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Abstract

This paper presents an approach to robot arm con-
trol based on exploiting the dynamical properties of
a simple oscillator circuit coupled to the joints of an
arm. Using the same architecture, a wide variety of
tasks can be achieved without any explicit modeling of
the arm or its environment. The inherent properties
of the oscillators give robustness to perturbations and
changes in frequency. The approach is implemented
on two compliant arms, and is demonstrated to swing
pendulums at their natural frequencies, turn cranks
and manipulate ’Slinky’ toys.

1 Introduction

This paper presents an approach to robot arm con-
trol that is computationally simple, and provides ro-
bust performance in a wide variety of rhythmic tasks.
The method uses a set of simple oscillator circuits
to control the motion of individual joints of the arm.
Rather than take commands from a central controller,
the oscillators use information about the joint state
(torque and angle) to adapt the frequency and phase
of the joint motion. The final motion of the individual
joints is thus dependent on the dynamics of the com-
plete system. By coupling together the oscillators and
the arm in different dynamical situations (when the
arm is free, constrained, manipulating objects etc.)
different tasks can be performed.

This allows a different approach to robot control;
instead of modeling the dynamics and reasoning about
them [8], the interaction between arm and oscillator
dynamics is exploited to perform tasks easily. The
oscillators exhibit a strong entrainment property, re-
sponding over a wide range of frequencies with a single
set of parameters, making the overall system robust to
changes in system properties. They also entrain very
rapidly (normally within one cycle), making the sys-
tem robust to perturbations.

The tasks that have presently been achieved us-

Figure 1: Cog playing with a ’Slinky’ toy. This pic-
ture shows the humanoid form of the robot, with the
two six degree of freedom arms used in this paper.
The robot is using its elbow joints to move the slinky,
exploiting the physical structure of the slinky to coor-
dinate the two arms (see section 5).

ing this system include moving the arm at an efficient
speed (automatically tuning into the resonant fre-
quency of the system), exploiting position constraints
to obtain coordinated multiple degree of freedom mo-
tion (turning a crank), and exploiting the force in-
teractions between the arms and objects to perform
rhythmic manipulation (playing with a ’Slinky’ toy).
The system is implemented on the arms of the hu-
manoid robot Cog [2], which is shown in Figure 1.

This approach was inspired by the work of
Greene [4], and also from consideration of how humans
move their arms [1]. Similar approaches using neural
oscillators have been taken by other researchers [5, 15],
differing in complexity of the scheme, and the use in
legs rather than arms. Robotic approaches exploiting
rather than modeling dynamics have been suggested



by Schaal [14], and McGeer [11].
The following sections describe the details of the

oscillators and arms used, then examine in detail the
properties of the oscillators in three different situa-
tions, indicating how they provide useful behavior.
Conclusions and suggestions for further work are in-
cluded at the end of the paper.

2 The Arms and Oscillators

The two six degree of freedom arms used in this
work are mounted on the humanoid robot Cog [2]
(shown in Figure 1. The arms are especially designed
to interact stably and robustly with unstructured en-
vironments. They are lightweight and use series elastic
actuators at every joint [12], which provide low noise
force control, shock tolerance and stable interaction
with passive environments [3].

At the joints of the arm, a simple proportional-
derivative position control loop is used, making the
torque at the ith joint

ui = ki(θvi − θi)− biθ̇i (1)

where ki is the stiffness of the joint, bi the damping,
θi the joint angle and θvi the equilibrium angle. The
dynamic characteristics of the arm can be changed by
altering the stiffness and damping, and the posture
of the arm changed by altering the equilibrium an-
gles. This type of joint level control is passive and so
preserves stability of motion. Since the inner torque
control is provided by series elastic actuators, the sys-
tem is both compliant and shock resistant, making it
suitable for operation in an unstructured environment.

The joints are controlled by a simple oscillatory cir-
cuit, consisting of two simulated neurons in mutual in-
hibition. The equations for the neurons are included
below and describe the firing rate of real biological
neurons [9], as might be found in a central pattern
generator circuit.

