
Morphology consuming Syntax’ Resources:

Generation and Parsing in a Minimalist Version of

Distributed Morphology

Jochen Trommer

Institut fuer Linguistik/Allgemeine Sprachwissenschaft
Universitaet Potsdam Postfach 601553 D-14415 Potsdam

Abstract

Distributed Morphology (DM) as presented in Halle & Marantz
(1993) shows a bewildering variety of rule types. In this paper I present
a formalization of DM in which the main part of its rule inventory
is reduced to one single operation: Vocabulary Insertion. Extending
proposals by Noyer (1997) and Halle (1997) vocabulary insertion is
assumed to be iterable and to consume featural resources, whenever
it is applicated. I show that this interpretation gives rise to simple
algorithms for the generation and parsing of DM expressions.

1 Introduction

In DM syntactic derivations operate on lexical items without phonological
content. At some point in the derivation (”Spell-Out”) a copy of the actual
syntax tree is made and delivered to the morphological component (Mor-
phological Structure, MS) which modifies it in several respects, supplies
the lexical items with phonological content and thus creates the input for
phonology. MS has roughly the following structure:

1. Semantically non interpretable nodes like AGR heads are inserted.

2. Terminal nodes are further manipulated. Features are deleted (‘Im-
poverishment’), or split off into separate nodes etc.

3. Phonological specified ‘vocabulary items’ (VIs) are inserted into the
terminal nodes.

1

4. Morpho-phonological readjustment rules modify the inserted material.

Here, I will not have to say much about points 1 and 4, but I will ar-
gue that all rules that belong to 2 can be subsumed under a generalized
formalization of vocabulary insertion. In section 2 I’ll give some data from
Classical Arabic that will serve to illustrate the working of DM and the for-
malization that follows in section 3. This formalization is also intended as
a generation algorithm for DM. In sections 4 to 7 it will be shown that the
core operations of DM are special cases of the new definition of vocabulary
insertion or that they are empirically unnecessary. An algorithm for parsing
DM is presented in section 8, making crucial use of the feature-consuming
nature of vocabulary insertion. Some theoretical consequences of the for-
malization are considered in section 9. Finally (section 10) I discuss some
limitations and possible ways to overcome them.

2 Classical Arabic

As an illustration for the working of DM I give a short analysis of some
classical Arabic data, namely a fragment of the jussive verb paradigm (Halle,
1997)1:

(1) Singular Dual Plural
1 ?-aktub n-aktub n-aktub
2m t-aktub t-aktub-aa t-aktub-uu
3m y-aktub y-aktub-aa y-aktub-uu

In terms of Halle & Marantz(1993) these data suggest the following anal-
ysis: An agreement node is introduced onto which the features of the subject
are copied. An impoverishment rule deletes the distinction between plural
and dual, i.e. the value +dl in the 1st person. Person and number of the
agreement node are fissioned into two separate X0s. Finally vocabulary
items from the following list are inserted:

11 = 1st person, 2m = 2nd person masculine, 3m = 3nd person masculine. 2nd and
3rd person feminine forms are omitted.

2

(2) /?-/ [+1 -3 -pl]
/n-/ [+1 -3 +pl]
/t-/ [-1 -3]
/y-/ [+3]
/-aa/ [+pl +dl]
/-uu/ [+pl]
/aktub/ [+aktub]

Note that the VIs are underspecified. Only a VI that subsumes the
relevant node can be inserted. In the case of multiple matching VIs the one
that comes first in the list is preferred. More specific VIs, i.e. those with
more feature specifications always precede less specified ones. Derivations
for the dual forms are schematically depicted in (3):

(3)
1 Dual 2 Dual 3 Dual

AGR [+1 -3 +pl +dl] [-1 -3 +pl +dl] [-1 +3 +pl +dl]
Insertion
Impove- [+1 -3 + pl] [-1 -3 +pl +dl] [-1 +3 +pl +dl]
rishment
Fission [+1 -3 + pl] [-1 -3] [+pl +dl] [-1 +3] [+pl +dl]
Vocabulary n- t- -aa y- -aa
Insertion

