

(6) *?i:c* 'mother'
(6a) *na?i:c* 'my mother'
(6b) *?i:cə?* 'mother!'

where the [i] is non-Dominant, and in (7),

(7) *ci:c* 'paternal aunt'
(7a) *na?ci:c* 'my paternal aunt'
(7b) *ci:ca?* 'paternal aunt!'

where the [i] is Dominant.

Previous linguists who have treated this question have seen three major, interrelated problems in the description of this phonological system:

1) the problem of the two [i]'s and the best strategy for handling the fact that in the morphophonemic representation they must be kept distinct even though phonetically there seems to be no clue which distinguishes Dominant [i] from Recessive [i].*

2) the fact that "the sets of vowels in the two classes of words -- [i a ɔ] and [i ɛ u] -- are not natural classes in any reasonable phonetic framework." (Chomsky and Halle 1968:377).⁵

3) the difficulty of integrating Nez Perce vowel harmony into any universal theory of vowel harmony processes.

It is, we believe, this last point which has led previous investigators astray: in comparisons of the Nez Perce vowel harmony system with other systems of vowel harmony they have, by and large, tried to draw parallels with systems found in the Uralic and Altaic languages. However, there are several major differences between Uralic and Altaic systems and that of Nez Perce, and there is another model available, that to be found in a large number of African languages.⁶

2. *Voice-Quality Based Vowel Harmony Systems.* In Africa today there are two major areas, one in West Africa, the other in East Africa, where many languages exhibit vowel harmony systems of what has been termed the "horizontal" or "cross-height" type. These vowel harmony systems have been rather extensively studied for West African languages such as Akan (i.e. Fante-Twi), Igbo, and Ijo (all Niger-Kordofanian)⁷ and for East African languages such as Luo, Bari, Maasai, and Kalenjin (all Nilo-Saharan).⁸ In spite of some language-particular idiosyncracies, there is surprising uniformity in the way in which the vowel-harmony process is realized in all of these languages and, as we have tried to show elsewhere (Hall et al, 1974), in the basic principle which underlies its operation.

In an ideal language of this sort there are two sets of five vowels each:

(8) S
i
e

Words not
of Set 2. In V
contain either
harmonize with
Nez Perce, the
vowels and whic
monize with the
Elgeyo dialect
illustrate this

(9) ke:r
ki-a-ke:r
ki-a-ke:r-e

The progressive
all of the non-
attached to bec

In descrip
Bryan 1966, Ste
tionally symbol
/ö/, or /æ/ for
/i,ɛ,ɔ,ɔ,æ/. T
cause the disti
is frequently no
body placement
[i], [u] vs. [v
language of thi
lies rather in
is, in variatio
the oral cavity

(8)	Set 1	Set 2
	i u	i u
	e o	e o
	ə	ə

Words normally contain vowels only of Set 1 or only of Set 2. In West African languages, typically, roots may contain either Set 1 or Set 2 vowels and affixes always harmonize with the root. In East African languages, as in Nez Perce, there are also affixes which contain Dominant vowels and which cause the vowels of the other set to harmonize with them. The following verb forms from the Elgeyo dialect of Kalenjin (a Southern Nilotic language) illustrate this process:

(9)	ke:r 'see/look at (it)!' ker 'shut (it)!'	
	ki-a-ke:r 'I saw (it)' ki-a-ker 'I shut (it)'	
	ki-a-ke:r-e 'I was looking at (it)' ki-a-ker-e 'I was shutting (it)'	

The progressive tense suffix *-e* is Dominant and it causes all of the non-Dominant vowels of the word to which it is attached to become Dominant.

In descriptions of African languages (e.g. Tucker and Bryan 1966, Stewart 1971) the vowels of Set 1 are conventionally symbolized as /i, e, u, o/ and either /ɨ/, ([ɛ]), /ö/, or /ø/ for the low vowel and those of Set 2 as /ɪ, ɛ, ʊ, ɔ, ɑ/. This symbolization is at best misleading because the distinction between the vowels of the two sets is frequently not accompanied by the distinctions in tongue-body placement which are implied by the IPA symbols [i] vs. [ɪ], [u] vs. [ʊ], etc. The primary distinction in every language of this type which we have investigated personally lies rather in what has been termed 'voice quality', that is, in variations in some part of the vocal tract below the oral cavity.

Typically, the vowels of Set 1 have a 'bright' quality which is often accompanied by breathiness. The vowels of Set 2 typically have a 'flat', 'hard', or 'dull' quality which is sometimes accompanied by a slight degree of creakiness. In the languages of this type with which we have worked intensively (Elgeyo, Bari, Toposa, Lotuko, Mabaan), the voice quality distinction in the non-high vowels had as a concomitant a noticeable distinction in tongue body position. In the high vowels voice quality was at times the only auditory cue. In Bari the distinction between /u/ and /y/ was also clearly visually marked: the /u/ was articulated with moderate lip rounding, very much like the [u] of English; the /y/, however, was articulated with the jaw noticeably thrust forward and the lips markedly pursed. In Bari for all of the Set 1 vowels the forward movement of the jaw was noticeable and the genioglossus muscle could be felt moving forward and swelling transversely toward the tip of the chin. (Note: there was no such lateral swelling as is found with the long, tense vowels of English.)

There is another fact that should be noted about languages like Bari: the speakers with whom we worked were, by and large, university graduates whose English was extremely fluent and very nearly within the phonetic norms expected of native speakers. Nonetheless, we noted occasional errors which resulted from the confusion of English /e/ and /ɛ/, /o/ and /ɔ/. This can only mean that the differences in tongue-body position which we noted between Sets 1 and 2 in their languages were secondary and not available to them for transfer to English.

The primary gesture involved in distinguishing Set 1 from Set 2 seems to be movement of the tongue root. Phonologically, it is easy to view the process as one of simply

a binary opposition: Root, and a neutral position. simplistically proposed. Phonetically, however, it is complex because not only can the tongue root forward, but it can retract the tongue root as well. in Lindau 1975:31

Thus, in any language, there may have as the primary

(10) Set 1
 (a) advance
 (b) advance
 (c) neutral

That is, since the size of the glottal size, any change of the genioglossus result in the same root is moved forward, therefore raised. tracted, the tongue lowered. Either, in some difference during the articulation not uniformly the tongue body position a speaker would perceive etc.) between the tongue body position raising the tongue results from the

a 'bright' quality
• The vowels of
'dull' quality
: degree of
: with which we
sa, Lotuko,
the non-high
istinction in
voice quality
ri the dis-
rly visually
rate lip round-
: /u/, however,
ust forward and
of the Set 1
noticeable and
g forward and
hin. (Note:
und with the
oted about
n we worked
ose English was
phonetic norms
re noted
nfusion of
only mean that
h we noted
secondary and
h.
ishing Set 1
: root, Phono-
one of simply

a binary opposition between a plus category, Advanced Tongue Root, and a neutral or unmarked category, Non-Advanced (or normally positioned) Tongue Root. (This is the rather simplistic proposal which we made in Hall et al, 1974.) Phonetically, however, the situation can be much more complex because not only can the genioglossus muscle pull the tongue root forward, but also the glossopharyngeus muscle can retract the tongue root, and the hyoglossus can lower the tongue root and, with it, the larynx. (See figure 8 in Lindau 1975:31.)

Thus, in any language with a two way opposition, we may have as the phonetic gestures:

(10) Set 1 vs. Set 2

- (a) advanced tongue root vs. retracted tongue root
- (b) advanced tongue root vs. neutral tongue root
- (c) neutral tongue root vs. retracted tongue root

That is, since the articulatory cue is variation in pharyngeal size, any combination of oppositions of the movements of the genioglossus and glossopharyngeus muscles will result in the same effect. Needless to say, as the tongue root is moved forward, the tongue body is compressed and therefore raised. Conversely, as the tongue root is retracted, the tongue body is pulled down and therefore lowered. Either, or both, gestures, therefore, may result in some difference in the position of the tongue body during the articulation of the two vowel sets. Since it is not uniformly the case that there is a clear difference in tongue body position (which the European-trained phonetician would perceive as the difference between [i] and [ɪ], etc.) between the vowels of the two sets, it follows that tongue body position, whether achieved by jaw opening or by raising the tongue alone, is a secondary gesture which results from the primary one (or ones) of altering the

position of the tongue root.

There have been two extensive acoustic and radio-graphic studies of some African languages which exhibit the kind of vowel harmony we have just discussed (Lindau 1975 and Jacobson 1978). Both of these studies give the impression of having been extremely sophisticated in their use of the instruments and in their analytic techniques and extremely careful throughout. And yet both studies are, we feel, inconclusive. Lindau found that for the West African languages she studied, Akan (4 speakers), Ijo (1 speaker) and Igbo (1 speaker), all of the speakers used tongue root advancement (with resultant pharyngeal expansion) and concomitant lowering of the larynx to produce the vowels of Set 1. She also found that the four non-low vowels of Set 1 had a lower first formant than did any of the vowels of Set 2. For Akan and Ijo she found that the vowels of Set 2 were produced with the tongue root in neutral position; for Igbo the tongue root was retracted. However, in Akan, which was studied in most detail, she found (p.41) that the formant separation between /e/ and /ɪ/ was only 25 Hz. (within the range of measurement error) and that between /ɛ/ and /ɔ/ it was only 50 Hz.; trained phoneticians, who had no knowledge of Akan, in her listening test in fact heard these vowel pairs as identical (p.39). Jacobson (1978:80) reports that for Luo

...an expansion of the pharynx does not necessarily involve a depression of the larynx... Behavior in Dho-Luo is not so uniform as that reported for the West African languages: one Dho-Luo speaker may distinguish the vowel harmony categories almost exclusively by means of tongue height while another speaker uses width of pharynx and a third speaker uses both.