τ1ẋ1 = −x1 − βv1 − ωy2 − Σj=n
j=1 hj [gj ]

+ + c (2)
τ2v̇1 = −v1 + y1 (3)
τ1ẋ2 = −x2 − βv2 − ωy1 − Σj=n

j=1 hj [gj ]
− + c (4)

τ2v̇2 = −v2 + y2 (5)
yi = [xi]

+ = max(xi, 0) (6)
yout = y1 − y2 (7)

where xi is the firing rate, vi is a variable represent-
ing the self-inhibition of the neuron (modulated by the
adaptation constant β), and the mutual inhibition is

controlled by the parameter ω1. The output of each
neuron yi is taken as the positive part of xi, and the
output of the whole oscillator is yout. The input gj is
arranged to excite one neuron and inhibit the other,
by applying the positive part ([gj]

+) to one neuron
and the negative part to the other. The inputs are
scaled by gains hj. The other important parameters
are c, a constant that specifies the amplitude of the
output, and two time constants τ1 and τ2. For steady
oscillations, τ1/τ2 should be in the range 0.1–0.5, the
oscillator having an output frequency wosc ∝ 1/τ1. A
detailed analysis of this type of oscillator was pub-
lished in [9, 10].
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Figure 2: System schematic. The oscillator input is
either the joint torque ui or the joint angle θi, giving
two different modes of operation. The output is used
to drive the equilibrium angle θvi of the joint, and so
move the arm. There is no set-point for the complete
system, the system behavior emerging from the inter-
action between the oscillator and arm dynamics.

The oscillator is connected to the robot joints by
using the output yout to move the equilibrium point θv.
The oscillations are about a fixed posture θp, making
the equilibrium point

θv = y1 − y2 + θp = yout + θp (8)

For the examples in this paper, the inputs to the os-
cillators are taken to be either the force (ui) or the
angle (θi) of the joint, as shown in Figure 2. These
signals in general have an offset or dc component (due
to gravity loading, or oscillation about a non-zero pos-
ture), which is removed using a high pass filter. The
positive and negative parts of the resulting signal are
then applied as the oscillator input. Figure 2 shows a
schematic of the system. The oscillators and the actu-
ators are tightly coupled; the system behavior emerges
from the interaction of the oscillator, actuator, and
arm dynamics. There is no control “set-point” for the
joint motion, but by altering the time constants τ1, τ2,
the amplitude constant c, and the type of feedback

1Values used: ω = 2.5 and β = 2.5.
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Figure 3: Phase plot of limb motion. This plot
shows the velocity plotted against position for a sin-
gle limb actuated by an oscillator using angle feed-
back. The limb is started with three different po-
sitions and velocities, and the system quickly con-
verges to the limit cycle behavior. For this example
c = 1.0, τ1 = 0.1, τ2 = 0.2, h1 = 2.

used (u or θ) the behavior of the overall system can
be modulated.

In the following three sections the behavior and
usefulness of the oscillators is demonstrated in three
cases: when the oscillators are driving a freely moving
arm, when the arm is forced to move in a rhythmic
path, and when a rhythmic force perturbation is ap-
plied to the arm. In each case the effect of using torque
or angle feedback is analyzed, and an example of the
robot performance is presented.

3 Interaction with a free mass

This section describes how the tight coupling of the
oscillator and the arm can give efficient control of os-
cillatory motion, as well as providing robustness to
changes in the overall system and to perturbations.

The behavior of the coupled oscillator-arm system
when the actuated limb is free to move consists of
oscillatory motion, the system converging quickly to a
steady state frequency and amplitude of motion. This
is illustrated by the phase plot of the limb motion from
different starting conditions shown in Figure 3. The
motion converges to the same pattern within at most
half a cycle.

The frequency of the oscillation depends on the
type of feedback used by the oscillator, as well as the
mechanical properties of the system. If the limb is
modeled as a simple mass, the resonant frequency of
the system is ωsys =

√
k/m, where k is the stiffness of

the joint control (equation 8), and m the mass. Fig-
ure 4 shows the steady state frequency of the mass
oscillation for different feedback conditions, as the res-
onant frequency of the system is varied by changing
m and k. Under torque feedback, the system oscil-
lates at a low frequency, and is not strongly dependent
on the system resonant properties. However, by sim-
ply changing the feedback to use the joint angle, the
steady state frequency ranges from being close to the
oscillator natural frequency wosc to frequencies close
to wsys.