3 A formalization of Vocabulary Insertion

3.1 Syntactic input

The basic units of syntactic computation are lexical items which are repre-
sented as feature structures (FSs), i.e. sets of atomic feature value pairs,
e.g. {(1 +)(3 -)(pl +)}2 I assume that MS doesn’t spell out whole sen-
tences but rather maximal ’chunks’ of X0s, corresponding roughly to words
in lexicalist theories. The linear ordering inside these chunks is an effect of
morphological operations while the ordering of chunks with respect to each
other presumably follows more general principles. For the sake of simplicity
only the most simple type of X0 chunk is considered namely binary trees

2Prefix notations like “+1”, where the value precedes the feature are assumed to be
simply abbreviations for (feature value) structures like “(1 +)”.

3

where one daughter is an X0 and the other is an X0 or a binary tree of the
same type. More formally such a tree is implemented as a set:

(4) a. When F is a lexical item the set { F } is an input tree.
b. When F is a lexical item and T is an input tree then

the set { F, T } is an input tree.

A simple version of c-command can be defined over such trees:

(5) a. A set L immediately contains a lexical item F if and only if
F is a member of L. L contains F iff L immediately contains F
or a member of L contains F .

b. A lexical item L1 c-commands a lexical item L2 6= L1 if and
only if L1 is immediately contained by an input tree T that
contains L2.

It is easy to see that this notion of c-command establishes a complete
linear order on the lexical items in an input tree. So we can represent such
a tree without loss of information by a simple list of lexical items which I
will call input list. For practical reasons I reverse the ordering of input trees
in these lists so that the highest FS in the tree will be the last element in
the list , and the deepest embedded one the first element.

As an example assume that the input for the 1sg jussive form of Arabic
is the input tree {{+ agr +1 -pl -dl}, { { +tense + jus }, { { +v } }}} The
corresponding input list is [{ +v }, { +tense + jus }, {+ agr +1 -pl -dl}] .

3.2 The structure of VIs

A VI is a 4-tuple (Phon Context Target Deletes), where Phon is a characteri-
zation of the morphological/phonological properties of the item.The Context
component characterizes the context, i.e. the structurally adjacent FSs that
have to be present for the item to be inserted. Target encodes the necessary
features of the target FS where insertion can take place and Deletes enu-
merates the features which are deleted when the VI is inserted. Phon values
in VIs have the structure (Cat P) where Cat ∈ { pref, suff, stem } and P is
a string of phonemes (possibly of length 0). Target and Deletes are feature
structures as defined above, where Deletes subsumes Target and Deletes is
nonempty. Context is an ordered pair of feature structures (Left Context
Right Context), where Left Context denotes the FS that stands immediately

4

before the target FS in the input list and Right Context the one that im-
mediately follows it. The VIs from section 2 can then be rewritten as follows:

(6) Phon Context Target Deletes
((pref ?) ({}{}) {(1 +)(3 -)(pl -)} { (1 +)(3 -)(pl -))}
((pref n) ({}{}) {(1 -)(3 -)(pl +))} {(1 -)(3 -))}
.
.
.

3.3 Vocabulary Insertion

The rough structure of derivation is the following: Spell out the first ele-
ment in the list. Take the result of this and spell out the second element by
adding the resulting affixal material to it, and so on. More formally a state
in the derivation is given by a string of phonemes (String) standing for the
cumulative result of the spell-out process and a pointer that indicates the
actual lexical item in the input list to spell out (L Pointer). Two further
pointers record the actual left and right context (LC Pointer, RC Pointer):

(7) SPELL OUT(Input List)

set String to ε (empty string)
set L Pointer to the first element of Input List
set LC Pointer to [] (empty feature structure)

while L Pointer 6= END 3

if the next element from L Pointer (Next) 6= END
set RC Pointer to Next

else
set RC Pointer to []

ITEM SPELL OUT(String,LC Pointer,L Pointer,RC Pointer)
set LC Pointer to L Pointer set L Pointer
to the next List element

3I assume that the last element of each list is the formal element END.

