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Abstract

This thesis presents an approach to robot arm control exploiting natural dynamics. The approach
consists of using a compliant arm whose joints are controlled with simple non-linear oscillators.
The arm has special actuators which makes it robust to collisions and gives it a smooth compliant
motion. The oscillators produce rhythmic commands of the joints of the arm, and feedback of the
joint motions is used to modify the oscillator behavior. The oscillators enable the resonant properties
of the arm to be exploited to perform a variety of rhythmic and discrete tasks. These tasks include
tuning into the resonant frequencies of the arm itself, juggling, turning cranks, playing with a Slinky
toy, sawing wood, throwing balls, hammering nails and drumming.

For most of these tasks, the controllers at each joint are completely independent, being coupled
by mechanical coupling through the physical arm of the robot. The thesis shows that this mechanical
coupling allows the oscillators to automatically adjust their commands to be appropriate for the arm
dynamics and the task. This coordination is robust to large changes in the oscillator parameters,
and large changes in the dynamic properties of the arm.

As well as providing a wealth of experimental data to support this approach, the thesis also
provides a range of analysis tools, both approximate and exact. These can be used to understand
and predict the behavior of current implementations, and design new ones. These analysis techniques
improve the value of oscillator solutions.

The results in the thesis suggest that the general approach of exploiting natural dynamics is a
powerful method for obtaining coordinated dynamic behavior of robot arms.

Thesis Supervisor: Rodney A. Brooks
Title: Professor of Electrical Engineering and Computer Science, MIT
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Chapter 1

Introduction

1.1 Synopsis

This thesis presents an approach to robot arm control exploiting the natural dynamics of the arm
and its environment. The idea is to “let the physics do the computation”. This results in a system
which is versatile, robust, computationally simple and easy to implement.

The approach is motivated by related work in robotics. A number of researchers have presented
examples of systems which exploit the natural dynamics of the system to perform tasks in a simple
manner. These examples include the passive dynamic walkers of McGeer (1990), the dynamic
running machines of Raibert (1986), and the open loop stable juggling machines of Schaal and
Atkeson (1993). These approaches either use the dynamics directly, or augment the natural dynamics
with simple controllers to provide robust performance.

My approach extends these ideas to a number of rhythmic and discrete tasks using a robot arm.
The passive dynamics of the arm are manipulated to align them with the task, so that the natural
behavior of the complete system is to perform the task. The motion is achieved using a controller
to inject energy into the system.

In particular, my approach consists of using a compliant arm whose joints are controlled using
simple non-linear oscillators. The arm has special actuators which make it robust to collisions and
give it a smooth compliant motion. The actuators are used to implement low gain position control
at each joint. This makes the robot links appear as if they were connected by springs and dampers,
giving the whole arm a rich mass-spring behavior. The dynamics can be changed by altering arm
posture, stiffness, damping and the manipulated object to match the passive arm dynamics with the
task. Non-linear oscillators are used to inject energy and so generate the motion. The oscillators
produce rhythmic commands at the arm joints which excite the arm dynamics. The oscillators are
adaptive, using feedback from the arm joints to alter the frequency and phase of their outputs.
The oscillator behavior is to adjust the commands relative to the arm and task dynamics; this
appropriately adds energy to the arm, and produces the required motion.

Using the same compliant arm, oscillators and feedback, a wide variety of tasks have been
implemented. These are all dynamic tasks where the spring-like properties of the arm are exploited
to produce the motion. The tasks include tuning into the resonant frequencies of the arm itself,
juggling, turning cranks in a variety of configurations using both one and two arms, playing with a
Slinky toy, sawing wood, throwing balls, hammering nails and even drumming.

For most of these tasks, the oscillators at the joints are completely independent. The oscillators
use the mechanical coupling through the arm to coordinate with one another and the task at hand.
The variety of coordinated tasks that are possible with such a distributed system highlights the
sensitivity of the individual oscillators to the arm dynamics. In fact, the thesis shows that coupling
oscillators through the natural dynamics is more robust and more powerful than the more usual
method of connecting them into networks.