Since all three of these speakers of Luo can understand one another, there must be something which unites these phonetic variations to yield a clear phonological distinction.

Lindau (1975) also found that the speakers of Luo

...once after four weeks in able to identify the vowels correctly. They had been asked to remember them for so long a time that he actually identified them as a native speaker who is not trained in a physical

Jacobson (1978) found that the speakers of Luo

...a tape his Luo speakers of 187 bisyllabic utterances, separating them into category sets.

It has been suggested that the Nilotc languages are not only unique but also that they can be distinguished by the set members' own, which are: which he had no

What emerges from Jacobson's acoustic event is either the spectral states (1978:80)

...the articulators in Dho-Luo would produce speech signal distinctive, that the distinction

Jacobson goes on to say that Akan) Stewart (1978) found that

Lindau (1975:41) reports that she played the randomized listening tape back to her Akan informant twice,

...once after a three week interval and once after a four week interval since the recording session. He was able to identify the vowels as those in words he had been asked to produce. It is highly unlikely that he remembered the order of vowels in the recording after so long a time. The most plausible explanation is that he actually heard the vowels as different, and that he as a native speaker hears something that a non-native is not trained to use as a cue, and that that something is a physical property.

Jacobson (1978:4ff) also reports that when he played back a tape his Luo informant was able to identify the vowels of 187 bisyllabic verbs "without any difficulty or hesitation", separating the vowels into their two harmony category sets.

It has been our experience that a speaker of one Nilotc language which uses this vowel harmony type can not only uniquely identify the vowels of his own language, but he can with equal ease and lack of hesitation identify the set membership of vowels in Nilotc languages not his own, which are not mutually intelligible with his, and of which he had no prior knowledge.

What emerges from Lindau's study and, particularly, from Jacobson's, is that there is an articulatory and acoustic event which is not being measured unambiguously by either the spectrograms or the x-ray measurements. Jacobson states (1978:80):

...the articulatory freedom permitted among speakers of Dho-Luo would be understandable if some aspect of the speech signal other than articulatory vowel quality were distinctive. I would suggest that this is the case and that the distinctive aspect is one of voice quality.

Jacobson goes on to point out (p.81) that in Twi (i.e. Akan) Stewart (1967) says "that breathiness is associated

and radio-
which exhibit
cussed (Lindau
udies give the
ticated in their
ic techniques
both studies
that for the
4 speakers),
of the speakers
nt pharyngeal
larynx to pro-
that the four
formant than did
tjo she found
h the tongue root
oot was retracted.
st detail, she
between /e/ and
measurement error)
50 Hz.; trained
n, in her
pairs as identical
for Luo

ssarily
rior in
for the West
distinguish
vely by means
width of

can understand one
ites these phone-
cal distinction.

with the raised vowels [i.e. those of Set 1] but it is not considered distinctive."

Nonetheless, in spite of the inconclusiveness of both of these studies, it is clear that the major articulatory gesture which can be measured and which is present for most speakers when the vowels of Set 1 are articulated and absent when those of Set 2 are articulated is an expansion of the pharyngeal cavity achieved by advancement of the tongue root and, for the West African languages reported on by Lindau, concomitant lowering of the larynx. Since the West African languages, like Luo, only involve a two-way opposition, within the terms of a binary distinctive feature phonological description, clearly one feature will suffice. Lindau proposes that 'Expanded' be used to designate this feature since, in the West African languages she studied, a lowered larynx co-occurs with the advanced tongue root, yielding both a horizontal and vertical expansion of the pharynx. However, the East African data clearly show that larynx movement is secondary and not a necessary concomitant of tongue root advancement or, conversely, that tongue root advancement is the primary gesture. Therefore, in our opinion it is completely appropriate to continue the use of the phonological feature Advanced Tongue Root ([ATR]) to describe the articulatory gesture which differentiates the vowels of Set 1 from those of Set 2.

Although vowel harmony systems of this type have been best studied for West African languages of the Kwa family, for Ijo, and for the Nilo-Saharan languages in Eastern Africa, as we showed in Hall et al (1974),⁹ they are actually much more widespread, and many languages in both the Nilo-Saharan and Niger-Kordofanian families which today do not have vowel harmony as an active principle nevertheless

still have trace this type has be of Afro-Asiatic: and Bilin (Palme Tangale (Jungrai

Thus, vowel tion are found i families. As Ao in the Lhasa dia languages such a 610 and 1971:82) basis for vowel assume, come int variety of langu model for the an

3. A Reana sis of the Nez P remarked is its (11) |

Not only do monic series not nological criter quotation given tains a low fron vowel, as Nez Pe anomalous. It i which gives us a which we are dea dicts that one s distinguished th position. That

1] but it is not
isiveness of both
jor articulatory
s present for most
iculated and
l is an expansion
icement of the
languages reported
larynx. Since
involve a two-
ry distinctive
one feature will
be used to desig-
an languages she
the advanced
d vertical expan-
rican data
dary and not a
cement or, con-
he primary ges-
pletely appropri-
l feature
he articulatory
Set 1 from those
s type have been
the Kwa family,
Eastern Africa,
e actually much
h the Nilo-
ch today do not
nevertheless

still have traces of it. In addition, vowel harmony of this type has been reported from languages in two families of Afro-Asiatic: Somali (Armstrong 1934, and Tucker 1971) and Bilin (Palmer 1957 and 1958) (both Cushitic), and Tangale (Junggraithmayr 1971) (Chadic).

Thus, vowel harmony systems based on tongue root position are found in languages from three of the major African families. As Aoki (1968:143) pointed out, it is also found in the Lhasa dialect of Tibetan and in Paleo-Siberian languages such as Koryak and Gilyak (cf. also Jakobson 1942: 610 and 1971:82). Therefore tongue root position as a basis for vowel harmony is something which has, one must assume, come into being more or less spontaneously in a variety of languages and therefore can provide a possible model for the analysis of the Nez Perce data.¹⁰

3. *A Reanalysis of the Nez Perce Data.* In the analysis of the Nez Perce vocalic system the first thing to be remarked is its basic surface assymetry:

(11)	i	u
	o	
	ø	ə

Not only do the sets of vowels which form the two harmonic series not form natural classes by conventional phonological criteria (as Chomsky and Halle remark in the quotation given earlier), but a vocalic system which contains a low front and a high front vowel but no mid-front vowel, as Nez Perce does, is strangely unbalanced and anomalous. It is, however, precisely this surface anomaly which gives us a clue to the kind of vocalic system with which we are dealing. Universal phonological theory predicts that one should not find more front/back low vowels distinguished than one finds at any one given non-low position. That is, the theory would predict that if /s/

is found, then either one must be dealing with the canonical six-vowel system in (12),

(12)	i	u
	e	o
	æ	ø

as Rigsby and Silverstein (1969) postulate, or, alternatively, one can postulate, as Aoki, Jacobsen, and Kiparsky did, that surface [æ]¹¹ is merely the result of some low-level phonetic rule operating on the expected front mid vowel and that one has the canonical five-vowel system in (13),

(13)	i	u
	e	o
	æ	

with an extra underlying vowel (/æ/ or /ɛ/) to account for the participation of /ɪ/ in both harmonic sets.

Both of these systems, which have been logically deduced on the basis of expected universal phonological properties, have as an unstated assumption the belief that Nez Perce has an underlying vocalic system which distinguishes three tongue heights. However, there is another possibility which is also suggested by universal theory: if [æ] is found but not [e], one may be dealing with only two tongue heights. In this case, the anomalous vowel is not [æ], but surface [ø].

We postulate that what we have in Nez Perce is the underlying canonical three-vowel system in (14)

(14)	i	u
	æ	

and tongue root position, yielding the following matrix:

(15)	i ₁	i ₂	u ₁	u ₂	ø ₁	ø ₂
high	+	+	+	+	-	-
back	-	-	+	+		
ATR	+	-	+	-	+	-

Note: In this chart we have deliberately not used specific phonetic symbols (e.g. [i] vs. [ɪ]) for the underlying segments which are differentiated only by tongue-root position

because any f
detailed spec
of the system
representatio

With the abc
vowel harmony ru

(16) [+ATR]

Our postula
root position as
harmonic sets ha
neatness which i
harmony rule. A
for the phonolog
tongue root move
body of the tong
explanation of w
([i, e, u] and [ɪ,
more, an underst
root and resulta
statement to be
-high] as [æ] an
of the surface n
case of the high

With the to
advanced the bod
and more forward
African language
or it can move f
yielding [æ], as
(which also is r
the option taker
from the large e
three vowel posi

with the canon-

, or, alterna-
en, and Kiparsky
t of some low-
ted front mid
el system in (13),

) to account for
sets.

n logically de-
phonological pro-
ie belief that
i which distingui-
: is another
versal theory:
aling with only
malous vowel is

: Perce is the
: (14)

llowing matrix:

not used specific
underlying seg-
ue-root position

because any further specification would be misleading. More detailed specification of the vocalic segments is a property of the systematic phonetic level and not of the underlying representation.

