The Swine Before Perl

Shriram Krishnamurthi
Brown University and PLT

Why We're Here

Any sufficiently complicated C or Fortran
program contains an ad hoc, informally-
specified, bug-ridden, slow implementation
of half of Common Lisp.

—Phil Greenspun’s
Tenth Law of Programming

Our Corollary

Any sufficiently useful C or Fortran program
needs to be “sufficiently complicated”

We're here to provide the heavy lifting

I’'m here to motivate how Scheme does this

The Swine: PLT Scheme

“Whatever: can you
program in it?”

Books

m Teach Yourself Scheme in Fixnum Days

m How to Use Scheme

m Extensive manuals and user support

m It's all free of cost

Software #1: MzScheme

m Quick, textual shell: ideal for scripting
m Rich module system

m Rich mixin-baseo

object system

m Embeddable Iin a

oplications

m Garbage collection across C/C++/Scheme

m Libraries for lots of 3- and 4-letter
acronyms (XML, CGl, ODBC, COM, ...)

[MzS cheme

Welcome to MzScheme verszion 183, Copyright <c2 19925-2008 PLT <Matthew Flatt>
» trequire—library “"function.ss"'>

» Cpequire—library "url.==" "net'>
>

I(fuldl + @ {map file—-size {directory—-listld>>
JBR7PLE
#

Ccallsippoi—url <string=Junl "http:/swuwu.cs.broun.edu“skstest.html">

get—pure—port adizulayv—-pure—port>
<html>
fhead><title>*Test{ title>< head>

“hody><p>*Hello! < p> body>
< html>
b3

Software #2: DrScheme

m Fully-graphical programming environment

m Full portability: Unix, Mac and Windows

m Special support for beginning Schemers

A auto-talk-2 gz - DiScheme HEE
File Edit ‘Windows Show Language Scheme Help

|°.-'-‘-.nal_l,lze | | CL Check Spntax | | ‘: Step | |‘ Execute | |® Break |

s

[define (b-machine stream)
[letrec [([walker (lamwbda (state streamm)
lor [(empty? stresaum)
[let ([transition=s
[cdr ([aZsv state b-machine-statez))]
[let [[lat ([(first stream)])
[let [([new-state [(assv lst tLransitions)])
[if new-=tate
[ralker (cadr new-state) (rest stream))

false)jiiiill
[walker 'init stream)])

Welcame to DrScherme, version 103p1.
Language: Graphical Full Scheme (MrEd).
#it

#L

i

> (b-machine 'jcaddadzrl)
#it

=

o[

Unlocked not running

Software #3: Type Inference

s Two PhD theses and counting
m Graphically displays inferred types

m Let's see how it works ...

A, auto-talk-2_ss - MrSpidey
File Edit ‘Windows Actionz Show Clear Filter Help

{define bh-machine-states
"i{{init (o loop))
[loop (a loop)
[d loop)
[r endl)
[end (r end])l)

{define [(b-machine stream)
{letrec |[[walker {lambda (state stream)
{or (empty? =tream)
{let [([transitions
{cdr {(assvr state b-machine-states))])
{let [([1lst (first {(car stream))])
{let [([new-sztate (a=svr lszt transitions=)])
{if new-state

{walker {(cadr new-state) {(rest stream))
false))))]i])
{walker 'init stream)))

{b-machine '(c ada d r))
{b-machine '(c a d a r d])

Welcame to MrSpidey, version 103p1.
CHECES:

car check in file "auto-talk-2.32": line 1, colun 15
cdr check in file Tauto-talk-2.33": line 15, columh 34
car check in file Mauto-talk-2Z.33": line 19, column 47

nlocked

A, auto-talk-2_ss - MrSpidey
File Edit ‘Windows Actionz Show Clear Filter Help

{define bh-machine-states
"i{{init (o loop))
[loop (a loop)
[d loop)
[r endl)
[end (r end])l)

{define [(b-machine stream)
{letrec |[[walker {lambda (state stream)
{or (empty? =tream)
{let [([transitions
{cdr {assvr state b-mj

{let [([1lst {(£first {ca btremqilistuf =¥
{let [[new-state {(as=s el _transitions
{if new-state

{walker {(cadr new-state) {(rest stream))
false])1))111]1]

{walker 'init stream)))

{b-machine '(c a d a d r))
{b-machine '(c a d a r d))

Welcame to MrSpidey, version 103p1.
CHECES:

car check in file "auto-talk-2.32": line 1, colun 15
cdr check in file Tauto-talk-2.33": line 15, columh 34
car check in file Mauto-talk-2Z.33": line 19, column 47

nlocked

A, auto-talk-2_ss - MrSpidey
File Edit ‘Windows Actionz Show Clear Filter Help

{define bh-machine-states
"i{{init (o loop))
[loop (a loop)
[d loop)
[r endl)
[end (r end])l)

{define [(b-machine stream)
{letrec |[[walker { lambda

hine-states)1])

{if new-state

{walker {(cadr new-state) {(rest stream))
false])1))111]1]
{walker 'init stream)))

{b-machine '(c a d a d r))
{b-machine '(c a d a r d))

Welcame to MrSpidey, version 103p1.
CHECES:

car check in file "auto-talk-2.32": line 1, colun 15
cdr check in file Tauto-talk-2.33": line 15, columh 34
car check in file Mauto-talk-2Z.33": line 19, column 47

nlocked

A, auto-talk-2_ss - MrSpidey
File Edit ‘wWindows Actionz Show Clear Filker

Help

{define bh-machine-states
"i{{init (o loop))
[loop (a loop)
[d loop)
[r endl)
[end (r end])l)

{define
{letrec da [(state
{empty?

