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Abstract

Both direct, and evolved, behavior-based approaches

to mobile robots have yielded a number of interesting

demonstrations of robots that navigate, map, plan and

operate in the real world. The work can best be de-

scribed as attempts to emulate insect level locomotion

and navigation, with very little work on behavior-based

non-trivial manipulation of the world. There have been

some behavior-based attempts at exploring social inter-

actions, but these too have been modeled after the sorts

of social interactions we see in insects. But thinking how

to scale from all this insect level work to full human level

intelligence and social interactions leads to a synthesis

that is very di�erent from that imagined in traditional

Arti�cial Intelligence and Cognitive Science. We report

on work towards that goal.

1 Introduction

There has long been a dichotomy in styles used in design-

ing and implementing robots whose task is to navigate

about in the real world.

Early on Walter (1950) developed simple robots that

were based on reex actions and simple associative

learning Walter (1951). These robots used only a hand-

ful of switching elements, and their overall performance

relied on interactions between their mechanical hard-

ware, their electrical circuitry, and the properties of the

environment. They were essentially a set of adaptable

reexes for what to do in particular perceptual situa-

tions.

Nilsson (1969)1 describes an elaborate robot using a

large mainframe computer of the day, that took percep-

tual inputs, built a world model, proved theorems about

what must be true in that model, consulted goals given

to it, and produced long plans of actions to achieve those

goals.

The work of Walter is prototypical of what would now

be called behavior-based robotics. That of Nilsson was

1See (Nilsson 1984) for a more complete collection of relevant
papers from the late sixties and early seventies.

perhaps the ultimate de�ning moment of the grand days

of good old fashioned arti�cial intelligence (GOFAI).
This dichotomy extends through to today, although

there was a long period where the Walter-style work

disappeared completely. More recently, Brooks (1986b)
introduced the subsumption architecture as an instance

of a behavior-based approach to building robots that

operate in the real world. There were three key ideas

introduced in this work:

� Recapitulate evolution, or an approximation there-

of, as a design methodology, in that improvements

in performance come about by incrementally adding

more situation speci�c circuitry2 while leaving the

old circuitry in place, able to operate when the new

circuitry fails to operate (most probably because

the perceptual conditions do not match its precon-

ditions for operating). Each additional collection

of circuitry is referred to as a new layer. Each new

layer produces some observable new behavior in the

system interacting with its environment.

� Keep each added layer as a short connection be-

tween perception and actuation.

� Minimize interaction between layers.

Brooks (1989) gives full details of the control system for

a six-legged robot using the subsumption architecture|

this is perhaps the purest illustration of the concepts.

Brooks (1990) summarizes a large number of robots that

use this exact approach.

The principles of behavior-based approaches to Arti-

�cial Intelligence, through building robots, are outlined

in two manifestos, (Brooks 1991b)3 and (Brooks 1991a).
The survey paper Brooks (1991c) gives at least one opin-
ion on how these new ideas coalesced from a number

of di�erent groups (including Rosenschein & Kaelbling

2The circuitrymight be implementedeither directly as physical
circuitry, or as software organized in a manner similar to circuitry.

3The original version of this was an MIT AI Laboratory memo
(Brooks 1986a), which was widely circulated at the time. By the

next year it was in its �nal published form and title (Brooks 1987),
but it took a number of both years and rejections before it �nally
appeared in an archival journal.



(1986) and Agre & Chapman (1987)) working in sim-

ilar directions. Maes (1990b) is a collection of papers

on many of the early attempts within this framework,

in both hardware and purely software implementations.

Various conference proceedings include more up to date

reports on hardware implementations of behavior-based

mobile robots, e.g., (Meyer & Wilson 1991), (Meyer,

Roitblat & Wilson 1993), (Cli�, Husbands, Meyer &

Wilson 1994), (Brooks & Maes 1994), (Mor�an, Moreno,

Merelo & Chac�on 1995).

There is a an interesting dualism between the two

approaches to AI, where complementary aspects are

designed-in explicitly to the systems, and converse as-

pects are emergent from the interactions of the parts

that are designed in. E.g., in GOFAI behavioral re-

sponses are not designed in, rather they emerge from

the interplay of the planner with the given goals, and

the particular world model that has been constructed

from sensory data. In behavior-based systems, by con-

trast, behavioral responses are explicitly designed into

the system but there are not any explicitly represented

goals. Nevertheless, it is natural for observers to at-

tribute dynamically selected goals to the robots as they

operate in an environment.

The constrasts between the two styles of building

robots and their programs can be summarized in the fol-

lowing table. Each line attempts to summarize loosely

some aspect of the duality between the two approaches.

GOFAI Behavior-Based

sensor fusion matched �lters

designed models action selection

in goals action schemas

plans behavior

problems search binding problem

output choose next concurrent

action actions

emergent behavioral (apparent) goals

responses and plans

In GOFAI there is never a sequence of actions explic-

itly represented a priori in the robot's program. Rather

that sequence is produced as a result of reasoning about

the world model and the goals assigned to the system.

