A Typology of Epenthetic Vowels in Loanwords

Christian Uffmann
Philips-Universität Marburg
uffmann@mailer.uni-marburg.de
http://staff-www.uni-marburg.de/~uffmann

1. Epenthetic Vowels

Vowel epenthesis (rather than deletion) is a common process in loanword adaptation in order to satisfy constraints on phonotactics and syllable structure in the borrowing language:

(1) Yoruba kílási ‘class’
Japanese sutoraku ‘strike’
SeTswana kirišimasi ‘Christmas’
Shona girini ‘green’
Samoan siku ‘pearl’
Sranan buku ‘book’

While the motivation behind epenthesis as such is clear (syllable structure constraints), one question remains: Which vowel is inserted via default (e.g. Pulleyblank 1988, 1998 on Yoruba; Shinohara 1997 on Japanese)

- The maximally unmarked, underspecified or phonetically shortest vowel is inserted via default (e.g. Paradis 1996 on Fula)
- There is consonant-vowel assimilation, most notably labial attraction (e.g. Akinlabi 1993 on Yoruba, Batibo 1995 on SeTswana, Smith 1977 on Sranan)
- Sometimes an interplay of these factors is suggested but it is not quite clear how: Are there rival processes within one domain, or are different processes found in different domains?

Goals of this talk:
- to establish what exactly the patterns of epenthesis are by means of a statistical analysis of large loanword corpora,
- to present an analysis of epenthetic vowels in Shona loanwords and in Sranan,
- to model the statistical findings in OT, using a framework of autosegmental OT,
- to show how a general typology of epenthetic vowels results from reranking constraints.

2. Case Study I: Shona

Southern Bantu language (Zimbabwe) with strict CV-syllable structure and five vowels (/i,e,a,o,u/). Analysis of a Shona-English loanword corpus (1709 items), collected from the Shona Standard Dictionary (Hannan 1984), Chimhundu (1983) and other sources. All 5 vowels can occur as epenthetic vowels, (2a-e) giving word-final epenthetic vowels, (f) epenthetic vowels in onset clusters:

(2a) hendíbégí ‘handbag’ furústópi ‘full stop’
(2b) jere ‘jail’ gavhumende ‘government’
(2c) pera ‘pearl’ mupaka ‘pack of playing cards’
(2d) turoko ‘truck’ kendu ‘candle’
(2e) parachutu ‘parachute’ dihuro ‘gonorrhrea discharge’ < drop
(2f) sıriče ‘stretcher’ paraši ‘plaster’

Case study: Epenthetic vowels preventing Cs in coda position (for epenthetic vowels in onset clusters, see Uffmann 2001, in preparation).

1711 items in loanword corpus, coded in SPSS w.r.t. (a) the quality of the epenthetic vowel (dependent variable), (b) the quality of the preceding vowel, (c) the quality (place and manner) of the preceding consonant.

(3) A first frequency analysis

<table>
<thead>
<tr>
<th>vowel</th>
<th>/i/</th>
<th>/e/</th>
<th>/a/</th>
<th>/o/</th>
<th>/u/</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency</td>
<td>1190</td>
<td>49</td>
<td>106</td>
<td>140</td>
<td>226</td>
</tr>
<tr>
<td>Σ</td>
<td>1711</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is /i/, being the most frequently selected epenthetic vowel, a default vowel in Shona?

Classification trees on the basis of CHAID (chi-square automatic interaction detection) (see also Plag & Uffmann 2000).

Strongest predictor: place of articulation of preceding C

(4)

<table>
<thead>
<tr>
<th>consonant place</th>
<th>/i/</th>
<th>/e/</th>
<th>/a/</th>
<th>/o/</th>
<th>/u/</th>
</tr>
</thead>
<tbody>
<tr>
<td>labial</td>
<td>23.7%</td>
<td>0.4%</td>
<td>2.8%</td>
<td>3.2%</td>
<td>7.5%</td>
</tr>
<tr>
<td>coronal</td>
<td>91.6%</td>
<td>0.8%</td>
<td>2.6%</td>
<td>9.1%</td>
<td>13.4%</td>
</tr>
<tr>
<td>dorsal</td>
<td>67.4%</td>
<td>3.2%</td>
<td>3.2%</td>
<td>13.4%</td>
<td>15.7%</td>
</tr>
<tr>
<td>liquid</td>
<td>24.1%</td>
<td>6.8%</td>
<td>17.7%</td>
<td>35.7%</td>
<td>24.9%</td>
</tr>
</tbody>
</table>

Preliminary finding: /u/ is the preferred epenthetic V after labial Cs; /i/ is preferred after coronal Cs. Not much can be said about dorsals yet.