Figure 5 shows the result of a single robot joint
swinging a pendulum with variable natural frequency.
Over the range of frequencies 5 to 9 rad/s (the oscil-
lator natural frequency wosc is 7 rad/s) the pendulum
is swung at its natural frequency, demonstrating the
robustness of the oscillator to changes in system dy-
namics.
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Figure 4: The response of the oscillator when con-
nected to a free mass. The graph shows the steady
state oscillation frequency obtained by simulating the
system under different feedback conditions, and with
different environmental resonant frequencies. The
solid line indicates the system frequency. The tri-
angles correspond to torque feedback, giving a low
frequency response independent of the environmental
conditions. The circles correspond to angle feedback,
the frequency varying from the oscillator natural fre-
quency wosc to frequencies close to resonance.

The natural frequency of a mechanical system is the
most efficient speed from a control point of view, since
only a small amount of energy need be injected to sus-
tain the motion. The ability of the oscillators to tune
into this frequency thus makes them useful for achiev-
ing efficient control. Since the oscillators can adapt
to a range of different systems, they can respond to
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Figure 5: Performance of the robot swinging a pendu-
lum. The graph shows the pendulum frequency when
the oscillator is using angle feedback plotted against
the natural frequency of the pendulum. The pendu-
lum is swung at its natural frequency over the range
5 to 9 rad/s. The natural frequency of the oscillator
(wosc - horizontal solid line) is 7 rad/s making the en-
trainment range about 60%. The behavior at higher
frequencies is most likely due to actuator bandwidth
limitations.

changes in the dynamics of the system (such as when
a mass is picked up) without requiring any parame-
ter changes. The rejection of perturbations, as well
as the reduced need to model the actuated system
make this approach suitable for working in unstruc-
tured environments. Alternative approaches, of either
determining the system frequencies by modeling the
dynamics, or directly identifying the system [7] would
also work, but could not respond so quickly to changes
in the system dynamics.

4 Interaction with position constraints

This section explores the behavior of the oscilla-
tors when the motion of the actuated limb is imposed
by some other system. This may occur from a hu-
man guiding the motion of the arm, or when the arm
motion is constrained by a task, e.g., when turning a
crank, the motion of individual robot joints are de-
termined both by the crank motion, and the motion
of the other joints. The adaptive nature of the os-
cillators presents opportunities of achieving coordina-
tion of a number of joints without requiring any com-
munication between the joints, any central controller,
or any explicit kinematic and dynamic models. This

is because the oscillators can adapt their behavior to
present either a small resisting force, or a force to aid
the imposed motion. A further consequence of us-
ing the oscillators, is that these more complex tasks
also display the robustness and perturbation rejection
properties described in the previous section.
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Figure 6: Output impedance of a single oscillator con-
trolled joint. The upper and lower plots show the
magnitude and phase of the impedance respectively,
comparing torque feedback, angle feedback and no os-
cillator conditions. Phases greater than zero degrees
indicate energy going out of the oscillator, and phases
less than zero indicate energy being dissipated in the
oscillator system. Under torque feedback (triangles),
the magnitude of the impedance is low at frequen-
cies less than wosc, the amount of energy going out
of the oscillator reducing with frequency. Under an-
gle feedback (circles), the oscillator strongly opposes
the motion at low frequencies, but strongly aids it at
frequencies just above wosc, reverting to a dissipative
role at higher frequencies.

Imposing motion on a particular limb requires ex-
erting a force to overcome the position control at the
joint (equation 8). However if the equilibrium point
is being altered by an oscillator, then the force re-
quired depends on the entrainment between the oscil-
lator and the motion. For a wide range of frequencies,
the oscillator can entrain to an imposed motion, mov-
ing the equilibrium point at the same frequency. The
oscillator can also respond quickly to changes in the
frequency of the motion. The relationship between
the imposed motion and the force is defined as the
mechanical impedance of the system. In general this
cannot be calculated for a non-linear system, but since
the force and the motion have the same frequency
in this case, it can be calculated as a simple ratio.
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The impedance is often written as a complex number
with a magnitude and phase, the phase determining
whether the force is assisting or resisting the motion.
Figure 6 shows how the impedance of the oscillator
system varies with frequency.