With the above feature specification, the Nez Perce vowel harmony rule¹² of course becomes simplicity itself:

(16) [+ATR] + [-ATR] / [-ATR]

Our postulation of a three vowel system with tongue root position as the feature which differentiates the two harmonic sets has more to recommend it than simply the neatness which it permits in the statement of the vowel harmony rule. As well as providing physiological correlates for the phonological feature [*±Dominant*], the mechanics of tongue root movement and the concomitant movement of the body of the tongue also provide a phonetically natural explanation of why it is that just these two sets of vowels ([i, ə, u] and [i, a, ə]) form the harmonic classes. Furthermore, an understanding of these same mechanics of tongue root and resultant tongue body movement allows a simple statement to be made of the phonetic realizations of [+ATR, -high] as [ə] and of [-ATR, +high, +back] as [ə], as well as of the surface neutralization of the feature [ATR] in the case of the high front vowels.

With the tongue in low position, as the tongue root is advanced the body of the tongue can either rise slightly and more forward, yielding [ə], which is found in many African languages, or it can maintain backness while rising,¹³ or it can move forward while maintaining low position, yielding [ə], as in the case of Nez Perce and also Somali (which also is underlyingly a three-vowel language). That the option taken in Nez Perce was forward movement follows from the large amount of phonetic space available in a three vowel position language.

According to Aoki's descriptions, the sound which he phonemicizes as /u/ has three phonetic realizations: [u], [v] and [w]. [u] occurs when there is length and [v] elsewhere. Although Aoki is not as specific on this point as one could wish ("in general, rounding is non-distinctive" (1970:19) and "there is considerable individual variation in the degree of rounding of /u/" (1966:759)), it appears that [w] can occur both long and short. That [w] is an allophonic variant would follow naturally if the tongue root is in advanced position when /u/ is articulated. With the tongue root advanced, the body of the tongue moves forward; since rounding is non-distinctive in Nez Perce, there is no constraint on the vowel to remain in a position where automatic rounding occurs.

When the tongue root is retracted, the dorsum of the tongue is lowered. Since the area [w,u,v] is already filled by the [+ATR, +high, +back] vowel, and since there is still phonetic space left, the tongue lowers to [o] for the articulation of the [-ATR, +high, +back] vowel. That the back of the tongue does lower all the way to [o] is at least partially due to the fact that /u/ is, according to Aoki (1970:19), normally realized as [v] except when long. It is to be noted that the normal articulation of Nez Perce vowels seems to tend toward 'laxness'.

It is, we believe, the general 'lax' pronunciation of vowels (i.e. [i, w, a, o*, v, u]), as described by Aoki, which accounts for the surface neutralization of the plus and minus ATR /i/. In the languages which we know which have tongue root position harmony, the [+ATR] vowel tends to be [i], the [-ATR] vowel [i*] or [ɪ], this somewhat lower articulation being a result of the less forward position of the tongue root. Since, however, the normal realization of the high, front vowel in Nez Perce is [i] (except before

length), and does not cause the full degree as it does normal [-ATR, +high] pronunciation and a resultant pronunciation of the [-ATR] vowel (vowel). Such distinctions, while other languages

If our hypothesis of the two in a phonetically plus advanced to retracted tongue positions of the und should not, be as we believe the writing such a r rules involved a every grammar), tion of each ind interrelated phe

The major s are the followin after the vowel

(17) $\boxed{-high}$
[+ATR]

(18) $\boxed{-high}$
[+bac
-ATR]

sound which he
lizations: [u],
gth and [U] else-
n this point as
on-distinctive"
idual variation
9)), it appears
hat [u] is an
if the tongue
rticulated. With
tongue moves for-
Nez Perce, there
i position where

the dorsum of the
is already
d since there is
s to [o] for the
rel. That the
o [o] is at
, according to
cept when long.
ion of Nez Perce

ronunciation of
Aoki, which
the plus and
now which have
wel tends to be
what lower ar-
rd position of
l realization
] (except before

length), and less forward position of the tongue root does not cause the front of the tongue to lower to the same degree as it does the back of the tongue, what we have is normal [-ATR, +high, -back] [i:] falling together with the less-high pronunciation of [+ATR, +high, -back] /i/ as [i] and a resultant neutralization of the distinctions in pronunciation of these two sounds (that is, one would expect the [-ATR] vowel to be slightly less front than the [+ATR] vowel). Such surface neutralizations of underlying distinctions, while not widespread, are by no means unknown in other languages exhibiting this kind of harmony.¹⁴

If our hypothesis is correct, then the surface composition of the two harmonic series is in fact accounted for in a phonetically natural way: That is, [i, e, u] are /i, a, u/ plus advanced tongue root and [i a o] are /i a u/ plus retracted tongue root position. The actual surface realizations of the underlying segments not only cannot, but should not, be subsumed in some sort of curly brace rule; we believe the reason why no one has been successful in writing such a rule which is convincing is because the rules involved are low-level adjustment rules (required by every grammar), needed for describing the surface realization of each individual segment. These are not necessarily interrelated phenomena and should not be lumped together.

The major surface adjustment rules which are needed are the following, all of which are, of course, ordered after the vowel harmony rule:

$$(17) \quad \begin{bmatrix} \text{-high} \\ \text{+ATR} \end{bmatrix} * \begin{bmatrix} \text{-back} \end{bmatrix}$$

$$(18) \quad \begin{bmatrix} \text{+high} \\ \text{+back} \\ \text{-ATR} \end{bmatrix} + \begin{bmatrix} \text{-high} \\ \text{-low} \end{bmatrix}$$

(19)
$$\begin{bmatrix} +\text{high} \\ -\text{back} \\ \text{uATR} \\ \text{long} \end{bmatrix} \rightarrow [\beta\text{ATR}]$$

These rules have the following effects: rule (17) causes the low vowel to be realized as [a] if [-ATR] and [ə] if [+ATR]; rule (18) lowers the [-ATR] high back vowel to [ə]. Rule (19) has the effect of neutralizing tongue root position as an independent variable for the high front vowel and making it dependent on length. Thus, the long vowel will be realized as the expected [+ATR] vowel ([i·]) and the short vowel as the expected [-ATR] vowel ([ɪ]).

(20)
$$\begin{bmatrix} +\text{back} \\ -\text{low} \\ -\text{long} \end{bmatrix} \rightarrow [-\text{tense}]$$

(21)
$$\begin{bmatrix} +\text{high} \\ +\text{back} \\ +\text{ATR} \end{bmatrix} \rightarrow [-\text{round}] / \text{under certain conditions}$$

Rule (20) obviously must be ordered after rule (18), which added a surface feature of lowness to the underlying three-vowel system. This later rule has the effect of realizing non-long non-low back vowels as somewhat lower in articulation,¹⁵ that is, the [+ATR] as [U] and the [-ATR] as [o^v]. Rule (20) thus produces an effect which, on the surface, looks like the same phenomenon as that found for the high front vowel. However, the temptation to subsume these disparate phenomena into one rule such as

(22)
$$\begin{bmatrix} -\text{low} \\ -\text{long} \end{bmatrix} \rightarrow [-\text{tense}]$$

would completely mask the important fact of the neutralization of tongue-root position in the high front vowel.

Rule (21) unrounds the [+ATR] high back vowel. This rule would appear to be a 'variable' rule; whether the variation is a completely free one or is constrained by

tempo of speech etc.) would requi

Thus, the fe will permit a nat the vowel harmoni netic alternatio a(.) , o^v , o^v , u^v

4. *Sahapti* is Sahaptin, whi Sahaptin has one calic inventory (Rigsby and Silv other dialects wi analysis, have a

(23) i

In these dialect manifested by ov However, Rigsby does have underl the environment become palataliz some comparative morphemes involv in Nez Perce) ov where this palat environment of [the tongue root forward and thus is met. It is n occur not simply root must be adv [-čan] and both

tempo of speech or by sociological factors (age, propriety, etc.) would require further investigation.

Thus, the feature of [ATR] which we have postulated will permit a natural and unitary explanation not only of the vowel harmony alternations but also of the surface phonetic alternation which Aoki (1970) reports: [i·, I, ə(.)], [a(.)], [ə·, ə·, u· ~ w, U~w].