5

ITEM SPELL OUT searches in the vocabulary list for the first VI that
matches the actual X0 (and its contexts) and inserts the VI (VI INSERT).
Then it searches the rest of the list (i.e. the items after the inserted VI) for
a second matching VI and continues this process until no further matching
VI is found.

(8) ITEM SPELL OUT(String,LC,B,RC)

set VI Pointer to the first element of VI LISTE
while FIRST MATCH(VI Pointer, LC, B, RC) 6= END

VI INSERT(B, VI Pointer, String)

(9) FIRST MATCH(VI Pointer, LC, B, RC)

while VI Pointer 6= END

if Left Context(VI Pointer) subsumes LC

if Right Context(VI Pointer) subsumes RC
if Target(VI Pointer) subsumes B

return(VI Pointer)

set VI Pointer to the next list Element

return(END)

The insertion procedure has two main effects. First, it puts the phonolog-
ical pieces supplied by the VIs in the correct place. Secondly, the features
indicated the VIs ’Deletes’ section are deleted in the actual X0.

6

(10) VI INSERT(B, VI Pointer, String)

delete all features in B that are specified in delete(VI Pointer)

if (String = ε) and (Status(VI Pointer) = Stem)
set String to P

else if (String 6= ε)and (Status(VI Pointer) = Pref)
set String to PˆString

else if (String 6= ε) and (Status(VI Pointer) = Suff)
set String to StringˆP

where P = Phon(VI Pointer)

Here is an example derivation for the 1st plural form n-aktub, that shows
how feature deletion blocks multiple insertion in certain cases:

(11) [+aktub] [+ agr +1 +pl -dl]

First [+ aktub] is spelled out. This means that the last VI is found,
String will be set to aktub and [+ aktub] to []. Since this FS isn’t
subsumed by any VI in the remaining list spell-out of this item is finished
and the second element is spelled out. the first matching VI for [+ agr +1
+pl -dl] is number2 in the list (2). n- is prefixed. Again all features are
deleted and no more VI is to be found. Since this is the last element in the
input list SPELL OUT terminates.

4 Fission is Vocabulary Insertion

As argued for in Noyer(1992) and Halle(1997) fission can be interpreted
as multiple insertion of VIs in terminal nodes. The possibility of such an
analysis is already contained in our formalism. E.g. the generation of Arabic
t-aktub-aa proceeds as follows.

(12) [+aktub] [+ agr +2 +pl +dl]

The string aktub is derived from the first FS like in (11). Then [+ agr +2
+pl +dl] is spelled out. The first VI found (3 in (2)) leads to prefixation of

7

t- (t-aktub) and deletion of the person feature.We get [+agr +pl +dl]. In
the second cycle -aa can be inserted (VI 5) which by further feature deletion
leads to [+agr]. No further VI Insertion is possible.

5 Impoverishment is Vocabulary Insertion

Under the advocated analysis vocabulary insertion and impoverishment rules
are both feature deleting and apply to FSs that are identified by the features
of themselves and of their context (FSs). Thus Occams razor (nowadays
known as ’minimalist spirit’) demands that there be no separate mechanism
of impoverishment. Impoverishment is simply the effect of zero-VIs that
consume features. For the impoverishment rule that deletes the dual feature
in 1st person forms of Arabic jussives we thus assume the following VI at
the beginning of the list:

(13) Phon Context Target Deletes
((stem ε) ({}{}) {(1 +)(3 -)(pl +)(dl +)} {(dl +)})}

While the reduction of impoverishment to vocabulary insertion is an
innocent move in as far zero-VIs are deliberately assumed in the DM litera-
ture, the empirical question remains, if the VIs, which have to be stipulated
under this analysis conform to the specificity hierarchy assumed for VIs4.
If this holds true however, it is a further argument for our analysis since
supposing that impoverishment obeys the same specificity requirements as
VIs implies a more restrictive theory of impoverishment.