NB: The high frequency of /i/ in the overall count is a result of the preponderance of coronal consonants in English (n=1034) after which /i/ is inserted.
Each branch of the subtree can be analyzed further: Do other variables also significantly correlate with the epenthetic vowel?

(5) Epenthetic vowels after labial consonants

<table>
<thead>
<tr>
<th>epenthesis (labials)</th>
<th>/i/</th>
<th>/e/</th>
<th>/a/</th>
<th>/o/</th>
<th>/u/</th>
</tr>
</thead>
<tbody>
<tr>
<td>/i/</td>
<td>23.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/o/</td>
<td>0.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/a/</td>
<td>7.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/e/</td>
<td>7.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/u/</td>
<td>61.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 241</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generalization: Standard epenthetic vowel is /u/ but /i/ if /i/ and an obstruent precede.

(6) Examples of epenthetic vowels after labials

(a) timu ‘team’
 kirimu ‘cream’
 atemu ‘stem’
 giramu ‘gram’
 kondomu ‘condom’
 pepiyumu ‘perfume’
 hangachepfu ‘handkerchief’
 kirabhu ‘salad’
 zoni ‘salad’

(b) chifu ‘stove’
 chubhu ‘tube’
 puruvhu ‘proof’
 dhibhi ‘dip tank’

(c) chipi ‘sale’ < cheap
 kiripi ‘clip’
 pichipaipi ‘pitch-pipe’
 bhirifi ‘brief’
 chifi ‘chief’

<table>
<thead>
<tr>
<th>consonant manner</th>
<th>n = 41</th>
<th>n = 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>/l/</td>
<td>90.2%</td>
<td>15.0%</td>
</tr>
<tr>
<td>/l/</td>
<td>7.3%</td>
<td>5.0%</td>
</tr>
<tr>
<td>/l/</td>
<td>2.4%</td>
<td>15.0%</td>
</tr>
<tr>
<td>/l/</td>
<td>65.0%</td>
<td>65.0%</td>
</tr>
<tr>
<td>obstruents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sonorants</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(7) Epenthetic vowels after coronal consonants

<table>
<thead>
<tr>
<th>epenthesis (coronals)</th>
<th>/i/</th>
<th>/e/</th>
<th>/a/</th>
<th>/o/</th>
<th>/u/</th>
</tr>
</thead>
<tbody>
<tr>
<td>/i/</td>
<td>91.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/e/</td>
<td>2.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/a/</td>
<td>2.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/o/</td>
<td>0.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/u/</td>
<td>2.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 1034</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generalization: Epenthetic vowel is /i/ but variably /i/ or /u/ if /i/ and a stop precede.

(8) Examples of epenthetic vowels after coronals

(a) eyiti ‘eight’
 edzi ‘AIDS’
 saradhi ‘salad’
 zoni ‘zone’

(b) chuni ‘girlfriend’ < tune
 bhushi ‘bush’

(c) gudhu ‘good’
 svutu ‘suit’
 bhervit ‘belt’
 dhauti ‘doubt’

(9) Epenthetic vowels after dorsal consonants

<table>
<thead>
<tr>
<th>epenthesis (dorsals)</th>
<th>/i/</th>
<th>/e/</th>
<th>/a/</th>
<th>/o/</th>
<th>/u/</th>
</tr>
</thead>
<tbody>
<tr>
<td>/i/</td>
<td>67.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/e/</td>
<td>3.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/a/</td>
<td>9.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/o/</td>
<td>13.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/u/</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generalization: Standard epenthetic vowel is /i/
Generalization: Epenthetic vowel is harmonic to the preceding vowel, i.e. /i/ after /i,e/, /o/ after /o/, /u/ after /u/. After /a/, there is /i/. (10)

Examples of epenthetic vowels after dorsals
(a) hwiki ‘wick’ wigi ‘wig’
 cheki ‘check’ kirengi ‘crank’
(b) magi ‘mug’ hafubaki ‘halfback’
(d) koko ‘cork’ forogo ‘fork’
(e) bhuku ‘book’ kuruku ‘crook’

Generalization:
- after labial Cs, /u/ is inserted,
- after coronal Cs, /i/ is inserted,
- after dorsal Cs, the previous V is copied if it is /i,o,u/; after /e,a/, however, /u/ is epenthesized.
- Caveat: After stops, CV-assimilation is dispreferred; instead, we find V-copy if the previous V is /i/ or /u/.