4. *Sahaptin*. The only language related to Nez Perce is Sahaptin, which, with it, forms the Sahaptian family. Sahaptin has one dialect, Palouse, which has the same vocalic inventory and surface vowel harmony as Nez Perce (Rigsby and Silverstein, 1969:48ff). There are a number of other dialects which, according to Rigsby and Silverstein's analysis, have a surface three-vowel system:

(23) i u
 a

In these dialects vowel harmony, as it is reported, is not manifested by overt alternations of the surface vowels. However, Rigsby and Silverstein postulate that Sahaptin does have underlying vowel harmony because /k/ and /k̚/, in the environment of some /i/ 's and /ə/ 's (but not others) become palatalized to [č] and [č̚]. They cite at least some comparative evidence (1969:50 fn.12) showing that the morphemes involved have in the Palouse dialect (as well as in Nez Perce) overt recessive harmony in just those places where this palatalization occurs. Palatalization in the environment of [+ATR] vowels is readily explicable: with the tongue root advanced, the body of the tongue is moved forward and thus the classic condition for palatalization is met. It is noteworthy here that for palatalization to occur not simply the body of the tongue but also the tongue root must be advanced since we can have both [-kan] and [-čan] and both [-kn̚i] and [-čn̚i] as the allitive and

ablative case suffixes:

(24) a. yipáxšikan 'downriverward'
 b. yipáxšikni 'from downriver'
 c. túnišikan 'upriverward'
 d. túnišikni 'from upriver'
 e. atínačan 'westward'
 f. atínačni 'from the west'
 g. mítičan 'downward'
 h. mítični 'from below' (Rigsby & Silverstein 1969:49)

If, as Rigsby and Silverstein postulate, there is absolute surface neutralization of vowel harmony by a rule ordered after the rule of palatalization, then for the child learning Sahaptin the palatalization is part of the morphology, not the phonology; but this doesn't seem at all likely. In languages exhibiting vowel harmony, the harmony is grammatically non-significant; it is simply a constraint on the surface vowel output. While it is of course possible for vowel harmony to become grammatically significant (as *i*-umlaut has in modern West Germanic languages), all the evidence in Sahaptin points against this. The sole trace of vowel harmony reported by Rigsby and Silverstein, palatalization, is completely productive, although it remains grammatically non-essential. That is, there seems to be no place in the data which Rigsby and Silverstein have given on Sahaptin where the meaning of a form is dependent on the presence or absence of palatalization.

That there is absolute surface neutralization of vowel harmony is further thrown into doubt by the facts presented by Jacobs (1931) and Aoki (1962) who show a surface vocalic inventory of a great deal more than three vowels: most significant is Jacobs' report that /a/ alternates with [ä] (= [æ]). In fact, he lists (p. 100, with symbols changed to our system) the surface inventory given in (25), where [i ~ i ~ e], [a ~ æ], [u ~ u ~ ɔ]:

(25)	i
	I
	e
	æ

Since [æ] al-
 micized /i, a, u, e/
 wealth of surface
 noted. However,
 facts about palat-
 one which is typi-
 based harmony. A
 language has a "E
 butes this to the
 nuants; however,
 vention very much
 area, it seems to
 Jacobs observed i-
 tainly in Africa
 if there still is
 the recessive [+]
 category and this-
 ness.

While our hy-
 instrumentally ve-
 [ATR] harmony is
 distinction¹⁸ can
 see the discussio-

Even if it is
 measurements of i-
 inconclusive, new
 feature of [ATR]
 a unitary explana-
 the Sahaptian la-

(25)	i	u
	ɪ	ʊ
	ɛ	ɔ
	æ	ɑ

Since [ə] alternates with other vowels, Jacobs phonemicized /i, a, u, e/. He did not attempt to account for this wealth of surface vowels nor for the alternations which he noted. However, combined with Rigsby and Silverstein's facts about palatalization, the whole picture looks like one which is typical of a language exhibiting tongue root based harmony. Jacobs (p.99) further remarks that the language has a "predominantly breathy content". He attributes this to the absence of voiced stops and voiced continuants; however, since in fact Sahaptin has a consonant inventory very much like that found in other languages in its area, it seems more probable to us that the breathiness Jacobs observed is actually a property of the vowels. Certainly in Africa [+ATR] vowels are very commonly breathy; if there still is surface vowel harmony in Sahaptin, then the recessive [+ATR] vowels predominate as the unmarked category and this could account for the reported breathiness.

While our hypothesis about Nez Perce is probably not instrumentally verifiable, in Sahaptin our hypothesis that [ATR] harmony is acoustically marked by a breathy/hard distinction¹⁵ can perhaps be instrumentally tested (although see the discussion in Section 2).

Even if it should be the case that instrumental measurements of the vowels of present day Sahaptin prove inconclusive, nevertheless we believe that a phonological feature of [ATR] is the most likely candidate for offering a unitary explanation of the vowel harmony processes in the Sahaptian languages.

5. *Feature-Switching vs. Feature-Specifying Vowel Harmony Systems.* Previous linguists who have discussed the vowel harmony system of Nez Perce have made reference to vowel harmony of the sort found in the Uralic and Altaic languages. However, the Uralic and Altaic system of vowel harmony is different in kind from that found in Nez Perce. In Uralic and Altaic there is no Dominant-versus-Recessive dichotomy. Rather, harmony is stem-determined, which, by the suffixal nature of Uralic and Altaic morphology, means that harmony is always determined by the right-most non-neutral root vowel. To cite a Uralic or Altaic affix in any particular form (e.g. the Turkish plural as /-lər/ or /-lər/ rather than as *l* *V* *r*) would be purely arbitrary.¹⁷

[_{high}
aback]

In Nez Perce, however (as in the Nilo-Saharan languages), every Recessive vowel must be fully specified since, after all, a word can contain only Recessive vowels. Thus, tongue-root position based vowel harmony such as that found in Nez Perce and African languages is a feature-switching system whereas harmony systems based on front/back or round/unround dichotomies such as that found in the Uralic and Altaic languages are feature-specifying.

There are two properties of tongue root position based harmony not found in any feature-specifying system where harmonization is to a feature such as labiality or backness:

1. a Dominant/Recessive dichotomy
2. at least potentially, harmonic shift triggered as readily by a Dominant vowel in an affix as by a Dominant stem vowel.

6. *Toweett's Paradox.* There is however an interesting difference between the tongue root position based harmony systems found in Africa and that found in Nez Perce. In all of the African languages the Dominant class is uni-

formly [+ATR] where

In our discuss: and of the feature based, we have sim: the feature [+ATR] of articulation. phonological serie: one, is that serie relatively non-for ture, we therefore notation in which designated by the contradiction is n there is any valid that Sahaptin has this, coupled with in the environment these languages th the tongue root is physiological gest retracted from adv the appropriate fe Retracted Tongue & the tongue root be more, we have no e tongue root is phy some neutral posit positive evidence advanced.

In various A: harmony we have r mark of tongue ro in some cases, cr

formly [+ATR] whereas in Nez Perce it is [-ATR].¹⁸

In our discussion so far of Nez Perce vowel harmony and of the feature of tongue-root position on which it is based, we have simply taken over from Africanist practice the feature [+ATR] to describe the more forward position of articulation. In Nez Perce, however, the Dominant phonological series and therefore, we assume, the marked one, is that series which is produced with the tongue-root relatively non-forward. Using [ATR] as the relevant feature, we therefore have a seeming contradiction in the notation in which the marked member of the opposition is designated by the minus feature. However, this seeming contradiction is not just an artifact of the notation. If there is any validity to Jacobs' observation cited above that Sahaptin has a "predominantly breathy content", then this, coupled with the fact of palatalization in Sahaptin in the environment of Recessive vowels, argues that in these languages the basic set of the throat is one in which the tongue root is advanced. That is to say, the marked physiological gesture is one in which the tongue root is retracted from advanced position. This might suggest that the appropriate feature for Sahaptian is [RTR] (i.e. Retracted Tongue Root), but this begs the question of how the tongue root became advanced in the first place. Furthermore, we have no evidence that in the Dominant series the tongue root is physiologically retracted, rather than in some neutral position, while the fact of palatalization is positive evidence that the tongue root is physically advanced.

In various African languages having this type of harmony we have reports not only of breathiness (a clear mark of tongue root advancement), but also of hardness and, in some cases, creakiness, both clear indications of

actively retracted tongue root and constricted pharynx. The paradox here is even greater. This paradox was first actively pointed out to us by the Honorable Dr. Taita Toweett (personal communication¹⁹ in reaction to Hall et al (1974)), who stated that, as a native speaker of Kipsigis (one of the Kalenjin languages), he felt that when he was producing the Dominant (i.e. [+ATR]) vowels of his language, his tongue root and throat were essentially at rest but that when he was producing the Recessive (i.e. [-ATR] and hence phonologically unmarked) vowels, he was making the active gesture of retracting his tongue root. That this feeling that the minus phonological feature corresponds to the marked physiological gesture is not a peculiar property of either Toweett or of Kipsigis is shown by Welmers report (personal communication) that his Fante informants, when criticizing his pronunciation of the Recessive set of vowels, consistently told him to "pull his throat back"; they were willing to accept his normal English (that is to say, neutral) pronunciation of the Dominant vowels. For many languages in both East and West Africa not only are the Dominant vowels described as being breathy, the Recessive vowels are also described as being hard or creaky and as having greater tension of the vocal tract (thus Stewart 1971:198f. and Welmers 1946:15).