6 Theme Insertion is Vocabulary Insertion

The standard example for insertion rules (or conditions requiring) insertion
are so called thematic vowels. A typical property of these vowels is that they
are sensitive to idiosyncratic class membership of stems as in the following
example from Ancient Greek(AG):

(14) a. hoi log-O-i b. hai nos-O-i
’the words’(mas) ’the illnesses’(fem)

c. hai chor-A-i d. hoi polit-A-i
’the countries’(fem) ’the citizens’(mas)

4cf. section 2, p.3.

8

Assuming that all instances of thematic vowels are triggered by class
features, there is no reason to posit first the insertion of a ’theme position’
which then has to be filled by VIs. Thematic vowels can simply be viewed
as VIs consuming class features. Naturally the problem remains how to
account for semi-regularity in the distribution of themes, e.g. (syntactic)
masculine nouns in AG tend to take -O-. But even in standard DM analyses
of such phenomena (Halle & Marantz, 1994) this is accomplished by different
devices, namely redundancy rules, which won’t be discussed her.

7 Fusion is obviated by vocabulary insertion

Fusion in some sense is simply the stipulation that someX0s share a position,
i.e. the best matching VI is inserted when it matches one of the fused X0s,
and no more than one VI can be inserted for the totality of the viewed
items. It is assumed by Halle & Marantz (1993) e.g. to explain the single
suffix position for English inflectional affixes. AGR and Tense are fused
in a single node. Thus -d is taken as the default VI for past tense forms
((...{ +past })...)) and -s as the one for 3rd person ((...{ +3 +sg})...)).
because of fusion forms like *prove-s-d (3rd sg past) are excluded. Since -d
comes earlier in the vocabulary list the form isn’t *prove-s.

There are a number of conceptual reasons to eliminate fusion from DM:
First, it not only introduces a rule type not found elsewhere in grammat-
ical theory, but also a type of representation (different items sharing one
position) that is completely particular to one rule type. Note that fusion
phenomena in phonology are ’real fusion’ in the sense that features of two
segments merge together in one FS, which in DM fusion isn‘t the case. (Alec
Marantz, p.c.) Secondly, phenomena treated by fusion analyses simply look
like impoverishment phenomena: VIs that are to be expected under certain
contexts are not there. A third point is the target of fusion operations. All
other rule types in DM affect only single items, and by this follow a strict
version of locality, while fusion by definition manipulates more than one X0.

Empirically most fusion analyses can be replaced by analyses without it.
Thus assume for English a vocabulary list containing roughly the following:

(15) Phon Context Target Deletes
((suff s) ({tense -past}{}) {+3 +sg} {+3 +sg})}
((suff d) ({}{}) {tense +past} {tense +past})}

The blocking effect under this analysis will simply fall out from the different
insertion conditions of the single VIs. Another case analyzed by Halle &

9

Marantz(1993) as fusion can be treated elegantly by impoverishment, which
means of course a zero VI. In Georgian object prefixes ’block’ subject pre-
fixes, as you can see from the data in (16):

(16) a. v-xatav b. xatav-s
’I see’ ’he sees’

c. g-xatav-s g-xatav/*g-v-xatav/*v-g-xatav
’he sees thee’ ’I see thee’

While Halle & Marantz(1993) ascribe the blocking effect mainly to fusion
it can equally well be captured by an ∅-allomorph for 1st person subjects in
the context of 2nd person object morphemes. As we expect this VI will -
following the specificity hierarchy - precede -v which is the default 3rd-person
VI.

8 Parsing

8.1 Possible inputs as automata

Parsing will be understood here as the task of finding a set of input lists
{ I1 . . . Im} for a (output) sequence of non-null VIs O = V1 . . . Vn, such that
the generation algorithm described above given a vocabulary list V Lwill gen-
erate for each I1-m an output of the form {V N}∗V1{V N}∗V2 . . . {V N}∗Vn{V N}∗
where {V N} is the set of zero-VIs in VL. Taking input lists as the relevant
input which has to be reconstructed by the parsing procedure has the advan-
tage that the lists can be interpreted as strings of FSs. Using only features
with finite sets of values, fully specified FSs can be interpreted as the vo-
cabulary of deterministic finite state automata (DSAs) or - equivalently -
regular expressions (REs, Kaplan & Kay,1994), which we then use to formu-
late restrictions on possible inputs. For the Arabic jussive forms the relevant
input lists are enumerated by the RE:

(17) { Stem1, . . . , Stemn} { AGRS1, . . . , AGRSn}

where Stem1,...,n stands for all FSs characterizing stem and AGRS1,...,n for
all FSs resulting from subject agreement. I will call such automata denot-
ing possible inputs input automata. Parsing now proceeds in two steps: a
bottom-up and a top-down part

10

8.2 the bottom up part

The minimum that can be infered from a given (output) VI sequence O = V1

. . .Vn is the following: In each corresponding input list for each Vi∈1...n there
must be at least one FS that is subsumed by the target part of Vi. This
is a simple consequence of the formalism developed here. Since there is no
other operation in the system each VI is inserted in a FSn that is itself the
result of n applications of vocabulary insertion to an input FS (FSi). By
induction it can be shown that each such FSn subsumes one FSi. By the
definition of vocabulary insertion a VI can be inserted in FSn only if its
target subsumes FSn. By transitivity of the subsumption relation VI will
subsume FSi.

Technically this inference scheme is implemented by the way of DSAs.
For each vocabulary item VI in a Vocabulary list there exists a finite set of
possible input FSs subsumed by its target part, Sub Sume Set(VI). When
{X} is the set of all possible FSs then the RE {X}∗ Sub Sume Set(VI) {X}∗
enumerates all input lists that contain at least one FS subsumed by VI. We
call this RE At least 1(VI). The minimum parse of a (output) VI sequence
V1 . . . Vn is then the intersection of all REs At Least 1(V Ii), which is again
a RE, since REs are closed under intersection (Kaplan & Kay, 1994). The
resulting RE will again be intersected with the input automaton, giving a
candidate automaton enumerating possible inputs for O.

8.3 The Top-Down-Part

The basic idea here is to traverse the candidate automaton and to check
for each path, if it is consistent with the morphemes in the output O(List),
starting at the stem of O and moving outwards as parsing proceeds. The
two basic procedures of the algorithm are given in pseudo-code:

(18) SPELL PARSE(State,List,Pref P,Suff P,Parse,L Context)

if (Pref P is leftmost in List) and (Suff P is rightmost in List)

if State is final
accept(Parse) % Parse Success %

else if there are no more transitions from State
reject(Parse) %Parse failed %

else

for all transitions from State over some FS F to some state S
ITEM SPELL PARSE(F,S,List,Pref P,Suff P,Parse,L Context)

11

We start at the stem of O and the state S we reach from the initial state
I of the candidate automaton traversing the stem transition. Then all
FSs are considered that have a transition from S to another state (the
3rd part of SPELL PARSE). When none of the termination conditions in
SPELL PARSE is fulfilled (parts 1 and 2 of (18)), each such FS is tentatively
spelled out by ITEM SPELL PARSE. When this test spell-out is compati-
ble with the next affixes the FS is added to the actual parse list (Parse)and
SPELL PARSE is recursively used to parse the rest of the output (List).

(19) ITEM SPELL PARSE(FS,State,List,Pref P,Suff P,Parse,LC)

set VI Pointer to the first element of VI LISTE
Copy FS to New FS
while
(set First to ROUGH MATCH(VI Pointer,LC,FS) 6= END)

if First has a right context specification
RIGHT PARSE(. . .)
return

else if phon(First) 6= NULL

if TEST NEXT AFFIX(First,Pref P,Suff P,List) = false
return

else
delete all features in FS New that are
in Deletes(First)

Insert FS in Parse
set LC to FS
set New S to Next State(FS, State)
SPELL PARSE(New S,List,Pref P,Suff P,Parse,LC)

TEST NEXT AFFIX checks the compatibility of the FS tested in ITEM -
SPELL PARSE with the affixes at the actual pointer positions. As soon
as the test spell-out would result in adding a non-zero VI, it will checked
whether the VI is present next to the stem, on its left in case of a prefix on
its right side otherwise. If the VI isn’t found there this branch of the parse
process is discarded. There are two pointers in each function marking the

12

position of the next prefix and suffix (if any) not yet checked for consistency
with the parse branch. For each VI that is found at the correct place in the
output TEST NEXT AFFIX moves the corresponding pointer one position
further on the VIs ’outside’, i.e. the suffix pointer on the right of a suffix,
the prefix pointer on the left of a prefix.