In the behavior-based approach there are often speci�c

actions represented, coupled to other actions or percep-

tual conditions. But, the speci�c goals of the robot are

never explicitly represented, nor are there any plans|

the goals are implicit in the coupling of actions to per-

ceptual conditions, and apparent execution of plans un-

roll in real-time as one behavior alters the robot's con�g-

uration in the world in such a way that new perceptual

conditions trigger the next step in a sequence of actions.

2 Two Shifts in Viewpoint

The introduction of the behavior-based approach to

building robots (see the collection Maes (1990b)) was

based on one set of shifts in viewpoint. The work on

Cog is inspired by a second set of shifts in viewpoint.

2.1 Traditional to behavior-based: �rst

shift

In moving from traditional AI to behavior-based

robotics, there were both distinct sudden changes in

viewpoint and a more gradual background change in

viewpoint. The �rst and rather sudden change was to

drop the requirement that systems which were to act

intelligently should have a central world model.

Such world models were typically symbolic in nature.

For the purposes of this discussion we will de�ne a sym-
bol as a structure that is independent of its location

in memory, and can be referred to by arbitrarily many

other remote structures, giving separate computational

processes working on those remote structures instant

access to the symbol. Although not necessarily a re-

quirement, in almost all traditional systems there was

a correspondence between a symbol and some aspect of

the world that was designed in by the human building

the system, and this correspondence, at least in princi-

ple, was transparently obvious to another skilled person

looking at the system.

The sudden change away from symbolic models was

evident in all of Rosenschein & Kaelbling (1986), Agre

& Chapman (1987), and Brooks (1986b).

The second change in moving from traditional to

behavior-based approaches was more gradual, and is not

as fully accepted in the behavior-based community to-

day as is the �rst. The change was to get away from the

idea that intelligence is a computational process that

takes an input and produces an output4. In the new ap-

proaches, agents became situated in a world, so one had

to consider the dynamics of their interactions with the

world, along with their internal processes in order to un-

derstand what it is that they were capable of and were

doing. This view was �rst evident in Agre & Chapman

(1987), and became more explicit over time, e.g., Hor-

swill & Brooks (1988) and Maes (1990a). See Brooks

(1991c) for more discussions of these issues.

Such changes in perspective lead over time to the

adoption of dynamical systems theory (see Beer (1995a),
Smithers (1994), and Steinhage & Schoener (1996)) as

a tool, framework and language, to describe the coupled

agent and its environment, harking back to the early

4An even worse formalization confuses the state of the world

with both the output of the perceptual apparatus and the e�ects
of the motor system so that intelligence is then reduced to being

a function I , mapping the current state s to the next state I(s).



days of cybernetics, and in fact recapitulating that early

work (Ashby 1952). The jury is still out as to whether

these analysis tools will lead to great conceptual or prac-

tical advances.

With these two changes, the earlier vocabulary of clas-

sical AI becomes largely irrelevant. Gone are explicit

representations of beliefs, desires and intentions. The

very notion of a speech act no longer makes sense. And

gone were the grand di�culties that AI arti�cially in-

troduced by mistakenly trying to reduce an essentially

external descriptive language to an internal calculus of

reason at runtime.

2.2 Current behavior-based research

In order to make an argument about how we need to

develop the ideas of the behavior-based approach fur-

ther in order to build something as complex as a hu-

manoid robot exhibiting a full range of human behvior,

we �rst need to establish the level of complexity of sys-

tems built using current approaches. A full survey of

the current state would be a massive undertaking. As

a crude approximation we could consider the contents

of the journal Adaptive Behavior from MIT Press. This

journal is perhaps the journal most closely aligned with

the behavior based approach. Its �rst three volumes

(twelve issues) were published from 1992 to 1995, so are

all rather current. We have carried out an analysis of

the 42 papers which appeared in those volumes.

There has been very little work in the way of evalu-

ating the complexity or level of performance of robotic

systems, behavior-based or otherwise. The closest per-

haps to this is the practice, such as in (Wilson 1985),

of categorizing the environments in which the creatures,

animats, or robots operate. Following that practice we

de�ned six categories of the type and complexity of cou-

pled environment-robot systems and then placed each

of the 42 papers into one of these categories. We then

analyzed the sorts of activities the robots were to per-

form.

2.2.1 Categories of domain

Our six categories are as follows:

# There was no attempt to model a robot in any

sense; all these papers either reported on animal

or human studies, or looked at the mathematics of

some particular technique in isolation.

R0 The `robots' are simulated but have no spatial ex-

tent, either in size or position, e.g., the paper might

concern experiments with mating and use a prob-

ability to control whether two individuals mate,

rather than spatial adjaceny.

R1 The robots were simulated and there was a direct

correspondence between the world model and what

the sensors delivered, and how the actuators worked

in the world.