{let

{let transit
{cdr {(assr

te b-machine-states))]

let [([1st {(first (C btream|ilistuf vl (11]1]

[[new—-=state {assvr t transitions)])

{if new-state

{walker {(cadr new-state rest stream))
false])1))111]1]

s
Welcame to MrSpidey, version 103p1.
CHECES:

car check in file "auto-talk-2Z.3z2":

cdr check in file "auto-talk-2Z.33™:
car check in file "auto-talk-Z.33™:

line 1, column 15
line 15, column 34
line 19, column 47

nlocked

A, auto-talk-2_ss - MrSpidey
File Edit ‘Windows Actionz Show Clear Filter Help

{define bh-machine-states
"i{{init (o loop))
[loop (a loop)
[d loop)
[r endl)
[end (r end])l)

{define [(b-machine stream)
{letrec |[[walker {lambda (stdte
{ar o ty? =t
{ L [[transit
{cdr {(assr te b-machine-states)\]

{let ([1lst (first {cC i IHIRR

{let [[new-state {assvr t transitiogs)])
{if new-state
{walker {(cadr new-state stream))

fal=se))))11])
(walker 'init stream)))

{b-machine '(c a d a d r))
{b-machine '(c a d a r d))

Welcame to MrSpidey, version 103p1.
CHECES:

car check in file "auto-talk-2.32": line 1, colun 15
cdr check in file Tauto-talk-2.33": line 15, columh 34
car check in file Mauto-talk-2Z.33": line 19, column 47

nlocked

A, auto-talk-2_ss - MrSpidey
File Edit ‘Windows Actionz Show Clear Filter Help

{define bh-machine-states
"i{{init (o loop))
[loop (a loop)
[d loop)
[r endl)
[end (r end])l)

{define [(b-machine stream)
{letrec |[[walker {lambda (state
{or (empty? =t
{let [([transit
{cdr {(assr

{let [([lst (£first (C

{let [[new-state {assvr
{if new-state

{walker {(cadr new-state)

false] 111011
{walker 'init stream)))

{b-machine '(c a d a d r))
{b-machine '(c a d a r d])

[listof svym)

Welcame to MrSpidey, version 103p1.
CHECES:

car check in file "auto-talk-2.32": line 1, colun 15
cdr check in file Tauto-talk-2.33": line 15, columh 34
car check in file Mauto-talk-2Z.33": line 19, column 47

nlocked

Software #4: Web Server

= Dynamic content generation is a breeze
s HTML/XML transformation is a breeze
m Trivially build use-once security policies

= For dynamic content, 8x speed of Apache

The Gems

m Closures
m Continuations

The Crown Jewels

m That stupid parenthetical syntax
= Macros
m Tall calls

A Pearl

On Stealing Beauty —
Where you should start

Problem

Pattern-matcher for streams:

s Consumes a stream of input tokens
= Must be easy to write and read

m Must be fairly fast

= Must integrate well into rest of code

Let’'s Think About Automata

| want to be able to write

aut onat on see0
see0 : 0 - seel
seel : 1 - seel

Another Example

car, cdr, cadr, cddr, cdar, caddr, ...

lnit : ¢ =2 nore nore :

end : r -2 end

Let’'s Look at That Again

aut omaton 1 nit
Init : nor e
nor e
nor e
end
end

How would you implement it?

Natural Solution

INit more

—>IT
L,

d 11
r—e end

f stream ends, accept
f no next state found, reject
f next state found, continue

First Version

m Development time: 12 minutes

m Bugs: 2

m Performance (PLT Scheme):
10000 elements: 50 ms

100000 elements: 440 ms
1000000 elements: 4316 ms

The Code

(defi ne b-nmachi ne-states
"((init (c nore))
(nore (a nore)
(d nore)
(r end))
(end (r end))))

(define (b-nmachi ne strean)
(letrec ([wal ker (lanbda (state strean
(or (enpty? strean
(let ([transitions
(cdr (assv state b-nmachine-states))])
(let ([1st (first stream])
(let ([new-state (assv 1st transitions)])
(if newstate
(wal ker (cadr newstate) (rest stream)

fal'se)))))) 1)

(wal ker '"init strean)))

What's The Essence?

m Per state, fast conditional dispatch table
= An array of states

m Quick state transition

A Message From Our Sponsors

We will encourage you to develop the three
great virtues of a programmer: laziness,
Impatience, and hubris.