Note that in ITEM SPELL PARSE to test insertion conditions for VIs
instead of FIRST MATCH(9) the ”weaker” ROUGH MATCH is used which
doesn’t check the VI against the actual right context. This is compu-
tationally cheaper and innocuous as long as no right context specifica-
tion of an VI emerges during test-spell-out. If, however, this case arises
ITEM SPELL OUT invokes the function RIGHT PARSE which tests the
right context of VIs against all right possible right contexts resulting from
the syntax automaton using FIRST MATCH.

(20) RIGHT PARSE(State,List,Pref P,Suff P,Parse,L C)

for all transitions from State over some FS RC to some state S

ITEM RIGHT PARSE(F,S,List,Pref P,Suff P,Parse,L C, R C)

ITEM RIGHT PARSE corresponds to ITEM SPELL PARSE, but takes
into account right contexts. Since the next FS to be spelled out has to be
the actual right context, instead of SPELL PARSE ITEM SPELL PARSE
is invoked.

(21) ITEM RIGHT PARSE(FS,State,List,Pref P,Suff P,Parse,LC, RC)

set VI Pointer to the first element of VI LISTE
Copy FS to New FS
while
(set First to FIRST MATCH(VI Pointer,LC,FS) 6= END)

else if phon(First) 6= NULL

if TEST NEXT AFFIX(First,Pref P,Suff P,List) = false
return

else
delete all features in FS New that are
in Deletes(First)

13

Insert FS in Parse
set LC to FS
ITEM SPELL PARSE(RC, State,List,Pref P,Suff P,Parse,LC)

9 Some theoretical Consequences

• There is an upper bound on the length of derivations. As can be seen
from (7), each spell-out derivation for a input list I = Fs1, . . . , FSn is
a sequence of n applications of ITEM SPELL OUT. Within each such
application maximally m VIs are inserted by (10), where m is the
number of morpho-syntactic features in the language. This is a conse-
quence of the feature-deleting nature of VI INSERT and the stipula-
tion that the Deletes-part of VIs be non-empty(3.2): Each application
deletes at least one feature, thus after m insertions all features must
be deleted. Taken together the derivation of I involves maximally m·n
insertion steps.

• Redundancy in morphology is highly restricted: Natural language mor-
phology is notorious for ’multiple exponence’, i.e. more than one VI
realizes identical features of the same lexical item5. From the upper
bound on vocabulary insertion steps it follows that each FS with m
features can be realized by at most m VIs. Further the insertion of
two VIs V I1, V I2 with identical target specifications is impossible6:
Suppose V I1 is inserted in some FS. Since the deletion part of V I1 is
a subset of its target features at least one of these features is deleted
and can’t be subsumed by the target features of V I2 anymore. This
blocks further insertion of V I2.

• All discussed rule types obey the same narrow restrictions. In standard
DM different rule types are subject to different restrictions: Vocabu-
lary insertion follows the specificity hierarchy, impoverishment doesn’t.
Fusion applies to complexes of FSs, most rule types apply only to single
FSs. In the given formalization every operation follows the hierarchy
and applies to single FSs, since there is only one operation type, which
is defined accordingly.

5’realize’ is meant here technically as ’occuring in the target part of an VI’.
6This is true regardless of the context specifications.