The preceding suggests that what we may be dealing with is the kind of multi-valued feature system which Peter Ladefoged and his students have proposed. For example, Lindau (1975:79) proposes that the feature [Expanded] has the following five²⁰ phonetic values,

- (26) 2 = Advanced tongue root plus lowered larynx
- 1 = Advanced tongue root, but no lowered larynx
- 0 = Neutral pharynx
- 1 = Retracted tongue root, plus raised larynx
- 2 = Pharyngealization

and she gives some examples of the ways in which she believes

languages	range
(27)	Lang
	Akan
	Igbo
	Ates
	Luo
	Arab

In these terms, -1 and Toweett's it, would seem

In actual Also, the five seem excessive opposition.²¹

In both Ki tongue root see marked position member of the P member is [+ATR] point of active where the marke the neutral mem advancement.

Historical we are dealing point, using Li [-Expanded] = [Recessive serie Kalenjin had 0 Dominant series articulation ma With the passag the unmarked me

cted pharynx. paradox was first e Dr. Taita on to Hall et al ker of Kipsigis hat when he was s of his lan- entially at rest ve (i.e. [-ATR] he was making ie root. That feature corres- is not a pecu- sigis is shown by that his Fante ition of the i him to "pull sept his normal iation of the both East and West escribed as being scribed as being ion of the vocal s 1946:15). may be dealing system which posed. For he feature [Expan- ues, d larynx ered larynx ed larynx which she believes

languages range over this feature:

(27)	Language	Set 1	Set 2
		[+Expanded]	[-Expanded]
	Akan	+2	0
	Igbo	+2	-1
	Ateso	+1	0
	Luo	+1	0
	Arabic (pharyngealized vowels)	0	-2

In these terms, Kipsigis, as reported by Toweett, is 0 and -1 and Toweett's paradox, since we have devised labels for it, would seem to be no paradox at all.

In actual fact, of course, Toweett's paradox remains. Also, the five phonetic values for the feature [Expanded] seem excessive for any one language with only a binary opposition.²¹

In both Kipsigis and Sahaptin the paradox is that the tongue root seems to have shifted its phonologically unmarked position in the direction opposite to the marked member of the pair. Thus in Kipsigis, where the marked member is [+ATR], the neutral member has receded to the point of active retraction; in Sahaptin (as in Nez Perce) where the marked member would seem to be [-ATR] (or [+RTR]), the neutral member has fronted to the point of active advancement.

Historically we believe that in both of these cases we are dealing with a kind of drift. That is, at some point, using Lindau's range of values for [Expanded] (where [-Expanded] = [+Contracted]), Sahaptian had 0 for its Recessive series vs. -1 for its Dominant series; Proto-Kalenjin had 0 for its Recessive series, vs. +1 for its Dominant series. At this point in both of these languages articulation matched phonology and there was no paradox. With the passage of time, what must have occurred was that the unmarked member drifted further in the direction of

increasing the pharyngeal size distinction between itself and its marked opposite, in reaction to which the marked member in its turn drifted to maintain the original distance. Thus, in Sahaptin Recessive 0 Dominant -1 shifted to Recessive +1 Dominant 0; in Kipsigis Recessive 0 Dominant +1 shifted to Recessive -1, Dominant 0. In this way in both languages 0 or neutral position is maintained and the distance between the members of the opposition has been maintained, but 0 has changed its markedness, thus giving rise to Toweett's paradox. That this particular paradoxical situation need not necessarily have arisen is shown by languages such as Igbo where the same sort of drift has resulted in the Recessive series being -1 and the Dominant series being +1. (See Lindau's chart, reproduced in (26) above.)

7. *Conclusions.* One further theoretical question remains: the exact nature of the relationship between tongue root position, vocalic length, and what has traditionally been termed the tense/lax opposition. In the case of Nez Perce /i/ we have seen that the result of the neutralization of [ATR] is to assign the expected phonetic realization of the [+ATR] vowel to the long member of the opposition, [i·], and the [-ATR] one to the short member [i]. In the Somali dialect which Armstrong (1934) describes, there is a neutralization identical to that of Nez Perce but with [i] as the only surface vowel. Here there is a correlation of [i·] with the [+ATR] harmonic series and [i] with the [-ATR] series. This would suggest that vocalic length and advanced tongue root position can come to be interdependent. However, since all of the other vowels, both [+ATR] and [-ATR], in Somali and Nez Perce can occur either long or short, it is obviously necessary to maintain [long] as an independent feature.

It might Tongue Root as feature of ten realizations of this leaves un and Stewart (1 languages are since such a f Nez Perce also According to s [+ATR] and [u] and [u] are [+ [tense] as an what Aoki desc lations of sys when short. W cise term to i this is the te from [u] in la could, of cour but this featu actively neede On this basis may mean; that tension would Advanced Tongu independent fe the possibilithem, or even

In the at Nez Perce as a based vowel explanation fo

between itself
which the marked
original dis-
tinct -1 shifted
successive 0
ant 0. In this
it is maintained
the opposition has
keeness, thus
is particular
have arisen is
same sort of
being -1 and the
chart, reproduced

ical question
ship between
what has tradi-
tion. In the case
sult of the neu-
ected phonetic
ng member of the
ie short member
ng (1934) de-
ral to that of
a vowel. Here
+ATR] harmonic
his would suggest
ot position can
a all of the other
and Nez Perce can
ly necessary to

It might be claimed that tenseness and Advanced Tongue Root are interdependent and therefore that no feature of tenseness is necessary. Again, the Nez Perce realizations of /i/ would seem to bear this out. However, this leaves unexplained the fact noted by Welmers (1946:15) and Stewart (1971:198f) that [-ATR] vowels in West African languages are rather more tense than the [+ATR] ones are, since such a formulation requires that [+ATR] = [+tense]. Nez Perce also poses another problem for this equation. According to such a theory one would predict that [u] is [+ATR] and [u] is [-ATR]. However, in Nez Perce both [u] and [v] are [+ATR]. In rule (20) above we introduced [tense] as an independent feature in order to account for what Aoki describes as the somewhat lower and laxer articulations of systematic phonetic [u] and [o] as [u] and [o^v] when short. We have used [tense] for lack of a more precise term to indicate somewhat lowered articulation, since this is the term traditionally used to differentiate [u] from [u] in languages such as English and German. One could, of course, simply use [ATR] in these latter languages but this feature cannot be used in Nez Perce since it is actively needed elsewhere in the phonological framework. On this basis we feel that tenseness (whatever this feature may mean; that it refers in some direct sense to muscular tension would seem to be dubious), vocalic length and Advanced Tongue Root must be maintained in the theory as independent features. This does not, of course, preclude the possibility that in individual languages any two of them, or even all three, may become mutually interdependent.

In the above pages we have tried to show that seeing Nez Perce as a language with tongue root/voice quality based vowel harmony will provide a simple and unitary explanation for its vowel harmony process. From this

point of view, the vowels of the two sets do indeed fall into natural classes in a reasonable phonetic framework.

The Americanist who remains unconvinced by our attempt to interpret Nez Perce within the terms of this seemingly exotic framework will remain with the problem of producing an equally natural explanation.²² To him we can only say that it seems to us to be at least of some significance that, among vowel harmony languages, Nez Perce and Nilotic share the rather unusual structural trait of not only having a Dominant/Recessive opposition but also in having harmonic shift triggered by affixes as well as roots.

N O T E S

¹ This paper is an description of R heard the languaq summer of 1973 as harmony systems (to various of our through Zwicky) v

We would like to Amy Myers, and Me us as the paper wa stein wrote us de and for which we ha by our arguments, thank Eric Hamp f

We wish to expre Robert Vago for due to his urgin We also wish to tions.

The version of t sively revised a revision has ben Lindau (1975) an own ongoing work languages as wel especially B.F. Edward B.G. Ayon Hall, and Deng I

Our work on the from our respect ship for 1976/7 1978/79; and a 1 to R.M.R.H. We agencies. With would not have !

² It is interesti ages we report grammatical pre counterexamples clearly compoun (1970:84ff) cal adverbial prefi semantics of th

s do indeed fall
netic framework.
nced by our attempt
of this seemingly
oblem of producing
we can only say
me significance
Perce and Nilotic
t of not only
ut also in having
well as roots.

N O T E S

¹ This paper is an essay in re-analysis based solely on the published descriptions of Nez Perce listed in the bibliography; we have never heard the language spoken. It was originally written during the summer of 1973 as an offshoot of our work surveying African vowel harmony systems (Hall et al 1974), and it was privately circulated to various of our friends and colleagues, and to everyone (Aoki through Zwicky) who had previously written on the question.

We would like to thank Charles Cairns, Mark Feinstein, John Moyne, Amy Myers, and Martin Pam for their dicussion of the problem with us as the paper was coming into being. Bruce Rigsby and Michael Silverstein wrote us detailed responses to the draft version which we sent them and for which we here wish to express our thanks; they remained unconvinced by our arguments, preferring their original analysis. We also wish to thank Eric Hamp for his most encouraging response to the draft version.

We wish to express our gratitude to our friend and colleague Robert Vago for the interest which he showed in our analysis. It is due to his urging that we have decided finally to publish this paper. We also wish to thank him for his many helpful comments and suggestions.

The version of the paper which appears here has been rather extensively revised and expanded from that which we wrote in 1973. Our revision has benefited considerably from the experimental work of Lindau (1975) and Jacobson (1978). It has also been informed by our own ongoing work on the phonetics and phonology of the Nilotic languages as well as that of our students, friends, and colleagues, especially B.F. Wallace-Gadsden (1980), Eluzai Moga Yokwe (1978), Edward B.G. Ayom (Hall, Hall, and Ayom 1977), and Telar Deng (Hall, Hall, and Deng 1980).