Under torque feedback the impedance of the joint is
reduced compared to the no oscillator condition at fre-
quencies below the oscillator natural frequency wosc.
This small force assists the imposed motion. Under
angle feedback, at low frequencies the oscillator acts to
strongly resist the motion, while for frequencies above
wosc the oscillator assists the motion.

This joint level behavior can make position con-
strained tasks such as crank turning easy. Instead of
using a model to determine how to move each of the
joints, the joints can adapt to the interaction between
the arm motion and the crank motion. Attaching the
arm to the crank, and driving one of the joints in-
duces motion in the others. The oscillators can then
adapt to the frequency of the induced motion, and
change their impedance to assist the motion of the
joint, so turning the crank. An example is shown in
Figure 7, showing the coordination between the elbow
and shoulder joints when angle feedback is used, and
the resulting crank motion. Since the oscillators are
highly adaptive, they can adapt to half-cycles as well
as full ones. To facilitate complete crank motion, a
small flywheel was added to the crank. In addition,
it was found that while the system was settling into
its stable state, the large internal forces created by
uncoordinated joint action were forcing the arm away
from stable states. By implementing a torque limit at
the most powerful joint, the forces were reduced and
smooth performance achieved. The stability of the
crank turning is indicated by the speed in which the
behavior is established and decays as the feedback is
switched on and off.

The performance of the crank turning is robust to
changes in frequency and to perturbations, return-
ing to the stable crank motion. It is not robust to
large changes in crank length or location, mainly be-
cause the oscillators operate around a fixed posture,
with somewhat fixed amplitudes2. In addition, the
system cannot handle very large cranks, because the
sinusoidal-like outputs of the oscillators are not ap-
propriate as joint commands for large motions. The
torque limit mentioned above does allow the oscilla-
tors to produce a non-sinusoidal output, although in
a rather limited way. Traditional robot approaches

2The actual amplitude of the oscillator output is partly de-
termined by the constant c (equation 2), and partly by the size
of the feedback signal.
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Figure 7: Angles of shoulder and elbow during crank
turning. The angle of the crank is also illustrated
(dash-dot), the saw tooth shape arises due to the posi-
tion sensor for the crank wrapping around. The shoul-
der was driven at a constant frequency, and an oscilla-
tor with angle feedback was used at the elbow. When
the feedback is on, the angles are coordinated and the
crank is turned, otherwise there is no coordination.

to this kind of manipulation (hybrid force/position
control [13], or impedance control [6]), use explicit
kinematic knowledge of the arm and the crank loca-
tion to solve this problem. Like the oscillator system,
these methods are sensitive to errors in crank location.
The advantage of using the oscillator method is that
once the posture and approximate amplitudes have
been specified, the other details of the system emerge
from the interaction of the oscillators, the arm and
the crank, without any further calculation. Another
advantage is that no further calculation is needed to
handle changes in crank frequency, or to deal with un-
expected disturbances.

5 Interaction with external forces

This section explores the effect of external forces
applied to the arm on the oscillator behavior. These
forces could be exerted by manipulated objects, but
also by humans guiding or pushing the arm. The tight
coupling between the oscillator and the arm allows the
oscillators to respond to these forces, so offering op-
portunities for the simple dynamic manipulation of
objects. The useful properties of robustness to fre-
quency changes and disturbances discussed previously
can then be achieved in a different task situation.

As with the previous cases, the oscillator behavior
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Figure 8: The response of the oscillator under a per-
turbing force. The graph shows the oscillator output
frequency (dashed) and the perturbation frequency
(solid) plotted against the perturbation frequency. It
is only at frequencies below wosc (vertical line) that
the oscillator is entrained (range 1.2 to 4 rad/s).

differs under different feedback conditions. When an-
gle feedback is used, the oscillator is insensitive to any
force perturbations on the limb, itself a useful prop-
erty. Under torque feedback, the oscillator can entrain
the frequency of even a small force perturbation, and
drive the joint at the same frequency (see Figure 8),
although only for frequencies below wosc. Above wosc

the oscillator is not entrained.
This entrainment property has been used to ma-

nipulate a slinky toy, as shown in Figure 1. As the
slinky is moved from hand to hand, the weight of the
slinky in each hand is sensed and entrains the oscil-
lators. The connection forces them to oscillate at the
same frequency, and the motion of the weight forces
them to oscillate out of phase. Figure 9 shows two
examples of coordination using torque feedback.