R2 As with category R1, but with stochastic noise

added.

R3 Again simulated robots, but now with either, or

both, a simulated physics of the sensors and actua-

tors.

R4 An physical robot with sensors and actuators oper-

ating in a physical world.

category number of papers

# 7

R0 5

R1 17

R2 7

R3 2

R4 4

42

Very little work is done with either physical robots

or even realistic simulations of robots. In fact the vast

majority of papers can best be described as computa-

tional experiments. The table above was derived from

the following raw classi�cations.

#. The majority of papers here describe experiments

with or observations of particular animals, sometimes

with neural network implementations trying to match

the learning observed in animals. The particular ani-

mals used are �sh (Halperin & Dunham 1992), toads

Ewert, Beneke, Buxbaum-Conradi, Dinges, Fingerling,

Glagow, Sch�urg-Pfei�er & Schwippert (1992), worms

(Staddon 1993), toads (Wang 1993), human infants

(Rutkowska 1994), and rabbits (Kehoe, Horne & Macrae

1995). Beer (1995b) tries to classify the possible classes

of dynamics of recurrent neural networks for very small

network sizes.

R0. These dimensionless robots are variously con-

cerned with responding to visual stimuli (Fagg & Arbib

1992), modellingmating behavior (Todd & Miller 1992),

communicationacts(MacLennan & Burghardt 1993), se-

quence generation (Yamauchi & Beer 1994), and ab-

stract group decision making (Numaoka 1994).

The papers from the remaining four classes get ana-

lyzed in other ways below, so we simply list them by

category here.

R1. Simulated robots with exact correspondences be-

tween the world and sensors and actuators were de-

scribed in Beer & Gallagher (1992), M�uller-Wilm,Dean,



Cruse, Weidemann, Eltze & Pfei�er (1992), Koza,

Rice & Roughgarden (1992), Klopf, Morgan & Weaver

(1993), Baird III & Klopf (1993), Schmajuk & Blair

(1993), Tyrrell (1993), Peng & Williams (1993), Cli�

& Bullock (1993), Colombetti & Dorigo (1994), Nol�,

Elman & Parisi (1994), Ling & Buchal (1994), Cli�

& Ross (1994), Gruau (1994), Wheeler & de Bourcier

(1995), Sch�olkopf & Mallot (1995), and Corbacho & Ar-

bib (1995).

R2. Simulated robots with noisy correspondeces be-

tween the world and sensors and actuators were de-

scribed in Grefenstette (1992), Arkin (1992), Liaw

& Arbib (1993), Szepesv�ari & L�orincz (1993), Ram,

Arkin, Boone & Pearce (1994), Tyrrell (1994), and

Cruse, Brunn, Bartling, Dean, Dreifert, Kindermann &

Schmitz (1995).

R3. Simulated robots with simulated sensors and ac-

tuators were described in Cli�, Harvey & Husbands

(1993) and Ekeberg, Lansner & Grillner (1995).

R4. Experiments with physical robot systems were de-

scribed in Espenschied, Quinn, Chiel & Beer (1993),

Kube & Zhang (1993), Ferrell (1994), and Hallam,

Halperin & Hallam (1994).

Some further classi�cation of the domains is also pos-

sible.

Six of the R1 papers ((Tyrrell 1993), (Peng &

Williams 1993), (Cli� & Bullock 1993), (Nol� et al.

1994), (Cli� & Ross 1994), (Corbacho & Arbib 1995))

concerned environments which were discrete grids rather

than a continous model of space. Two of the R2 papers

((Szepesv�ari & L�orincz 1993), (Tyrrell 1994)) also used

a discrete grid model of space.

Two of the R0 papers, and one each of the R1,

R2, and R4 papers were explicitly concerned with

the dynamics of multiple interacting robots. These

were MacLennan & Burghardt (1993), Numaoka (1994),

Wheeler & de Bourcier (1995), Grefenstette (1992), and

Kube & Zhang (1993) respectively.

Only two papers were concerned with robots that

could move in three dimensions; the R2 paper Ram et

al. (1994) and the second half of the R3 paper Ekeberg

et al. (1995).

2.2.2 Categories of task or activities

Now let us turn out attention to what it is that the

robots do. We will only concern ourselves with robots

with some spatial component to their activities, i.e., the

robots from papers in classes R1 through R4. There are

30 such papers, but one, Beer & Gallagher (1992), has

two major examples so there are a total of 31 examples

to consider.

Modulo some clari�cations below there seem to be

four primary activities to which the examples can be

uniquely assigned. The navigation activity can be fur-

ther subdivided into three types of navigation, although

some of the papers are a little hard to classify exactly

according to this scheme.
Primary Activity Examples

Locomotion 7

Pole balancing 2

Box pushing 1

Navigation taxis 7 21

predator/prey 3

moving about 11

31

The subclassi�cations within navigation are a little

di�cult to make as the distinction between some sort

of taxis and chasing some simulated prey is often purely

in the words used by the authors rather than any deep

semantic meaning in what is presented in the papers.