Our work on the Nilotic languages was supported by sabbatical leaves from our respective institutions for the year 1976/77; an NEH Fellowship for 1976/77; UAC/JAC grants-in-aid to B.L.H. for 1976/77, and 1978/79; and a FRAP Grant for 1976/77 and a PSC/BHE Grant for 1978/79 to R.M.R.H. We wish to express our gratitude to these granting agencies. Without the confidence which they showed in us, our work would not have been possible.

² It is interesting to note that in Nez Perce, as in the African languages we report on below, there seem to be no true cases of Dominant grammatical prefixes which cause harmony to themselves. Apparent counterexamples like *watwa·yiksana* 'I waded across long ago' are clearly compounds of *wat-* 'to wade' and *w·yik* 'to go across'. Aoki (1970:84ff) calls these "compound verb stems which consist of an adverbial prefix and a verb root". However, an examination of the semantics of these "adverbial prefixes" which contain Dominant vowels

leaves little doubt in our minds that they are all either denominal or deverbal in origin. Of the 167 members of the class which he cites, the only ones with Dominant vowels are: *c'aw* 'with shell- or bead-like object'; *lāw* 'in speech'; *ñf* (Dominant) 'leave behind'; *tāpñl* 'with leg'; *waqí* 'in arms'; *wat* 'wade'; and *wa?wa* 'fish'. The four nominal prefixes which have Dominant vowels are: *tali* 'short'; *tam* 'throw'; *wa?* 'with hand'; and *wiwaqí* 'old'. These are, as Aoki says (1970:57) "generally attributive" and the resulting forms can also certainly be seen as compounds with adjectival, deverbal, or denominal first members.

³ All of the Nez Perce data which we cite are from Aoki (1966:759f and 762f). For reasons which will become clear in Section 3 below, we have changed his phonemic /ə/ to the actual occurring surface vowel /ɛ/, which he himself reports (1966:759 and 1979:2).

⁴ The possibility of positing some other vowel, [i], [e], or [ɛ] which would be a member of the Dominant series and which would be merged with the Recessive [ɪ] by a rule which would apply after the vowel harmony rule occurred to Aoki (who rejected this solution in favor of a prosodic one), to Jacobsen and Kiparsky, who opted for schwa as the sixth vowel, and to Rigsby and Silverstein, who opted for [e]. Jacobsen, Kiparsky, and Rigsby and Silverstein all invoke criteria of naturalness in support of their proposed underlying systems.

⁵ For this reason Chomsky and Halle, following Aoki, propose the use of a morpheme feature [iH] (for harmony). Jacobsen's purely phonological solution (1968:822) (which Zwicky seconded) of a vowel system that is divided as

-D		i	u
e		ə	o
a			+D

has the advantage of grouping the Dominant and Recessive vowels into adjacent quadrants and making the changes of Recessive to Dominant unidirectional: i → e, e → a, and u → o. However, there are still major objections:

- The vowel which Jacobsen, following Aoki, symbolizes as /e/ (for purposes of pattern symmetry) is phonetically [ɛ], a fact which is treated as irrelevant and disguised by this analysis.
- Granted that a certain symmetry has been gained by grouping the Recessive and Dominant vowels into two quadrants, the fact remains that, in universal phonetic terms, the classes thus obtained are still highly unnatural and, in features required, the vowel harmony shift still necessitates an extremely complex specification -- much more complex than is required for the specification of vowel harmony elsewhere in the world's languages.

⁶ In his article on shows that he is: (1942:610), terms harmonization in. However, Aoki does proposing here be

⁷ Throughout this d. African languages in Greenberg (197. (1963) for all ot

⁸ Akan has been stu Green and Igwe (1' (1965). The stat Lindau (1975) rep and summarizes th Spagnolo (1933) a Luo has been stud (1978). Kalenjin studied by Tucker. Vowel harmony rel in Tucker and Bry in the other non- Africa. Hall et al. liminary version) general.

⁹ To the bibliograph Ganda; Stewart and Ayre (1980) f (1977 ms.) for Kw

¹⁰ It might be objec distinctions in t native America. sis for three rea a) There is no r create for itself outside influence b) In Africa whe quite recently th in his description relationships sys otherwise exempl vowel harmony or We may suggest th

all either denominational or the class which he calls 'with shell-or it' 'leave behind'; and *wa?wa* 'fish'. The vowels are: *tali*, *pi* 'old'. These are, and the resulting are, all adjectival.

⁶ Aoki (1966:759f and Section 3 below, we are arranging surface vowel 9:2).

[i], [e], or [a] which would be merged only after the vowel's solution in favor of *schwa* as who opted for [e]. all invoke criteria underlying systems.

ki, propose the use of Ben's purely phonological) of a vowel system

Recessive vowels into recessive to Dominant , there are still symbolizes as /e/ (for [ə]), a fact which is ilysis. defined by grouping the ts, the fact remains thus obtained are still a vowel harmony shift ication -- much more of vowel harmony else-

⁶ In his article on the typology of vowel harmony systems (1968), Aoki shows that he is aware of these systems which he, following Jakobson (1942:610), terms HORIZONTAL harmony, and which he states "involve harmonization in height, tenseness, or position of tongue root." However, Aoki does not seem to have seen the analogy which we are proposing here between such systems and that of Nez Perce.

⁷ Throughout this discussion we shall refer to the family membership of African languages according to the Greenberg classification as given in Greenberg (1971) for the Nilo-Saharan languages and Greenberg (1963) for all others.

⁸ Akan has been studied by Welmers (1946), Stewart (1967); Igbo by Green and Igwe (1963), and Battistella (1978); Ijo by Williamson (1965). The state of the art is summarized in Stewart (1971). Lindau (1975) reports on an acoustic and radiographic investigation and summarizes the literature to date with extensive bibliography. Spagnolo (1933) and Yokwe (1978) have studied Bari vowel harmony; Luo has been studied by Tucker (1975 and forthcoming) and by Jacobson (1978). Kalenjin has been studied by Tucker (1964). Maasai has been studied by Tucker and Mpaayei (1955) and Wallace-Gadsden (1980).

Vowel harmony relationships for the Nilotc languages are surveyed in Tucker and Bryan (1966) which also gives some data on vowel harmony in the other non-Nilotic (and non-Bantu) languages of North-Eastern Africa. Hall et al (1974) (of which Antell et al, 1974, is a preliminary version) offers a survey of African vowel harmony systems in general.

⁹ To the bibliography cited there should be added Herbert (1975/6) for Ganda; Stewart and van Leynsele (1979) for Nen (Bantu A.44); Bender and Ayre (1980) for Gaam [Ingeschand] (Eastern Sudanic); and Sakraan (1977 ms.) for Kwashii (Hill Nubian, Eastern Sudanic).

¹⁰ It might be objected that vowel harmony systems which make use of distinctions in tongue root position are nowhere else attested in native America. This is not a compelling argument against our analysis for three reasons:
 a) There is no real reason why a given language cannot innovate to create for itself a vowel harmony system of this type without any outside influence or model.
 b) In Africa where such vowel harmony systems abound it is only quite recently that their nature has been recognized (Welmers (1946) in his description of Fante being perhaps the first to state the relationships systematically). Many of the older grammars which are otherwise exemplary for their time and quite detailed either ignore vowel harmony or treat it as a sporadic and unexplained alternation. We may suggest that if other native American languages are looked at

from this point of view, vowel harmony alternations based on tongue root position may well be found. In this regard, cf. Jacobsen's reference to Washo (1968:822).

c) The distinctions between the vowels of the two harmonic sets are often subtle, and even European-trained ears that are listening for a distinction often fail to recognize the significant cue. Thus, the fact that none of the linguists working on the Sahaptian languages have reported hearing systematic voice quality distinctions, which they were not even listening for, does not constitute *prima facie* evidence that the distinction is not present.

¹¹ The phonetic value of this vowel is clearly stated to be [ə] in Aoki (1966:759) and in Phinney (1934:x). It was, we believe, Aoki's phonemicization of this vowel as /e/ (e.g. 1962:172 and 1970:19) which has prevented previous linguists from focusing on the proper explanation of the relationship of the phonetic realities to the underlying system.

¹² In this rule no directionality of environment is specified under a convention similar to that which Bach (1968) terms a 'neighborhood' convention or Langacker (1969:858f) a 'mirror image' convention.

¹³ This is what occurs in Kalenjin, yielding the sound which Tucker and Bryan (1966) symbolize as [ə̯], and which some linguists have found hard to distinguish from [ɔ] of the [-ATR] series. A similar result is found in Bari, yielding as the [+ATR] equivalent of [ɑ] the sound which is symbolized in the orthography as <Ö>, a [ʌ] which is produced with the vocal tract in a "long tube" configuration (see Yokwe 1978 for discussion).