14

10 Limitations and Extensions

10.1 Context Specifications

The main limitation of the developed formalization is the way in which
contexts are determined. First, only lexical items are assumed to serve as
contexts, but not VIs. Halle & Marantz(1993:119) assume something like
the latter in their analysis of Georgian. However the analysis can be easily
done with reference to the features that trigger VI insertion instead. Note
that assuming cyclic insertion of VIs the actual VI can be relevant in our
terms only as left context. Left contexts in our formalization however are
essentially stipulated. (see (7)). if it turns out that VIs are the relevant
(left) context as argued in Bobaljik(1999) this can be accommodated in the
formalism without problems.

Secondly, in our formalization only the two FSs that are structurally
’nearest’ to a FS are considered as possible contexts. Halle & Marantz(1993,
1994) however claim that any FS that stands in a government relation with
an FS can serve as relevant context. For example in the following form
from Potawatomi(Halle & Marantz,1993: 155) the appearance of the plural
marker -uk is bleeded in their analysis by an impoverishment rule taking the
feature specification of the 1st plu marker -mn- as context.

(22) n-wapm-a-mn-(w)apun/*n-wapm-a-mn-(w)apunin-uk
’we saw them.’

Since the tense marker (w)apun(in) intervenes between the two items the
FS triggering -mn- can’t be structurally adjacent to the impoverished FS.
hence the analysis is impossible in the given formalization. It doesn’t seem
to be difficult to adjust the model in a way that allows a more extended set
of FS as left contexts7 by introducing a stack that ‘memorizes’ spelled-out
FSs in either generation and parsing. However it would certainly increase
the complexity of parsing to do the same for right contexts.

At the current understanding however it seems problematic to determine
the correct locality domains for contexts. Government itself is a concept that
has been largely abandoned in syntactic research (Chomsky, 1995). Even
the interpretation of (22) is dubious. Note that -mn- and -uk spell out
features of the same argument. Assuming that they also realize the same
agreement node (FS) would entail that spell-out cannot be cyclic, since the
tense FS would intervene. Halle & Marantz(1993:145) avoid this conclusion

7as would be necessary for analyzing the Potawatomi data

15

by stipulating two AGR heads that agree with the same argument, but
without further evidence it is unclear if (22) is an argument against cyclicity
or against a restricted form of locality like in our formalism.

10.2 The Ineffable and Default VIs

In most work on DM morphology is assumed to be interpretive in the sense
that each output from syntax will get some spell-out at MS. Put differently:
there are no purely morphological cases of ungrammaticality. Related to this
is the speculation that “Universal Grammar provides a zero spell-out as the
default phonological realization of a morpheme in the unmarked case”(Halle
& Marantz(1993:134-35). Such a VI containing no feature specifications is
technically impossible according to the definition in 3.28. A default zero can
be mimicked by a set of zeros targeting and deleting exactly one feature for
every morpho-syntactic feature. However if morphology is interpretive, there
is reason to suppose any such zero only if (in terms of standard DM) each X0

must be filled with a VI or (in terms of our formalism) if all morpho-syntactic
features must be deleted. Conceptually this latter fits well with the idea that
features irrelevant for an interface (in this case PF) have to be removed
for a structure to be interpretable (Chomsky, 1995), but in an interpretive
approach to morphology I see no empirical reasons why complete deletion
of morpho-syntactic features should be necessary. If MS operations aren’t
interpretive, as suggested in Marantz(1999), i.e if there are “ineffable” forms
like the past participle form of “stride”9, the lack of suitable VIs could be the
reason for morphologically ungrammatical forms under the assumption that
features have to be deleted. Obviously a wellformedness condition requiring
just that can be integrated straightforwardly in the current formalization
but it has to be seen if this approach is the right one to explain ineffability.