Some of the papers categorized as moving about do have
the notion of the robot, or creature, capturing and eat-

ing prey, but except for the three papers (Szepesv�ari &

L�orincz 1993), Tyrrell (1993), and Tyrrell (1994), there

is no speci�c action that need be taken|simply landing

on top of the thing to be eaten is su�cient for it to be

eaten.

In order to compare the complexity of the activities

of these 31 systems we can talk about the actuator com-

plexity, and the activity complexity.

First, let us consider the actuator complexity.

The actuator models on all the 24 non-locomotion ex-

amples are all rather simple. In the discrete worlds the

actions are very simple|moving from a grid square to

one of its four or eight neighbors (note that this includes

the two papers Tyrrell (1993) and Tyrrell (1994)). Many

other papers have an actuator model where a heading

and range is speci�ed and the robot moves there. The

most complex systems have two motors providing a dif-

ferential drive mechanism, where both motors must go

forward to drive the robot forward, and di�erences in

motor velocities result in steering left or right, or in place

in the limit; there are two such papers, the R3 naviga-

tion paper Cli� et al. (1993) and the R4 box-pushing

paper Kube & Zhang (1993). The R4 navigation paper

Hallam et al. (1994) appears to use a syncro-drive where
heading and velocity are independent motors. Thus,

none of the 24 examples have more than two actuators,

and most have a considerably more abstract version of

actuation than even that.

The seven locomotion papers concern robots with

many more actuators. Six of the papers are about six

legged walking, but three of the four simulation papers

do not really even have a third dimension in their leg

kinematics and have only one and a half (bang-bang

up-down) actuators per leg. The two physically imple-



mented R4 robots, those of Espenschied et al. (1993)

and Ferrell (1994) do have have full three-dimensional

kinematics and have 12 and 19 actuators respectively.

The latter paper is not concerned with locomotion per
se, but rather with adapting to sensor failure. (Note that
Cruse et al. (1995) show a photo of a physical six-legged

robot but that is not the actual topic of the experiments

in their paper.) The seventh paper (Ekeberg et al. 1995)

concerns R3 simulated Lampreys (a type of eel), and

there are a number of actuators per body segment, with

potentially an unlimited number of segments. None of

these seven papers concerns more than simple walking,

so there really is only one primary activity and not any

sub-behaviors to be considered (note though, that in

other papers (Ferrell 1995a), and (Ferrell 1995b), Ferrell
does discuss multiple underlying behaviors contributing

to six legged locomotion over rough terrain).

Now, let us consider activity complexity.

Of the 31 examples listed above, 29 of them have only
the primary activity as their sole activity. There is no

need to select between activities for the robot in those 29

cases. We will consider the other 2 examples separately

below. Most of the other robots implement their pri-

mary activity as a combination of multiple behaviors,

and in this case there is some need to select amongst

those behaviors.

There are, however, 7 cases where the primary activ-

ity is made up of a number of simpler behaviors, only

some of which may be active at any time. The num-

ber of behaviors ranges from two to nine, and in order

of increasing number of behaviors these cases are de-

scribed in the papers of Szepesv�ari & L�orincz (1993) (2

behaviors), Ram et al. (1994) (3 behaviors), Wheeler &

de Bourcier (1995), Hallam et al. (1994), Corbacho &

Arbib (1995) (all four behaviors), Kube & Zhang (1993)

(5 behaviors), and Arkin (1992) (9 behaviors). For all

these papers there are still only a handful (or two) of be-

haviors, and the selection mechanisms are each in their

own way fairly uniform over the set of behaviors from

which they must choose. Since there is only one ma-

jor activity that is always ongoing there is no need to

have big shifts, rather one can view behavior selection

in these cases as simply modulating how the primary

activity is being achieved. Note also that in order to

implement a behavior, at most two motors need to be

coordinated in all these systems, and it is fairly easy to

come up with an orthogonal decomposition for a motor

control system for even the case of two motors.

The two papers that speci�cally deal with activity se-

lection are those of Tyrrell (1993) and Tyrrell (1994).

The �rst has 5 major activites, but really only a sim-

ple model of motor control underlying the generation

of these activities. The second paper has 29 di�erent

primary activities and 35 underlying behaviors or ac-

tions. While these papers are far and away challenging

the most complex activity control issues they are still

both rather simple. They are R1 and R2 papers re-

spectively, and both operate in a discrete grid domain.

Neither paper has a non-trivial actuator model. And in

fact many of the behaviors in the second paper are very

atomic, such as court, mate, and sleep which correspond

directly to global activities. These need only be acti-

vated at discrete times, exactly in the robot's current

location. While there are interesting issues in which of

the activities, and hence behaviors or actions, to select

at any given time, the dynamics of interactions of these

activities and the robot and the environment are not

very complex.