¹⁴ For example, in Maasai, a Nilo-Saharan language, the surface distinction between the /+ATR/ and the /-ATR/ low vowel is neutralized (except after /w/); however that this is only a surface neutralization is shown by the fact that some /a/'s trigger vowel harmony while others do not. For example, the marker of one verbal class is /i/ (a recessive vowel in Maasai). Before some verb roots with surface /a/, it occurs as [i], e.g. a-igap 'to fill', while before others it occurs as [i], e.g. a-ipan 'to buy from' (data from Tucker and Mpaayei 1955:xiv, 52). This neutralization is discussed in detail in Wallace-Gadsden (1980).

¹⁵ We shall turn to a discussion of the need for an independent feature [tense] in the conclusion of this paper.

¹⁶ In Maasai (A.N. Tucker: personal communication) while [+ATR] /a/ have fallen together, cf. fn. 14 above, as far as tongue body position is concerned and in this respect are phonetically identical.

they are maintained
ness which is pres

¹⁷ Robert Vago has pointed out that committing oneself

¹⁸ Nez Perce is unusual in that Jakobson (1942:61C) terms much like the divided into two sets

If one uses the feature Nez Perce, fulfillment of the low vowel will rise

¹⁹ Dr. Toweett's communication to us some draft page Master's Dissertation never seen the first time it with its title has recently been

²⁰ In her discussion (1952f. and the chart of a simple 1,0,-1 previous position more than a binarization is just an inevitable when the article, we do not is the more interesting

²¹ There exist a complex which we have worked out and Anyuak, which is but rather a four clearly distinct positions that lowered larynx. The four qualities are: normal voice and larynx in neutral, the tongue root raised; somewhat raised; the tongue root advanced, and

ions based on tongue
i, cf. Jacobsen's

two harmonic sets are
it are listening for
ficient cue. Thus, the
iaptian languages
distinctions, which
stitute *prima facie*

ed to be [æ] in Aoki
believe, Aoki's
172 and 1970:19)
sing on the proper
realities to the

specified under a
ms a 'neighborhood'
age' convention.

and which Tucker and
nguists have found
s. A similar result
ent of [a] the sound
[ʌ] which is pro-
figuration (see Yokwe

the surface distinc-
is neutralized (ex-
urface neutralization
el harmony while
erbal class is /ɪ/
roots with surface
ile before others it
rom Tucker and
iscussed in detail

independent feature

while [+ATR] /a/
s tongue body posi-
cally identical,

they are maintained acoustically distinct by the feature of breathi-
ness which is present in the [+ATR] a but absent in the [-ATR] one.

¹⁷ Robert Vago has pointed out to us that, in his view, we are here
committing ourselves to an archiphonemic analysis of Uralic and Altaic.

¹⁸ Nez Perce is unusual but not unique in this regard. According to
Jakobson (1942:610), Koryak and Gilyak also have vowel harmony sys-
tems much like that of Nez Perce. They have six surface vowels,
divided into two sets, where Set (2) is Dominant:

(1)	(2)
i u	e o
ə ə	

If one uses the feature [ATR] then Set (2) is [-ATR] and, unlike
Nez Perce, fulfills Stewart's (1971:199f) prediction that the [+ATR]
low vowel will rise while retaining its centralized character.

¹⁹ Dr. Toweett's comment to us was in a letter in 1974 in which he sent
us some draft pages of what became his 1975 University of London
Master's Dissertation on Kipsiqis nominals. Unfortunately, we have
never seen the finished dissertation, and therefore are unable to
cite it with its proper title. We understand that this dissertation
has recently been formally published in Kenya.

²⁰ In her discussion of the feature [Expanded] in her 1978 article
(552f. and the chart on 559), Lindau presents this feature in terms
of a simple 1,0,-1 opposition. Whether she chose to abandon her
previous position because none of the examples which she cites show
more than a binary phonological opposition, or whether the simplifi-
cation is just an example of the kind of condensation which is in-
evitable when the content of a monograph is squeezed into a journal
article, we do not know. However, we think that her earlier proposal
is the more interesting one and so we have chosen to reproduce it here.

²¹ There exist a complex of six Western Nilotic languages (on four of
which we have worked intensively), Dinka, Nuer, Atuot, Shilluk, Jur,
and Anyuak, which have not merely a binary voice quality opposition
but rather a four-way one. In these languages laryngeal movement is
clearly distinct from advanced tongue root, despite Lindau's claims
that lowered larynx is simply a variable in her feature [Expanded].
The four qualities, to which we have given impressionistic labels
are: normal voice, which is produced with the tongue root, pharynx,
and larynx in neutral position; hard voice, which is produced with
the tongue root retracted, the pharynx constricted, and the larynx
somewhat raised; breathy voice, which is produced with the tongue
root advanced, and the pharynx and the larynx in neutral position;

and hollow voice, which is produced with the tongue root advanced, the pharynx constricted, and the larynx lowered. Since, as Jacobson (1978:81, see also his paper in this volume) points out on the basis of his radiographic work, for Shilluk and Dinka "...the width of the pharynx is independent of the height of the tongue or the depth of the larynx...", we cannot adopt Lindau's term [Expanded], with its multiple values, because, given the independence of laryngeal and tongue root movement, the term 'Expanded' becomes just a notational variant of 'Advanced Tongue Root' and insufficient to explain the gestures involved. We have discussed the function of the four-way voice quality variation in greater detail in Hall, Hall and Ayom (1977) and Hall, Hall, and Deng (1980).

²²The scholar with a commitment to Nez Perce or Sahaptian who wishes to show that our conclusions are wrong does have yet another alternative: to conduct his own spectrographic and radiographic investigations of the language. According to Aoki (1970:v) "time is running short for the Nez Perce language...only a small fraction [of the 2,097 tribal members] have a productive knowledge of the language." It is astounding that so few native American languages have been the objects of detailed experimental phonetic investigations. For many other groups besides the Nez Perce, time is also running out and soon it will be no longer possible to make this detailed part of the linguistic record.

R E F E R E N C E

Antell, Stephen A.,
Amy Myers
harmony f
Linguist
Universit

Aoki, Haruo (1962),
son", Inte
_____, (1966),
vowels",
_____, (1968),
Journal o
_____, (1970),
Publicati
nia Press
_____, (1979),
cations i
Press, Be

Armstrong, Lilius E.
Mitteilun
Berlin, n

Bach, Emmon (1968),
in phonol

Battistella, Ed (197
Linguisti
nual Meet

Bender, M. Lionel an
English-G
publisher
Anthropol
Illinois,

Chomsky, Noam and Mo
Harper an

Green, M.M. and G.E.
Akademie
London.

tongue root advanced, 4. Since, as Jacobson points out on the basis of ka "...the width of the tongue or the depth of [Expanded], with its center of laryngeal and comes just a notational device to explain the action of the four-way Hall, Hall and Ayom

Sahaptian who wishes have yet another altered radiographic investigation 1970:v) "time is running 11 fraction [of the edge of the language." languages have been the investigations. For many also running out and is detailed part of the

REFE R E N C E S

Antell, Stephen A., Godfrey K. Chorono, Beatrice L. Hall, R.M.R. Hall, Amy Myers, and Martin D. Pam (1974), "Nilo-Saharan vowel harmony from the vantage point of Kalenjin", *Department of Linguistics and Nigerian Languages Research Notes* 7, University of Ibadan.

Aoki, Haruo (1962), "Nez Perce and Northern Sahaptian: a binary comparison", *International Journal of American Linguistics* 28, 172-182.

_____(1966), "Nez Perce vowel harmony and Proto-Sahaptian vowels", *Language* 42, 759-767.

_____(1968), "Toward a typology of vowel harmony", *International Journal of American Linguistics* 34, 142-145.

_____(1970), "Nez Perce grammar", *University of California Publications in Linguistics*, vol. 62, University of California Press, Berkeley and Los Angeles.

_____(1979), "Nez Perce texts", *University of California Publications in Linguistics*, vol. 90, University of California Press, Berkeley, Los Angeles, London.

Armstrong, Lilius E. (1934), "The phonetic structure of Somali", *Mitteilungen des Seminars für orientalische Sprachen* zu Berlin, no. 32.

Bach, Emmon (1968), "Two proposals concerning the simplicity metric in phonology", *Glossa* 2, 128-149.

Battistella, Ed (1978), "Igbo vowel harmony", *CUNYForum, Papers in Linguistics* nos. 5-6, 108-123 (= *Proceedings of the Ninth Annual Meeting of the North East Linguistic Society*, part 1.)

Bender, M. Lionel and Malik Agaar Ayre (1980), *Preliminary Gaam-English-Gaam dictionary*. (No place of publication or publisher listed but available from M.L. Bender, Dept. of Anthropology, Southern Illinois University, Carbondale, Illinois, 62901.)

Chomsky, Noam and Morris Halle (1968), *The sound pattern of English*, Harper and Row, New York.

Green, M.M. and G.E. Igwe (1963), *A descriptive grammar of Igbo*, Akademie Verlag, Berlin, and Oxford University Press, London.

Greenberg, Joseph H. (1963), "The languages of Africa", *International Journal of American Linguistics* 29 (1), part II.

_____, (1971), "Nilo-Saharan and Meroitic", in: Sebeok, T.A. (ed.), *Current trends in linguistics*, vol. 7, *Linguistics in Sub-Saharan Africa*, 421-442, Mouton, The Hague.