—Larry Wall and Randal L Schwartz

Thinking Virtuously

m Per state, fast conditional dispatch table

Compiler writers call this “case ... switch”
= An array of states
Function pointers offer random access

m Quick state transition

If only function calls were implemented
as “goto’s ...

In Other Words:
| Nl t State Would Become

lnit ©
(procedure (stream
(or (enpty? stream
(case (first stream
[C (rmre\g\rest stream)]

[el se fal se\]\)‘)}\\

In Other Words:
nor e State Would Become

ty? stream
(first stream

In Other Words:
The Whole Code Would Become

(define b
(letrec ([init
(procedure (stream
(or (enpty? stream
(case (first stream
[c (nore (rest stream)]
el se false])))]

npty? stream
first stream

re (rest stream)]
[d (nmore (rest stream)]

l/////%i/ignd (rest stream)]
el se falsel)))]

[r (end (rest stream)]
[else false])))])

Scoreboard

m Laziness:

= Impatience: nope; too much code

m Hubris:

In General

(state : (label - target) ...

9
(procedure (stream
(or (enptyf? stre
(case [(f1pst
[l a (target (rest stream)]

félse false])))

Even More Generally

(_init-state
(stat# : (cndn -> newstate) ...

)
9

(letrec [([state
(procedure (stream
(or (enpty? stream
(case (first stream
[cndn (newstate (rest stream)]

téise false])))]

)
I nit-state)

In Fact, That's the Code!

(def i ne-synt ax aut omat on
(syntax-rules (-> :)

[Input pattern

output pattern]))

This Is a Scheme macro

The Automaton

aut onaton 1 nit

| NIt

nor e
nor e
nor e
end
end

In Scheme

(autonaton 1 nit
(tnit : (c nore))
(nore : (a nor e)

nor e)

end))
(end : end)))

What a Schemer really sees

autonaton i1 nit
lnit nor e)
nore : (a nor e)
nor e)
end)
end)

With Clients

(define (v s)
((i1f (eqg? (first s) 'c)
(automaton init
(tnit : (c ->1oo0op))
(loop : (a -> | oop)
(d -> | oop)
(r -> end))
(end : (r _-> end)))
aut Omet o1 _Seeo
(see0 : (0 -> seel))
(seel : (1 -> see0)))

Second Version

m Development time: 5 minutes
m Bugs: O
m Performance:

10000 elements: 30 ms

100000 elements: 310 ms
1000000 elements: 3110 ms

Scoreboard

m Laziness:

= I[mpatience:

= Hubris: stay tuned

What Really Happened

The traditional implementation Is an
Interpreter

The macro system implements a
Compiler

from Scheme++ to Scheme — and lets you
reuse the existing Scheme compiler

Macros

m Clean, convenient spec of automata
s Permits nested ... — “pattern matching”
m Easy to create domain-specific language

m Each module can have different macros

Tail Calls

Ensures that
State transition =
goto =
loop for free!

Notice tall recursion isn’t enough!
(Oh, and try generating loop code ...)

Stupid Parenthetical Syntax

(aut omat on see0
(see0 (0O -> seel))
(seel (1 -> see0)))

IS clearly ugly, evil, and an insidious plot
hatched by misbegotten academics

Smart Parenthetical Syntax

<aut omat on seeO
<state nane="seel0” >
<trn> <fron> 0 </fronp
<to> seel </to> </trn> </state>
<state nane="seel"”>
<trn> <fron> 1 </fronp
<to> seel </to> </trn> </state>
</ aut onat on>

IS a hip, cool, great new idea

Python vs. Scheme
(python.org)

m Standard object system

m Reqgular expressions, Internet connectivity
= Many builtin data types

s One standard implementation

= Relatively main-stream syntax

= Main-stream control structures

Python vs. PLT Scheme
(python.org)

» Standard object system

r."Regular expressions, Internet connectivity

+ Many builtin data types

~ One standard implementation

m Relatively main-stream syntax — at what price?

= Main-stream control structures
* \We got macros — you got five minutes?

* Real Programmers use map/filter/fold, tail calls, ...

Take-Home Morals

m If you claim to be smart, be really smart
about reuse

m Scheme fits together particularly cleverly —

you
you'
m Peo

won't get it just by reading about It,
| only think you did

nle who don’t understand this use of

tail calls don'’t get it
m Take a real languages course in college

Scoreboard

m Laziness:

= I[mpatience:

m Hubris:

A Parting Thought

s A REPL Is a Read-Eval-Print Loop:
Read, then Evaluate, then Print, then Loop

= In code:

Print (Eval (Read ()))); Loop
= A Print-Eval-Read Loop
m P = R L

Obligatory URL

http://www.plt-scheme.org/

(Thanks: Matthias, Matthew, Robby, John, Paul, Paul,
Jamie, Philippe, Dorai, and dozens others)

