GENRS - Using Grammatical Evolution In A Surface Design Tool

Martin Hemberg
Department of Physical Resource Theory
Chalmers University Of Technology
412 96 Gothenburg
f96mahe@dd.chalmers.se

Abstract

In this paper we discuss how Grammatical
Evolution (GE) was used in GENRS, an ar-
chitect’s design tool. Compared to standard
GE, GENRS provides an additional mapping
that fits nicely into the relationship between
GE and biology. GENRS has a novel scheme
to limit the size of the grammars that are
produced when we interpret the genotype.
Additionally, GENR®& has a limited form of
context-sensitivity and we present a way to
handle production rules that produce an op-
tional number of nodes. GENRS also fea-
tures a function that inverts the mapping
from grammar to genotype.

1 INTRODUCTION

GENRS (Hemberg et al, 2001) is a design tool for
surface generation, based on Evolutionary Algorithms
(EAs) and Map L-Systems. It was developed as a plug-
in for Alias|Wavefront’s Maya by the Emergent Design
Group (EDG) at MIT, more details can be found in
(Hemberg, 2001). The tool searches the universe of
surfaces with an evolutionary algorithm. It is meant
to be an aid for designers trying to find new surfaces
and it demonstrates the usefulness of Artificial Life
(ALife) in the field of architecture.

In this paper we go into further details discussing the
EA that is used in GENRS8. Before we discuss those
details, we give a brief description of the other com-
ponents of GENRS. In the section 2 we discuss the
concept of Emergent Design (ED). Next we briefly
describe the growth model that GENRS is based on.
Then we describe the EA that GENRS uses in more
detail and in particular we investigate how GE has
been used.

Una-May O’Reilly
ATl-Lab
Massachusetts Institute of Technology
Cambridge, MA 02 136
unamay@ai.mit.edu

2 EMERGENT DESIGN

Artificial Life is to a large extent the study of complex-
ity. Emergence is a central theme and it is essential to
understanding ALife. We try to apply the concepts of
AlLife to architecture. In ALife, structures are usually
built bottom-up, a notion that architects also are very
fond of. Emergence allows us to create complex solu-
tions through the interaction of primitive elements.

We combine this notion of emergence with EAs to cre-
ate a system that can generate novel forms and explore
a large universe of potential designs. EAs bring cre-
ativity to the design process and enables the computer
to create truly novel designs.

The focus of ED (O’Reilly and Testa, 2000) is on the
process that creates an artifact rather than the artifact
itself. In ED, we try to formulate principles that are
the foundations of these processes. The objective is to
create a level of dynamics and interactions that will
create a level of organization in space and time.

3 GROWTH MODEL

GENRS8 creates surfaces using an organic growth
model. An organic growth model tries to mimic the
way plants and animals grow; the model has three im-
portant components.

Seed The seed is the starting point of the growth.

Rules In addition to the seed there are a number of
rules that describe how the seed will grow.

Environment There is an environment that affects
the growth. In the general case, it is impossi-
ble to determine the outcome of a growth process
without knowledge of the environment. The syn-
ergy of environment and growth is an important
aspect of complexity and emergence in GENRS.

3.1 L-SYSTEMS

Lindenmayer Systems (Prusinkiewicz and Hanan,
1989) or L-Systems for short, is a class of formal gram-
mars. L-System grammars are applied in parallel to a
string and a simple L-System is given in table 1. If the
strings are interpreted using turtle-graphics, we can
construct grammars that resemble plants and trees.

Table 1: A simple L-system. The first line is the seed
for the L-System. The second and third lines are the
rewrite rules for the L-System.

w:F1

pi1:F1 = Fi[—F))F [+ F][Fi]

p22F2 — F2F1

3.2 MAP L-SYSTEMS

Map L-systems are an extension of ordinary L-Systems
that was originally used as model of cellular devel-
opment in organisms. Formally, it can be seen as a
method for rewriting planar graphs. A simple exam-
ple of a Map L-system is shown in Figure 1.

¢ b b b b
a->d[~alb _| bta af
d b db Sbt o a °
al
4
b-=b bl b a b d b d
seed
b b b b b b
b b b b b b
¢ ->b[-~alb ¢ "Lb ta |7 d bl g o b
b 4 b . # b :{_’b
b < b b b P b b
d->¢ di e

Figure 1: A simple example of a Map L-System. On
the top row, the rewrite rules are shown, both symbol-
ically and graphically. To the left on the middle row,
the seed is shown and then the results of successive
applications of the rewrite rules.