Hall, Beatrice L., R.M.R. Hall, Martin D. Pam, Amy Myers, Stephen A. Antell, and Godfrey K. Cherono (1974), "African vowel harmony systems from the vantage point of Kalenjin", *Afrika und Übersee* 57, 241-267.

Hall, Beatrice L., R.M.R. Hall, and Edward B.G. Ayom (1977), "[ATR] and [CP] as independent variables in Western Nilotc", Paper read at the 9th meeting of the North Eastern Linguistic Society, Amherst, Massachusetts.

Hall, Beatrice L., R.M.R. Hall, and Telar Deng (1980), "Paradigmatic alternation in Atuot", Paper read at the Eleventh Annual Conference on African Linguistics, to appear in the proceedings of this conference.

Herbert, Robert K. (1975/6), "A reanalysis of Luganda vowels, evidence for an abstract distinction", *Afrika und Übersee* 69, 113-124.

Jacobs, Melville (1931), "A sketch of Northern Sahaptin grammar", *University of Washington Publications in Anthropology*, vol. 4, no. 2, 85-292.

Jacobsen, William H., Jr. (1968), "On the prehistory of Nez Perce vowel harmony", *Language* 44, 819-829.

Jacobson, Leon C. (1978), "DhoLuo vowel harmony", *UCLA Working Papers in Phonetics*, no. 43, University of California, Los Angeles.

Jakobson, Roman (1942), "The Paleo-Siberian languages", *American Anthropologist* 44, 602-620.

_____, (1971), "Notes on Gilyak", *Selected Writings II*, 72-97, Mouton, The Hague. [Reprinted from *Studies presented to Yuen-Ren Chao = The Bulletin of the Institute of History and Philology, Academica Sinica* 29 (1957).]

Jungreithmayr, Hermann (1971), "The Tangale vowel harmony system reconsidered", *Journal of African Languages* 10, 28-33.

Kim, Chin W. (1978), "'Diagonal' vowel harmony?: Some implications for historical phonology", in: Jacek Fisiak (ed.), *Recent developments in historical phonology*, 221-236, Mouton, The Hague.

Kiparsky, Paul (1968), *Language and its structure*, 2nd ed., MIT Press, Cambridge, Massachusetts.

Langacker, Ronald W. (1977), "On the nature of phonological systems", *Phonetics and Phonology*, 1-20.

Lindau, Mona (1975), "A note on vowel height in African languages", *Phonetics and Phonology*, 21-35.

_____, (1978), "Vowel height in African languages", *Phonetics and Phonology*, 21-35.

Palmer, F.R. (1957), "Oriental vowel height systems", *Journal of Phonetics*, 1-12.

_____, (1958), "Oriental vowel height systems", *Journal of Phonetics*, 1-12.

Phinney, Archie (1934), *Language and its structure*, 2nd ed., MIT Press, Cambridge, Massachusetts.

Rigsby, Bruce J. (1968), "Proto-Sahaptin vowel systems", *Journal of Phonetics*, 306-311.

Rigsby, Bruce J. and I. M. Stewart, "Proto-Sahaptin vowel systems", *Journal of Phonetics*, 306-311.

Sakraan, Tindal (1977), "Vowel height in Asian languages", *Journal of Phonetics*, 1-12.

Sebeok, Thomas A. (ed.), *Current trends in linguistics*, vol. 7, *Linguistics in Sub-Saharan Africa*, 421-442, Mouton, The Hague.

Spagnolo, L.M. (1933), *Language and its structure*, 2nd ed., MIT Press, Cambridge, Massachusetts.

Stewart, John M. (1968), "Proto-Sahaptin vowel systems", *Journal of Phonetics*, 306-311.

_____, (1971), "Current trends in linguistics", vol. 7, *Linguistics in Sub-Saharan Africa*, 421-442, Mouton, The Hague.

Stewart, John M. and I. M. Stewart, "Proto-Sahaptin vowel systems", *Journal of Phonetics*, 306-311.

Tucker, A.N. (1964), "Vowel height in African languages", *Journal of Phonetics*, 445-455.

afrika", *International Linguistics* 41, part II.

int: Sebeok, T.A. (ed.), *Linguistics in Sub-Saharan Africa*, The Hague.

amy Myers, Stephen A., "African vowel height in Kalenjin", *Afroasiatic Linguistics* 1, 1977, [ATR] Western Nilotic", *North Eastern Linguistics* 1, 1977.

(1980), "Paradigmatic vowel height in the Eleventh Annual Report", *Current trends in linguistics*, to appear in the pro-

iganda vowels, evidence and Uebersee 69.

Sahaptin grammar", in *Anthropology*, vol. 1, 1977.

istory of Nez Perce", in *Current trends in linguistics*, vol. 7, 1971.

", *UCLA Working Papers in Linguistics* 1, 1971.

ages", *American Anthropologist* 72, 1970.

ritings II, 72-97, studies presented to Institute of History and Archaeology, The Hague.

al harmony system review", *Current trends in linguistics* 10, 1971, 28-33.

Some implications for vowel height", in: Sebeok (ed.), *Recent developments in linguistics* 16, Mouton, The Hague.

Kiparsky, Paul (1968), *How abstract is phonology?*, ms.

Langacker, Ronald W. (1969), "Mirror image rules II: lexicon and phonology", *Language* 45, 844-862.

Lindau, Mona (1975), "Features for vowels", *UCLA Working Papers in Phonetics*, no. 30, University of California, Los Angeles.

(1978), "Vowel features", *Language* 54, 541-563.

Palmer, F.R. (1957), "The verb in Bilin", *Bulletin of the School of Oriental and African Studies* 19, 131-159.

(1958), "The noun in Bilin", *Bulletin of the School of Oriental and African Studies* 21, 376-391.

Phinney, Archie (1934), "Nez Perce texts", *Columbia University Contributions in Anthropology* 25, Columbia University Press, New York.

Rigsby, Bruce J. (1965), "Continuity and change in Sahaptian vowel systems", *International Journal of American Linguistics* 31, 306-311.

Rigsby, Bruce J. and Michael Silverstein (1969), "Nez Perce vowels and Proto-Sahaptian vowel harmony", *Language* 45, 45-59.

Sakraan, Tindal (1977), *Kwashii phonology*, ms., Institute of African and Asian Studies, University of Khartoum, Khartoum.

Sebeok, Thomas A. (ed.) (1971), *Current trends in linguistics*, vol. 7, *Linguistics in sub-Saharan Africa*, Mouton, The Hague.

Spagnolo, L.M. (1933), *Bari grammar*, Verona Fathers, Verona.

Stewart, John M. (1967), "Tongue root position in Akan vowel harmony", *Phonetica* 16, 185-204.

(1971), "Niger-Congo, Kwa", in: Sebeok, Thomas A. (ed.), *Current trends in linguistics*, vol. 7, *Linguistics in Sub-Saharan Africa*, 179-212, Mouton, The Hague.

Stewart, John M. and Helene van Leynsele (1979), "Underlying cross-height vowel harmony in Nen (Bantu A44)", *Journal of African Languages and linguistics* 1, 31-54.

Tucker, A.N. (1964), "Kalenjin phonetics", in: *In honour of Daniel Jones*, 445-470, Longmans, London.

_____, "Orthographic systems and conventions in Sub-Saharan Africa", in: Sebeok, Thomas A. (ed.), *Current trends in linguistics*, vol. 7, *Linguistics in Sub-Saharan Africa*, 618-653.

_____, "Voice quality in African languages", in: Hurreiz, Sayyid H. and Herman Bell (eds.), *Directions in Sudanese linguistics and folklore*, 44-57, Khartoum University Press, Khartoum.

_____, (forthcoming), *A grammar of Kenya Luo with vocabulary*.

Tucker, A.N. and M.A. Bryan (1966), *Linguistic analyses: the non-Bantu languages of North-Eastern Africa*, Oxford University Press for the International African Institute, London.

Tucker, A.N. and J.T. ole Mpaayei (1955), *A Maasai grammar*, Longman, Green and Co., London.

Wallace-Gadsden, B.F. (1980), "/a/ within the system of Maasai vowel harmony", Paper read at the Eleventh Annual Conference on African linguistics, to appear in the proceedings of this conference.

Welmers, William (1946), "A descriptive grammar of Fanti", *Linguistic Society of America Language Dissertation*, no. 39, Linguistic Society of America, Baltimore.

Williamson, Kay (1965), "A grammar of the Kolokuma dialect of Ijo", *West African Language Monographs* 2, Cambridge University Press, Cambridge.

Yokwe, Eluzai Moga (1978), *Bari phonology*, unpublished M.A. dissertation, Institute of African and Asian Studies, University of Khartoum, Khartoum. (To appear in *Afrika und Übersee*.)

Zwickly, Arnold M. (1971), "More on Naz Perce: an alternative analysis", *International Journal of American Linguistics* 37, 122-126.

VOWEL HAI

Universi

One of the cle
Generative Grammar
that Transformation
logical rules shoul
logical rules, mor
logical rules are
motivated. Morpho
classes or categor
not in a purely ph
lexical relations.

Moreover, it
processes,

the only true i
must come from t
that may be add
This means that
motivation... (B

To state it anothe
spring into gramm
I would like
sound evidence ag
innovations alway
never contain mor