3. Vowel Epenthesis in Autosegmental Phonology and Feature Geometry

Recap: Three possible epenthesis strategies,
- default vowel insertion
- vowel harmony
- consonantal assimilation

can be captured autosegmentally as spreading/insertion processes:

(11) Epenthesis strategies in Autosegmental Phonology

a. insertion of a default vowel (feature insertion)
b. spreading of feature from neighboring consonant
c. vowel harmony (spreading of vocalic feature)

All three processes are found in Shona, although in different domains.

1. Preliminaries: Features and Feature Geometry

(12) Feature specification of the Shona vowel system:

<table>
<thead>
<tr>
<th></th>
<th>/i/</th>
<th>/e/</th>
<th>/a/</th>
<th>/o/</th>
<th>/u/</th>
</tr>
</thead>
<tbody>
<tr>
<td>[labial]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[coronal]</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[dorsal]</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[pharyngeal]</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[open]</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clements/Hume model of Feature Geometry (Clements/Hume 1995, Hume 1996) as framework of choice where vowels and consonants share the same set of features (Unified Feature Theory), e.g. the geometry of place nodes:

(13) The geometry of place features (Clements/Hume 1995, Odden 1994)

General strategy: C-spreading (if C=[[labial],[coronal]])

(14) P C V Rt C-Place voc V-Place
 D u | | | | | |
 C V | | | | | |
 Rt | | | | | |
 C-Place | | | | | |
 voc | | | | | |
 V-Place | | | | | |

Alternative strategy I: V-spreading (if V=/i,u/ and C=[-son])

(15) book → bhuku
 u | | | | | |
 V | | | | | |
 c | | | | | |
 V | | | | | |
 Rt | | | | | |
 C-Place | | | | | |
 voc | | | | | |
 V-Place | | | | | |
Alternative strategy II: If either fails, then default V insertion.
Condition: \(C=\text{[dorsal]}\) and \(V=\text{[pharyngeal]}\)

<table>
<thead>
<tr>
<th>Clerk</th>
<th>Kiraki</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V)</td>
<td>(C)</td>
</tr>
<tr>
<td>Rt</td>
<td>Rt</td>
</tr>
<tr>
<td>C-Place</td>
<td>C-Place</td>
</tr>
<tr>
<td>Voc</td>
<td>Voc</td>
</tr>
<tr>
<td>V-Place</td>
<td>[dorsal]</td>
</tr>
<tr>
<td>[pharyngeal]</td>
<td></td>
</tr>
</tbody>
</table>

(NB. The fact that /i/ is the default vowel can be seen in the native phonology where /i/ is prothesized to words which otherwise don’t satisfy minimal word requirements)

4. Towards an OT Analysis

Epenthesis is the result of phonotactic constraints ranked differently in Shona and English. In Shona: CV syllable structure means inviolable NOCODA and *COMPLEXONSET constraints. Preference of epenthesis over deletion: MAX » DEP.

(17) Motivating vowel epenthesis as high ranked syllable structure constraints

<table>
<thead>
<tr>
<th>Green</th>
<th>NOCODA</th>
<th>*COMPLEX</th>
<th>MAX</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>grin</td>
<td>!</td>
<td>0</td>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>grini</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>i</td>
<td>!</td>
<td>!</td>
<td>*</td>
<td>!</td>
</tr>
<tr>
<td>gi</td>
<td>!</td>
<td>!</td>
<td>i</td>
<td>!</td>
</tr>
</tbody>
</table>

Which vowel is preferred? Constraints on representations

(18) DEP(F) no insertion of features
(19) *MULTIPLE features are associated with one mother node only (no spreading)
(20) *SKIP no skipping of intervening material (enforces adjacency in spreading)
(21) *LINK(C,V) no association between C-Place and V-Place nodes (cf. Hume 1996)

Ranking of these constraints w.r.t. each other determines the quality of the epenthetic vowel.

(16) clerk \(\rightarrow\) kiraki

\(\text{NB. The fact that } /i/ \text{ is the default vowel can be seen in the native phonology where } /i/ \text{ is prothesized to words which otherwise don’t satisfy minimal word requirements.}

Shona: epenthetic V receives place specifications from adjacent C

(23) mepu 'map'
saradhi 'salad'

(24) DEP(F) = *MULTIPLE spreading is preferred to feature insertion
(25) *SKIP = *LINK(C,V) locality is preferred to linkage between similar segments

(26) Example tableau: team \(\rightarrow\) timu

<table>
<thead>
<tr>
<th>Team</th>
<th>DEP(F)</th>
<th>*SKIP</th>
<th>*LINK(C,V)</th>
<th>*MULTIPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>[cor]</td>
<td>!</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>b.</td>
<td>[cor]</td>
<td>*</td>
<td>!</td>
<td>*</td>
</tr>
<tr>
<td>c.</td>
<td>[lab]</td>
<td>*</td>
<td>*</td>
<td>(</td>
</tr>
</tbody>
</table>