2.3 Behavior-based to cognitive

robotics: second shift

We are now in a position to consider the new second shift

in viewpoint which is necessary if we are to build robot

systems that have behavior that is of similar complexity

to that of humans.

In thinking about building a full human level intelli-

gence that is able to operate and interact in the world

in much the way a human would operate and interact.

We are led to a decomposition that is di�erent from

both the traditional AI approach and the behavior-based

approach to mobile robots This new decomposition is

based on fundamentally di�erent concerns at many dif-

ferent levels of analysis.

In order to act like a human5 an arti�cial creature

with a human form needs a vastly richer set of abilities

in gaining sensor information, even from a single vantage

point. Some of these basic capabilities include saccading

to motion, eyes responding appropriately to vestibular

signals, smooth tracking, coordinating body, head, and

eye motions, compensating for visual slip when the head

or body moves, correlating sound localization to occu-

lomotor coordinates, maintaining a zero disparity com-

mon �xation point between eyes, and saccading while

maintaining a �xation distance. In addition it needs

much more coordinated motor control over many sub-

systems, as it must, for instance, maintain body posture

as the head and arms are moved, coordinate redundant

degrees of freedom so as to maximize e�ective sense and

work space, and protect itself from self-injury.

In using arms and hands some of the new challenges

include visually guided reaching, identi�cation of self

motion, compliant interaction with the world, self pro-

tective reexes, grasping strategies without accurate ge-

ometric models, material estimation, dynamic load bal-

ancing, and smooth on-the-y trajectory generation.

5It is di�cult to establish hard and fast criteria for what it
might mean to act like a human|roughly we mean that the robot

should act in such a way that an average (whatever that might
mean) human observer would say that it is acting in a human-like

manner, rather than a machine-like or alien-like manner.



In thinking about interacting with people some of the

important issues are detecting faces, distinguishing hu-

man voices from other sounds, making eye contact, fol-

lowing the gaze of people, understanding where people

are pointing, interpreting facial gestures, responding ap-

propriately to breaking or makingof eye contact, making

eye contact to indicate a change of turn in social inter-

actions, and understanding personal space su�ciently.

Besides this signi�cantly increased behavioral reper-

toire there are also a number of key issues that have

not been so obviously essential in the previous work

on behavior-based robots. When considering cognitive

robotics, or cognobotics, one must deal with the follow-

ing issues:

� bodily form

� motivation

� coherence

� self adaptation

� development

� historical contingencies

� inspiration from the brain

We will examine each of these issues in a little more

detail in the following paragraphs. While some of

these issues have been touched upon in behavior-based

robotics it seems that they are much more critical in

very complex robots such as a humanoid robot.

Bodily form. In building small behavior-based robots

the overall morphology of the body has not been viewed

as critical. The detailed morphology has been viewed as

very critical, as very small changes in morphology have

been observed to make major changes in the behavior

of a robot running any particular set of programs as the

dynamics of its interaction with the environment can

be greatly a�ected. But, there has been no particular

reason to make the robots morphologically similar to

any particular living creature.

In thinking about human level intelligence however,

there are two sets of reasons one might build a robot

with humanoid form.

If one takes seriously the arguments of Johnson (1987)

and Lako� (1987), then the form of our bodies is crit-

ical to the representations that we develop and use for

both our internal thought6 and our language. If we are

to build a robot with human like intelligence then it

must have a human like body in order to be able to de-

velop similar sorts of representations. However, there

is a large cautionary note to accompany this particular

6Whatever that might mean.

line of reasoning. Since we can only build a very crude

approximation to a human body there is a danger that

the essential aspects of the human body will be totally

missed. There is thus a danger of engaging in cargo-cult

science, where only the broad outline form is mimicked,

but none of the internal essentials are there at all.

A second reason for building a humanoid form robot

stands on �rmer ground. An important aspect of being

human is interaction with other humans. For a human-

level intelligent robot to gain experience in interacting

with humans it needs a large number of interactions. If

the robot has humanoid form then it will be both easy
and natural for humans to interact with it in a human

like way. In fact it has been our observation that with

just a very few human-like cues from a humanoid robot,

people naturally fall into the pattern of interacting with

it as if it were a human. Thus we can get a large source

of dynamic interaction examples for the robot to par-

ticipate in. These examples can be used with various

internal and external evaluation functions to provide ex-

periences for learning in the robot. Note that this source

would not be at all possible if we simply had a disem-

bodied human intelligence. There would be no reason

for people to interact with it in a human-like way7.

Motivation. As was illustrated in section 2.2, recent

work in behavior-based robots has dealt with systems

with only a few sensors and mostly with a single activ-

ity of navigation. The issue of the robot having any mo-

tivation to engage in di�erent activities does not arise.

The robots have some small set of navigation behaviors

built-in, some switching between behaviors may occur,

and the robot must simply navigate about in the world8.