3.3 HEMBERG EXTENDED MAP
L-SYSTEMS

In order to grow surfaces in three dimensions, we had
to extend the Map L-Systems model. We call this
model Hemberg Extended Map L-Systems (HEMLS).

Like ordinary Map L-Systems, we have a graph and a
set of production rules that are successively applied to
the graph. The major additions to the ordinary Map
L-systems are:

3D We have added a third dimension so that the sur-
faces can exist in space rather than being confined
to a plane.

Growth The growth is achieved by simple scaling.
In each step, the nodes of the graph are simply
moved away from the center of the graph.

Probabilistic rewrite rules This is a concept that
is present in ordinary L-Systems and it has simply
been modified to work with HEMLS.

Context sensitive rewrite rules This is another
concept present in ordinary L-Systems. By mak-
ing the rewrite rules context sensitive, we can have
much more complex surfaces where the growth de-
pends on the number of steps grown.

4 EVOLUTIONARY ALGORITHM

The growth model presented in section 3 is very power-
ful and it can create a wide range of surfaces. Unfortu-
nately, there is one major drawback, constructing the
grammars is a very difficult task. If the tool is going
to be useful to architects, we can not expect them to
sit down and construct their own grammars by hand,
the tool has to aid them.

Apart from helping the user constructing a grammar,
the EA serves two purposes.

Exploration The designer is able to search the uni-
verse of surfaces for interesting shapes. GENRS8
helps the designer by presenting various surfaces.

Discovery If the designer has some particular shape
in mind, the EA can be used to find a grammar
that generates the desired shape.

4.1 MAPPINGS

Compared to standard GP, GE introduces an addi-
tional mapping; from the genome to the grammar.
Ryan and O’Neill (1998) argue that this makes GE
more similar to ’real’ biology. In the cell, DNA is tran-
scribed to RNA that carries the encoded instructions
to proteins in the ribosomes. Here proteins are as-
sembled from amino acids. In GE, transcription maps
a binary string to an integer string. The production
rules use the integers to create a grammar.

In GENRS the terminals of the Backus-Naur Form
(BNF) production rules are of course the words that
constitute the grammar. Thus we can argue that
GENRS goes one step further and extends the anal-
ogy; the mapping of a grammar to a surface, could
be compared to proteins building more complex struc-
tures in the cell. At this point, the environment affects
the process, both in the cell and in GENRS. This is
illustrated in Figure 2.

Grammatical

Natural biology Evoluti
VOl an

GENRS
DNA Binary string

l Transcription

RNA Integer siring Integer string

\ Translation

Amino acids Rules

Rules

II

Protein Terminals Grammar|

Surface

I

ell structures

I

Figure 2: A comparison between biology, GE and
GENRS.

4.2 EXPANSION

In standard GE, the grammar is generated by applying
the production rules in the BNF to the seed; GENRS
contains five different BNF's:

Parser This is the most general BNF in the system.
It is the grammars that the built-in parser can
handle.

Default The default BNF used by the EA.

Symmetric This BNF generates grammar that pro-
duce symmetric surfaces.

Probabilistic This BNF produces grammars con-
taining probabilistic rewrite rules.

Reversible The grammars generated by this BNF
can be inverted so that we can obtain the geno-
type that was used to generate it. This is further
described in 4.3.

The default BNF is given below:

N = { L-System, Axiom, RewriteRule,
Predecessor, Successor, Modifier,
AngleValue, BranchAngleValue }

T={+’ - &, 7, \: /: “s [’]5 < >, =2,
Edge, Angle, Sync, EdgeX, BranchAngle }

S = { <L-System> }

P = {<L-System> ::= <Axiom> <RewriteRule>
{ <RewriteRule> } Angle AngleValue [Sync]

BranchAngle BranchAngleValue

<Axiom> ::= <Edge> ["] + <Edge> [~] +
<Edge> { [~] + <Edge> }

<RewriteRule> ::= <Predecessor> -> <Successor>
<Successor> ::= { <Modifier> } <Edge>
<Predecessor> ::= <Edge> { <Edge> } |

<Edge> ‘‘<’’ <Edge> |
<Edge> ‘‘>’’ <Edge> |
<Edge> ‘‘<’’ <Edge> ‘‘>’’ <Edge>

<Modifier> ::= { <Edge> } |
+ <Modifier> -
- <Modifier> +
<Modifier> ~
" <Modifier> &
\ <Modifier> /
/ <Modifier> \
~ <Modifier> |
<Edge> {([(l ¢([((+ <Edgex> ((]77 -
<EdgeX> ‘‘]’’ <Edge>

<Edge> {([(l ¢([((+ + <Edgex> ({]7)
- - <EdgeX> ‘‘]’’ <Edge>

&

<AngleValue> ::= 30 | 45
<BranchAngleValue> ::= 15 | 30 | 45
| 60 | 75 }

To have a complete grammar, we must also specify
the type of the <Edge>. The type is represented as a
number and we use a gene to determine the type.