Special case: dorsals don’t spread

can be modeled as prohibition on dorsal Cs to spread: special case

(27) *LINK(C,V) & *DORSAL local conjunction of markedness constraints outranks *SKIP, thus allowing non-local linkage:

(22) V C V F

Default vowel C-spreading V-spreading
DEP(F) * DEP(F) *
*MULTIPLE *MULTIPLE *MULTIPLE
*SKIP *SKIP *SKIP
*LINK(C,V) *LINK(C,V)

Note: Spreading is not enforced by ALIGN or AGREE constraints. It follows from minimal constraint violation (a ‘passive’ theory of assimilation and spreading), i.e. satisfaction of DEP(F).

Shona: epenthetic V receives place specifications from adjacent C

(28) Example tableau: book \(\rightarrow\) bhuku

<table>
<thead>
<tr>
<th>Book</th>
<th>DEP(F)</th>
<th>*LINK&DOR</th>
<th>*SKIP</th>
<th>*LINK(C,V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>[cor]</td>
<td>!</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>b.</td>
<td>[lab]</td>
<td>!</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>c.</td>
<td>[dor]</td>
<td>!</td>
<td></td>
<td>(</td>
</tr>
</tbody>
</table>
Not all vowels spread, however. If /a/ were to spread, i.e. preceding a dorsal, we find insertion of default /i/ instead. Special case

(29) *MULTIPLE (pharyngeal) no spreading of a pharyngeal node

outranks DEP(F). As both, C-spreading and V-spreading are blocked by high-ranked special case constraints, a candidate violating DEP(F) now emerges as optimal.

(30) clerk *MULT(a) *LINK/DOR DEP(F) *SKIP *LINK(CV)

Further observations:
Only place features spread, not aperture features
* high-ranked prohibition against the spreading of vocalic nodes
Across obstruents, vowel harmony can occur
 → parameterization of *SKIP constraints w.r.t. sonority
 Complete rankings can be found in Uffmann (2001, in preparation)

5. Case Study II: Sranan

Sranan: creole language of Surinam. Words of English origin have paragogic (word-final epenthetic) vowels lest they end in a consonant.

CHAID analysis on the basis of Wilner (1994), Wortubuku fu Sranan Tongo (503 items) reveals that
- /i/ is inserted after /i,e/
- /u/ is inserted after /u,o/
- /a/ is inserted if C=lab, /i/ is inserted if C=cor

General pattern of vowel harmony (place harmony), blocked if V=/a/, then consonantal spreading.
In OT terms: Ranking of *LINK(C,V) – no CV-linkage – above *SKIP – only strictly local spreading while DEP(F) » *MULTIPLE – preference of spreading over feature insertion.

(31) sleep DEP(F) *MULTIPLE *LINK(CV) *SKIP

6. The Development of the Sranan Pattern

Diachronically Sranan developed from default vowel system to a harmony system.

(33) Herlein (1718): /e/ is default epenthetic vowel
 van Dyk (1765): system is mixed: V-harmony with coronal vowels, default insertion with labial vowels (/i,e … i/ but /u,o … e/)
 Wilner (1994): vowel harmony throughout

This development can easily be explained as constraint reranking:

Herlein: default vowel is epenthized

(35) *MULTIPLE » DEP(F)

van Dyk: /i,e/ spread, else default vowel

(36) *MULTIPLE (labial) » DEP(F) » *MULTIPLE (coronal)

Wilner: all vowels spread

(37) DEP(F) » *MULTIPLE

→ gradual demotion of *MULTIPLE

7. Towards a Typology of Epenthetic Vowels

- All three possible strategies, default V insertion, V-spreading and C-spreading are found as epenthesis strategies in loanword adaptation.
- These strategies are not only found cross-linguistically but also within one language.
- Each strategy, however, occurs in exactly defined domains.
 → Previous accounts were overly simplistic. Statistical analyses help us to unearth the real patterns.
Strategies can be described within Autosegmental Phonology and straightforwardly translated into OT constraints. Reranking these constraints generates different (attested) epenthesis patterns.

(38) *MULTIPLE \rightarrow DEF(F) default vowel epenthesis
 (Early Sranan, Japanese, English)

(39) DEF(F) \rightarrow *MULTIPLE spreading occurs:
 (a) *LINK \rightarrow *SKIP vowel harmony (Sranan, Fula)
 (b) *SKIP \rightarrow *LINK local spreading (Shona, Samoan)

8. Bibliography

ibid. 1998. ‘Yoruba Vowel Patterns: Deriving asymmetries by the tension between opposing constraints’. Ms. University of British Columbia.