There is no choice of activities in these papers, so there

needs be no mechanism to motivate the pursuit of one

activity over another. The one major activity that these

robots engage in, has, naturally, a special place, and so

the systems are constructed so that they engage in that

activity|there is no mechanism built in for them not to

engage in that activity.

7One might argue that a well simulated human face on a mon-
itor would be as engaging as a robot|perhaps so, but it might be

necessary to make the face appear to be part of a robot viewed
by a distant TV camera, and even then the illusion of reality and

engagedness might well disappear if the interacting humans were
to know it was a simulation. These arguments, in both directions
are speculative of course, and it would be interesting, though dif-
�cult, to carry out careful experiments to determine the truth.
Rather than being a binary truth, it may well be the case that
the level of natural interaction is a function of the physical reality
of the simulation, leading to another set of di�cult engineering

problems. Our experience, a terribly introspective and dangerous
thing in general, leads us to believe that a physical robot is more

engaging than a screen image, no matter how sophisticated.
8Navigation of course is not simple in itself, as was pointed

out by Moravec (1984), but here we are talking about robots
which have almost no other high level or emergent activities be-
sides navigation.



When we move to much more complex systems there

are new considerations:

� When the system has many degrees of freedom, or

actuators, it can be the case that certain activities

can be engaged in using only some subsystems of

the physical robot. Thus it canbe the case that it

may be possible for the system to engage in more

than one activity simultaneously using separable

sensory and mechanical subsystems.

� The system may have many possible activities that

it can engage in, but these activities may conict|

i.e., if engaging in activity A it may be impossible

to simultaneously engage in activity B.

Thus for more complex systems, such as with a full

human level intelligence in a human form, we are faced

with the problem of motivation. When a humanoid

robot is placed in a room with many artifacts around

it, why should it interact with them at all? When there

are people within its sensory range why should it re-

spond to them? Unlike the mobile robot case where an

implicit unitary motivation su�ced, in the case of a full

humanoid robot there is the problem of a confrontation

with a myriad of choices of what or who to interact with,

and how that interaction should take place. The system

needs to have some sort of motivations, which may vary

over time both absolutely and relatively to other mo-

tivations, and these motivations must be able to reach

some sort of expression in what it is that the humanoid

does.

Coherence. Of course, with a complex robot, such as

a humanoid robot with many degrees of freedom, and

many di�erent computational and mechanical and sen-

sory subsystems another problem arises. Whereas with

small behavior-based robots it was rather clear what the

robot had to do at any point, and very little chance for

conict between subsystems, this is not the case with a

humanoid robot.

Suppose the humanoid robot is trying to carry out

some manipulation task and is foveating on its hand and

the object with which it is interacting. But, then sup-

pose some object moves in its peripheral vision. Should

it saccade to the motion to determine what it is? Under

some circumstances this would be the appropriate be-

havior, for instance when the humanoid is just fooling

around and is not highly motivated by the task at hand.

But when it is engaged in active play with a person, and

there is a lot of background activity going on in the room

this would be entirely inappropriate. If it kept saccading

to everything moving in the room it would not be able

to engage the person su�ciently, who no doubt would

�nd the robot's behavior distracting and even annoying.

This is just one simple example of the problem of co-

herence. A humanoid robot has many di�erent subsys-

tems, and many di�erent low level reexes and behav-

ioral patterns. How all these should be orchestrated, es-

pecially without a centralized controller, into some sort

of coherent behavior will become a central problem.

Self adaptation. When we want a humanoid robot to

act uently in the world interacting with di�erent ob-

jects and people it is a very di�erent situation to that

in classical robotics (Brooks 1991c) where the robot es-
sentially goes through only a limited number of stereo-

typed actions. Now the robot must be able to adapt

its motor control to changes in the dynamics of its in-

teraction with the world, variously due to changes in

what it is grasping, changes in relative internal temper-

atures of its many parts{brought about by the widely

di�erent activities it enagages in over time, drift in its

many and various sensors, changes in lighting conditions

during the day as the sun moves, etc. Given the wide

variety of sensory and motor patterns expected of the

robot it is simply not practical to think of having a fully

calibrated system where calibration is separate from in-

teraction. Instead the system must be continuously self

adapting, and thus self calibrating. The challenge is to

identify the appropriate signals that can be extracted

from the environment in order to have this adaptation

happen seamlessly behind the scenes.

Two classical types of learning that have been little

used in robotics are habituation and sensitization. Both

of these types of learning seem to be critical in adapting

a complex robot to a complex environment. Both are

likely to turn out to be critical for self adapation of

complex systems.