We note that there are production rules that contain
the { } symbols. They indicate that we are going to
have an optional number of the (non)terminals that
are between them. To determine how many of the
(non)terminals we are going to have, we read genes
from the genome and interpret them as random num-
bers. The procedure is best illustrated with a short
example.

We start with a genome: (617, 666, 8008) and we
are going to expand <Edge> . The brackets surround-
ing the non-terminal indicate that we are going to have
an optional number of <Edge>. We use the genes to
determine how many; by testing 617 Mod 2 = 1. This
is greater than the current number of expansions from
this node, so we add an Edge node. Next we test 666
Mod 3 = 0, which is less than the number of expan-
sions, so we stop expanding this node. We continue by
determining the type of the <Edge> terminal by tak-
ing 8008 Mod 4 = 0, where the modulo is the current
number of edge types (in this example arbitrarily set
to 3) plus one. Thus we end up with Edge0, when the
expansion is finished

When using this scheme, there is no upper limit to the
number of nodes that we can add. But for each node
that we add, the probability that we will add another
decreases.

In order to get a more regular structure and facilitate
the connection of the branches we wish to force the
system to choose the same index for the branches. The
EdgeX symbols indicate that we should have the same
type for all EdgeX symbols in the production rule. This
can be regarded as a very limited form of context-
sensitivity, the type of the second Edge depends on
the type of the first.

4.2.1 Max depth

When expanding a seed into a grammar, there is a pos-
sibility that it will grow indefinetly. To limit the size
of the grammar, we have devised a scheme that differs
from the one used in standard GE. In standard GE,
the number of wrap-arounds of the genome is counted.
When the number of wrap-arounds exceeds a certain
number, the expansion is interrupted.

We use a parameter called maximum depth that is ini-
tiated to a positive value. When a node is expanded,
the maximum depth is decreased by one. If the value
reaches zero, we choose production rules in a different
way than we do ordinary. If possible, we choose a pro-
duction rule that only contains terminals. By doing
this, the expansion will automatically stop as soon as
possible when the max depth has been decreased be-
low zero. Another way to state it is that at a certain
point in the expansion we start choosing production
rules from a subset of the previous rules to halt the
expansion.

4.3 REGNS

We have developed a feature that we call regn8. This
function takes a grammar as argument and it returns

a genome that could have been used to create this
grammar. When using this feature, we must add some
restrictions to the BNF. This feature allows the user
to construct her own grammar by hand, either from
scratch or by modifying one that has been provided
by the system. The user-constructed grammar can be
fed into the system and a corresponding genotype is
constructed. The genotype can be used as a seed for
the evolution and the user can easily experiment with
variations on a certain grammar. This gives the user
more control over the tool, the user can now modify a
grammar by hand if she believes that a certain change
would improve the surface; she does not have to wait
for the EA to make this modification. From a user
perspective, this allows for greater control and flexi-
bility.

5 CONCLUSIONS

We have successfully applied GE to the problem of
surface generation. We have extended the standard
GE model by adding an additional mapping step from
the grammar to the phenotype. We have also come up
with some new ideas for expanding the grammars as
well as a method for mapping the grammars back to
genotypes.

References

Martin Hemberg, Una-May O’Reilly and Peter Nordin,
GENRS - A Design Tool for Surface Generation, late-
breaking paper GECCO 2001.

Martin Hemberg, GENRS8 - A Design Tool for Sur-
face Generation, Master’s
Thesis, Chalmers University Of Technology, Gothen-
burg, 2001, report, plug-in and source code available
at www.ai.mit.edu/projects/emergentDesign/genr8.

Una-May O’Reilly and Peter Testa, Representation in
Architectural Design Tools, Invited paper at Fourth In-
ternational Conference on Adaptive Computing in De-
sign and Manufacture (ACDM 2000) ,Plymouth, 2000.

Przemyslaw Prusinkiewicz and James Hanan, Linden-
mayer systems, fractals and plants, Springer-Verlag,
1989.

Conor Ryan and Michael O’Neill, Grammatical Evolu-
tion: A Steady State approach., Second International
Workshop on Frontiers in Evolutionary Algorithms,
pages 419-423, 1998.