This precise coordination between the oscillators and the arm comes hand in hand with remark-
able robustness. The system is robust in two respects. The same task can be accomplished using a
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16 CHAPTER 1. INTRODUCTION

wide variety of oscillator parameters. On the other hand, using a fixed set of oscillator parameters,
the task can be accomplished for a wide variety of different system stiffnesses, inertias, and other
properties. The robustness is a desirable property for a practical control scheme.

Researchers are sometimes reluctant to use oscillators to control their robots, because they do
not have the tools to understand how they work, or how best to set the parameters. The complaint
that oscillators of the type used in this thesis are difficult to tune is a common one. To answer these
concerns, this thesis develops a variety of oscillator design and analysis techniques. These provide
insight into the oscillator behavior, and give clear directions for tuning and design.

The following sections present the approach in more detail, comment on the relationship between
this work and more traditional control methods, state the contributions of this thesis, and introduce
the following chapters.

1.2 Approach

Figure 1-1: The humanoid robot Cog. The two arms used in this thesis are mounted on this robot.
Each arm has 6 degrees of freedom arranged in a similar manner to a human arm. The arms are
also approximately the same length as a human arm.

This section describes the approach taken in this thesis: the choice and use of a compliant robot
arm, and the use of simple nonlinear oscillators to excite and exploit the natural dynamics of the
system.

When designing a robot arm, one important consideration is the structural stiffness of the arm.
The choice between a stiff robot and a more compliant one rests mainly on the types of tasks
envisaged for the robot. For accurate position control and for high bandwidth force control, the
robot should be stiff. For tasks which require a robust interaction with an uncertain world, the robot
should be designed to be compliant. The dynamical interactions between the links of a compliant
arm are more noticeable compared to a stiff arm, which makes the arm’s position more difficult to
control. For the work in this thesis, a compliant arm was constructed to be used for tasks which
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required interaction rather than positional accuracy. The extra dynamics are exploited to perform
tasks simply.

Two six degree of freedom arms were designed and used for this thesis, both mounted on the
humanoid robot Cog (Brooks and Stein, 1994, Brooks et al., 1998), shown in figure 1-1. The arms
use series elastic actuators at each joint, an actuator technology which incorporates a physical spring
in series with the motor output. (Pratt and Williamson, 1995, Williamson, 1995). By measuring
and controlling the deflection of the spring, the force output of the actuator can be controlled. The
spring contributes to the smooth force output of the actuator by naturally filtering out the noise and
backlash introduced by the gearbox. The spring also makes it easy to ensure that the actuator is
passive and therefore stable when interacting with passive environments (Colgate and Hogan, 1989).
Another important role for the spring is to absorb shock loads, protecting the motor gearbox from
damage. These characteristics greatly contribute to the robustness of the arm design. The design
of the arms is described in more detail in Appendix A.

The series elastic actuators provide force control, giving a force output at the joint which is close
to the desired force. To control the position of the joint, a low gain proportional-derivative (PD)
controller is used, whose output is the desired torque or force at the joints, as shown in figure 1-2.
The stiffness and damping at the joints can be varied by changing stiffness K or damping B, and
the arm moved around by changing the setpoint θv of the controller. The PD control makes the arm
behave as if its links are connected by springs and dampers, but because the forces in the joints are
accurately controlled by the series elastic actuators, the overall motion is smooth and compliant.
The force control bandwidth of the actuators is fairly low, which forces the stiffness of the arm to
be low. This gives robustness when interacting with objects.
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Figure 1-2: The joint level control consists of a position control loop, with stiffness K, damping
B, and setpoint θv organized around an inner torque control loop provided by the series elastic
actuators. The inner loop controls the force output of the joint u to accurately track the desired
force ud. Organizing the control in this fashion results in smooth, compliant motion of the arm,
where the overall stiffness and damping can be altered by changing the values of K and B.

To control the arms a set of simple non-linear oscillators are used to alter the setpoints for
each joint. The oscillators are models of two biological neurons in mutual inhibition which form
a resonant circuit (Matsuoka, 1985). The oscillators respond to the dynamical state of the arm
using feedback of either the joint angle or the joint torque. The system is thus tightly coupled,
as shown in figure 1-3, because the output from each oscillator drives the joint, and the feedback
adjusts the oscillator output. In most of the work for this thesis, there are no connections between
the oscillators. Instead the oscillators rely on mechanical coupling between the joints given by the
natural dynamics to coordinate with one another.