Development. The designers of the hardware and

software for a humanoid robot can play the role of evo-

lution, trying to instill in the robot the resources with

which evolution endows human individuals. But a hu-

man baby is not a developed human. It goes through

a long series of developmental stages using sca�olding

(see (Rutkowska 1994) for a review) built at previous

stages, and expectation-based drives from its primary

care givers to develop into an adult human. While in
principle it might be possible to build an adult-level in-

telligence fully formed, another approach is to build the

baby-like levels, and then recapitulate human develop-

ment in order to gain adult human-like understanding of

the world and self. Such coupling of the development of

cognitive, sensory and motor developments has also been

suggested by Pfei�er (1996). Cognitive development is

a completely new challenge for robotics, behavior-based

or otherwise. Apart from the complexities of building

development systems, there is also the added complica-

tion that in humans (and, indeed, most animals) there



is a parallel development between cognitive activities,

sensory capabilities, and motor abilities. The latter two

are usually fully formed in any robot that is built so

additional care must be taken in order to gain the natu-

ral advantage that such lockstep development naturally

provides.

Historical contingencies. In trying to understand

the human system enough to build something which has

human like behavior one always has to be conscious of

what is essential and what is accidental in the human

system. Slavishly incorporating everything that exists

in the human system may well be a waste of time if the

particular thing is merely a historical contingency of the

evolutionary processs, and no longer plays any signi�-

cant role in the operation of people. On the other hand

there may be aspects of humans that play no visible role

in the fully developed system, but which act as part of

the sca�olding that is crucial during development.

Inspiration from the brain. In building a human-

level intelligence, a natural approach is to try to under-

stand all the constraints that we can fromwhat is known

about the organization of the human brain. The truth is

that the picture is entirely fuzzy and undergoes almost

weekly revision as any scanning of the weekly journals

indicates. What once appeared as matching anatomical

and functional divisions of the brain are quickly dis-

appearing, as we �nd that many di�erent anatomical

features are activated in many di�erent sorts of tasks.

The brain, not surprisingly, does not have the modular-

ity that either a carefully designed system might have,

nor that a philosophically pure, wished for, brain might

have. Thus skepticism should be applied towards ap-

proaches that try to get functional decompositions from

what is known about the brain, and trying to apply that

directly to the design of the processing system for a hu-

manoid robot.

3 Progress on Cog

Work as proceeded on Cog since 19939

9The original paper on the rationale for Cog, (Brooks & Stein

1993), was rather optimistic in its timescale, as that was based
on the intent that we would be able to get funding to tackle the
project head on. We had a plan which included 5 full time en-
gineers working on the project, plus graduate students and post
doctoral students doing the programming. We were not success-
ful at raising that money so we have had to live with a greatly
scaled back project. In particular, all the engineering has been
done by graduate students and one part time engineer. This note
is meant to explain why the original timescale has not been met.
There have not been technical problems that have unexpectedly
held things up, rather there has been less e�ort than originally
hoped for.

Figure 1: The robot Cog, looking at its left arm stretched out

3.1 The Cog robot

The Cog robot, �gure 1, is a human sized and shaped

torso from the waist up, with an arm (soon to be two),

an onboard claw for a hand (a full hand has been built

but not integrated), a neck, and a head.

The torso is mounted on a �xed base with three degree

of freedom hips. The neck also has three degrees of

freedom. The arm(s) has six degrees of freedom, and

the eyes each have two degrees of freedom.

All motors in the system are controlled by individual

servo processors which update a PWM chip at 1000Hz.

The motors have temperature sensors mounted on them,

as do the driver chips|these, along with current sensors,

are available to give a kinesthetic sense of the body and

its activities in the world. Those motors on the eyes,

neck, and torso all drive joints which have limit switches

attached to them. On power up, the robot subsystems

must drive the joints to their limits to calibrate the 16

bit shaft encoders which give position feedback.

The eyes have undergone a number of revisions, and

will continue to do so. They form part of a high per-

formance active vision system. Each eye has a separate

pan and tilt motor10. Much care has been taken to

reduce the drag from the video cables to the cameras.

The eyes are capable of performing saccades with human

level speeds, and similar levels of stability. A vestibu-

lar system using three orthogonal solid state gyroscopes

and two inclinometers will soon be mounted within the

head.

10In the next revision a single tilt motor will drive the two eyes.



The arm demonstrates a novel design in that all the

joints use series elastic actuators (Williamson 1995).

There is a physical spring in series between each motor

and the link that it drives. Strain gauges are mounted

on the spring to measure the twist induced in it. A 16

bit shaft encoder is mounted on the motor itself. The

servo loops turn the physical spring into a virtual spring

with a virtual spring constant. As far as control is con-

cerned one can best think of controlling each link with

two opposing springs as muscles. By setting the virtual

spring constants one can set di�erent equilibrium points

for the link, with controllable sti�ness (by making both

springs proportionately more or less sti�).

The currently mounted hand is a touch sensitive claw.

The main processing system for Cog is a network of

Motorola 68332s. These run a multithreaded lisp, L

(written by the author), a downwardly compatible sub-

set of Common Lisp. Each processing board has eight

communications ports. Communications can be con-

nected to each other via at cables and dual ported

RAMs. Video input and output is connected in the same

manner from frame grabbers and to display boards. The

motor driver boards communicate via a di�erent serial

mechanism to individual 68332 boards. All the 68332's

communicate with a Macintosh computer which acts as

a �le server and window manager.