It is obviously very simple to operate a slinky toy, it
only requires the two arms to move out of phase with
one another. However, using the oscillator system
does provide some useful properties. As the oscillators
can respond to imposed motions as well as forces, one
can stop, start and interfere with the motion easily. If
one of the hands is moved faster, the other speeds up
to match it. If both hands are stopped and released,
within one cycle the anti-phase motion is established.
Interestingly, as well as the stable anti-phase motion,
the system exhibits a less stable solution of moving
both hands in phase. It is difficult to get this solu-
tion, since only a small asymmetry in the weight on
the two hands results in the anti-phase motion.

As with the crank turning, a weakness of this ap-
proach is that the posture of the arm needs to be cho-
sen by the user. This provides a place where tradi-
tional methods of choosing arm postures could mesh
with the oscillator system. Since the communication
is through the slinky, the best behavior is observed
when the weight acts directly on the joint responsible
for the motion. The advantage of designing the system
in this way is the robustness and adaptability that the
tightly coupled oscillator-arm system provides. The
use of the slinky to coordinate the joints is very sim-
ple, and suggests that other coordination tasks might
be achieved using naturally occurring forces. One ex-
ample is exploiting the interaction forces between limb
segments during motion for coordination. This has
been achieved with this system, and is reported else-
where [16].
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Figure 9: Two examples of slinky operation. Both
plots show the outputs from the oscillators as the
torque feedback (dashed) is turned on and off. When
the traces are in phase, the slinky is moving in anti-
phase. When the feedback is on, the two arms are co-
ordinated and the outputs are synchronized, but when
off, the oscillators are no longer synchronized. The
only connection between the oscillators is through the
physical structure of the slinky.

6 Discussion

This paper has presented an approach to rhythmic
robot-motion control that exploits the properties of a
simple oscillator circuit to simplify computation, and
obtain robust behavior in a variety of rhythmic tasks.

The oscillators converge rapidly onto a stable
steady state solution, as was seen in the case of actuat-
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ing a mass, as well as in the crank and slinky coordina-
tion tasks. They can operate at a number of different
frequencies without requiring changes in parameters,
tuning into the resonant frequency of the pendulum
motion, and also responding to speed changes in the
crank turning and slinky. In addition to these proper-
ties, the oscillators can be used to achieve coordination
between different robot joints, not through the use of
explicit models, but though physical interaction with
the arm dynamics. The physical structure of the arm
and the crank, and the mass of the slinky were both
used to produce the coordinated motion. By relying
on the physics of the situation, the oscillator system
can quickly respond to changes in the dynamics, which
would otherwise be treated as a modeling error.

The oscillators are very simple, each having only
two state variables, governed by a simple differential
equation. The advantage that this proffers is tempered
by the increasingly low cost of computation. However,
using a simple tightly coupled scheme like this does re-
duce the possibility of numerical instabilities and cal-
ibration errors, which remain even when high speed
computers are used.

One weakness of this approach is that the behav-
ior is superimposed on top of a chosen arm posture.
Choosing the correct posture is important to get the
correct behavior (the slinky will not be operated cor-
rectly if it is held upside down!). This is a place where
traditional robotic methods might be useful. The os-
cillators could handle the dynamic aspects of the task,
while model based approaches deal with the arm gross
motion and position.

In his paper on dynamic manipulation, Mason [8]
commented that scaling a model-based approach to
exploit the full dynamics of the arm was difficult. The
same question is appropriate for this work, i.e., can
this simple approach scale to more complex tasks?
There are many avenues to be explored; more complex
networks of oscillators, oscillators with more complex
outputs (i.e., not sinusoidal), different systems of os-
cillators that can be switched in and out of control,
and different feedback types, for example vision, au-
dition, or touch sensing. The design of complex oscil-
lators, and methods for tuning them is another area
for research. The surprising ability of such a simple
oscillator to perform the variety of coordinated tasks
demonstrated in this paper certainly makes further in-
vestigation worthwhile.
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