10.3 Late insertion of stems

Marantz(1995) argues that the lexical items treated by syntax don’t contain
idiosyncratic semantic information like the one that would distinguish ’cat’
and ’dog’. Features differentiating in such cases are introduced by vocabu-
lary insertion. There is no problem in our formalism to introduce semantic
features (phonological features are introduced as well), but it is technically
impossible to introduce morpho-syntactic features, since vocabulary inser-
tion by definition(see 3.3) deletes such features. There are two possible

8Intuitively: It wouldn’t be feature-consuming.
9?I had strode, ?I had stridden, see Marantz(1999:5) for further examples

16

moves to avoid the problem. First, we can claim that context specifications
of VIs can refer to the semantic properties of adjacent VIs. E.g. the plu-
ral VI -en would be restricted to the context of the VI with the semantics
of ox. Secondly, it can be assumed that vocabulary insertion of stems is
of a different nature than that of functional morphemes. This move is in-
dependently necessary, when stems aren’t identified by lexical items, since
no competition is possible between stems that can be inserted in identical
syntactic environments (see Harley & Noyer, 1998). Thus anyway a formal
analysis of stem insertion will have to be worked out.

10.4 Feature deletion and readjustment rules

Readjustment rules are claimed in DM to cause morpho-phonological al-
ternations. Such a rule changes e.g. the vowel quality in the stem (-
VI) of ’steal’ in the context of certain tense morphemes(’stolen’, Halle &
Marantz(1993:127-29)). This seems to require at least some modification of
our treatment of vocabulary insertion, since VIs aren’t separate entities af-
ter insertion. A further problem is the derivation point where readjustment
rules are applied: When vocabulary insertion deletes (possibly all) features
of FSs and readjustment rules are sensitive to the content of FSs, readjust-
ment rules can’t apply after all VIs are inserted. A natural solution to both
problems would be to intersperse vocabulary insertion and the application
of readjustment rules. Whenever a VI is chosen for insertion all readjust-
ment rules that can apply to it in the actual derivation context are carried
out, and the modified VI is inserted afterwards.10 Like all modifications
considered in this section this has still to be worked out technically in its
consequences for generation and parsing.

References

BOBALJIK, Jonathan D. (1999) The Difference between -nin and -nen:
Constraints on Contextual Allomorphy. Talk presented at GLOW’99,
Berlin.

10If one wants to maintain that all readjustment follows all vocabulary insertion, there
are further possibilities: Instead of deleting features, these could be marked in some way
as “discharged”(cf. Noyer, 1997) and be thus available for later readjustment. It could
turn out that readjustment rules are sensitive not to lexical items(FSs) but to the VIs
inserted. The formalism than would have to keep track of the (morpho-syntactic feature
content of the inserted VIs.

17

CHOMSKY, Noam (1995) The Minimalist Program, MIT Press.

HALLE, Morris & Alec MARANTZ (1993) Distributed Morphology and
the Pieces of Inflection. In: The View from Building 20, ed. Kenneth
Hale and S.Jay Keyser. MIT Press, Cambridge, 111-176.

HALLE, Morris & Alec MARANTZ (1994) Some key Features of Dis-
tributed Morphology. In: MITWPL 21: Papers on phonology and
morphology. ed. Andrew Carnie and Heidi Harley. MITWPL, Cam-
bridge, 275-288.

HALLE, Morris (1997) Distributed morphology: Impoverishment and fis-
sion. In: MITWPL 30: Papers at the Interface, ed. Benjamin Bru-
ening, Yoonjung Kang and Martha McGinnis. MITWPL, Cambridge,
425-449.

HARLEY, Heidi & Rolf NOYER (1998) Licensing in the non-lexicalist
lexicon: nominalizations, vocabulary items and the Encyclopedia. In:
MITWPL 32: Papers from the Roundtable on Argument Structure
and Aspect, ed. Heidi Harley, Cambridge, 119-137.

KAPLAN, Ronald M. & Martin KAY (1994) Regular Models of phonolog-
ical Rule Systems. Computational Linguistics, 20(3):331-378.

MARANTZ, Alec (1995) A late note on late insertion. In: Young-Sun,
Kim et al.(ed.) Explorations in Generative Grammar, Seoul, 396-413.

MARANTZ, Alec (1999) Morphology as syntax: Paradigms and the Inef-
fable (The Incomprehensible and the Unconstructable). Talk given at
the University of Potsdam.

NOYER, Rolf (1997) Features, Positions and Affixes in Autonomous Mor-
phological Structure. Garland Publishing, new York. revised version
of 1992 MIT Doctoral Dissertation.

18