3.2 Experiments with Cog

Engineering a full humanoid robot is a major task and

has taken a number of years. Recently, however, we have

started to be able to make interesting demonstrations on

the integrated hardware. There have been a number of

Master theses, namely Irie (1995), Marjanovi�c (1995),

Matsuoka (1995a), and Williamson (1995), and a num-

ber of more recent papers Matsuoka (1995b), Ferrell

(1996), Marjanovi�c, Scassellatti & Williamson (1996),

and Williamson (1996), describing various aspects of the

demonstrations with Cog.

Irie has built a sound localization system that uses

cues very similar to those used by humans (phase di�er-

ence below 1.5Khz, and time of arrival above that fre-

quency) to determine the direction of sounds. He then

used a set of neural networks to learn how to correlate

particular sorts of sounds, and their apparent aural lo-

cation with their visual location using the assumption

that aural events are often accompanied by motion. This

learning of the correlation between aural and visual sens-

ing, along with a coupling into the occulomotor map is

akin to the process that goes on in the superior collicu-

lus.

Marjanovi�c started out with a simple model of the

cerebellum that over a period of eight hours of training

was able to compensate for the visual slip induced in the

eyes by neck motions.

Matsuoka built a three �ngered, one thumbed, self

contained hand (not currently mounted on Cog). It is

fully self contained and uses frictionally coupled tendons

to automatically accomodate the shape of grasped ob-

jects. The hand is covered with touch sensors. A combi-

nation of three di�erent sorts of neural networks is used

to control the hand, although more work remains to be

done to make then all incremental and on-line.

Williamson controls the robot arm using a biological

model (from Bizzi, Giszter, Loeb, Mussa-Ivaldi & Saltiel

(1995) based on postural primitives. The arm is com-

pletely compliant and is safe for people to interact with.

People can push the arm out of the way, just as they

could with a child if they chose to.

The more recent work with Cog has concentrated on

component behaviors that will be necessary for Cog to

orient, using sound localization to a noisy and moving

object, and then bat at the visually localized object.

Ferrell has developed two dimensional topographic map

structures which let Cog learn mappings between pe-

ripheral and foveal image coordinates and relate them

to occulomotor coordinates. Marjanovi�c, Scassellati and

Williamson, have used similar sorts of maps to relate

hand coordinates to eye coordinates and can learn how

to reach to a visual target.

These basic capabilities will form the basis for higher

level learning and development of Cog.

4 Conclusion

We have discussed shifts in viewpoints on how to orga-

nize intelligence and their immediate impact on how we

might build robots with human level intelligence. Let us

assume that these shifts are in the right direction, and

will not immediately be shown to be totally wrong. Per-

haps the best we could hope for, however, is only that

they are in approximately the right direction, and that

over the next few years there will be many re�nements

and adjustments to these particular approaches.

But, there is a more troublesome possibility. Per-

haps it is the case that all the approaches to building

intelligent systems are just completely o�-base, and are

doomed to fail. Why should we worry that this is so?

Well, certainly it is the case that all biological systems

are:

� Much more robust to changed circumstances than

out our arti�cial systems.

� Much quicker to learn or adapt than any of our

machine learning algorithms11.

11The very termmachine learning is unfortunately synonomous
with a pernicious form of totally impractical but theoretically
sound and elegant classes of algorithms.



� Behave in a way which just simply seems life-like in
a way that our robots never do.

Perhaps we have all missed some organizing princi-

ple of biological systems, or some general truth about

them. Perhaps there is a way of looking at biologi-

cal systems which will illuminate an inherent necessity

in some aspect of the interactions of their parts that

is completely missing from our arti�cial systems. This

could be interpreted to be an elixir of life or some such,

but I am not suggesting that we need go outside the

current realms of mathematics, physics, chemistry, or

bio-chemistry. Rather I am suggesting that perhaps at

this point we simply do not get it, and that there is

some fundamental change necessary in our thinking in

order that we might build arti�cial systems that have the

levels of intelligence, emotional interactions, long term

stability and autonomy, and general robustness that we

might expect of biological systems. In deference to the

elixir metaphor, I prefer to think that perhaps we are

currently missing the juice of life.

Final note. Why the title of this paper? \From

Earwigs to Humans". It comes from a paper written

by Kirsh (1991), titled \Today the earwig, tomorrow

man?", written as a response to long delayed publication

of my �rst manifesto on behavior-based robotics (Brooks

1991b). The title was meant in a somewhat contemp-

tuous spirit, arguing that behavior-based approaches,

while perhaps adequate for insect-level behavior, could

never scale to human-level behavior. The Cog project,

and in a little way, this paper, are my response. Or,

more precisely \Yes, exactly!".
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