The oscillators form a dynamical system which, without input, produces a rhythmic output. If
a rhythmic input is applied to an oscillator, the oscillator will entrain with that input, producing an
output signal of the same frequency. This occurs over a reasonably large range of frequencies and
input amplitudes. The entrained behavior is complex, but can be roughly described as “resonant”
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θ1
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θv1 θv3

θ3
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Figure 1-3: The oscillators are connected to each joint of the arm, and are tightly coupled so that
the oscillator output θvi drives the joint, and the oscillator input is either the joint angle θi or joint
torque ui. There is generally no explicit connection between the oscillators. The oscillators rely on
mechanical coupling through the physical structure of the robot, sensed using feedback to coordinate
with one another.

where the oscillator drives the system at a frequency close to resonance, or in a mode similar to the
resonant mode of the complete system.

The oscillator behavior makes them suitable as adaptive controllers for the arm. Once the
arm has been set up so that the natural dynamics of the coupled arm-task system is appropriate
for the task, the oscillator behavior is to respond to the system dynamics and inject energy to
produce the required motion. The work in this thesis concentrates on demonstrating, explaining
and understanding the behavior of the oscillators in conjunction with the arm natural dynamics.
This includes design methods for the oscillator parameters, but does not address how to choose and
design the arm parameters: arm posture, stiffness etc.. In most cases the initial arm configuration
was chosen by hand, with automatic tuning used to modify that initial configuration. This is
described in appendix B.

1.3 Comparisons

The main difference between traditional robot control and the approach taken in this thesis is the role
of the robot dynamics. In traditional control, the robot is viewed as a general purpose manipulator
which performs tasks independent of the robot configuration. The task is specified in terms of
the desired motion (force, position, compliance) of the robot, and the robot control enforces that
command. The robot dynamics are generally ignored or canceled, and certainly do not play a part in
how the task is planned. The approach taken in this thesis is the opposite: the robot dynamics are
crucial for the performance of the task as they determine the range of possible tasks, and also how
the tasks are accomplished. The robot dynamics are specified so that the task motion is a passive
behavior of the system, and the oscillators are used to inject energy into the arm and so create the
motion.

This difference is illustrated in figure 1-4. The task illustrated is that of moving a mass backwards
and forwards. In traditional control, the dynamics of the robot are removed, so the equivalent
connection between the desired position of the mass xd, and its actual position x is stiff. The
xd trajectory is required to move the mass backwards and forwards, and the controller needs to
overcome the inertial and frictional forces on the mass. If the dynamics of the arm are exploited,
represented here by a spring, the situation is somewhat simpler. The natural behavior of the mass
is to vibrate on the spring and so move backwards and forwards. The role of the trajectory xd is
now to inject and remove energy to sustain the motion, not create the whole motion.
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xdxd xx
(a) (b)

Figure 1-4: Comparison between traditional control (a), and exploiting natural dynamics (b) for
the task of moving a mass backwards and forwards. Under traditional control the dynamics of the
robot are not used. The controller enforces a stiff structure which makes the actual mass position
x track closely the desired position xd. If the robot is made to be compliant, then its dynamics can
be exploited to perform the same task in a different manner. The mass will naturally vibrate on the
spring of the robot dynamics, and the role of the desired trajectory is to sustain the motion, rather
than create the whole motion.

The traditional approach is more general, since the mass can be moved in any arbitrary trajectory
xd. However, for rhythmic tasks, the alternative has some advantages. One consequence of exploiting
the dynamics is that the arm needs to be compliant. This has the benefit of giving robust interaction
with objects and unexpected collisions. The traditional controllers need to be stiff to reduce tracking
errors. This stiffness causes problems in practice: unexpected collisions are not dealt with robustly
by high gain position controlled systems, and high gain force control is known to be difficult because
of stability issues.
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Figure 1-5: Comparison between traditional control (a), and oscillator control (b). In traditional
control the plant’s state x is controlled to follow the desired state xd using a controller. This
controller could have internal state as indicated by the , say from an integral term. The oscillator
control has no explicit desired trajectory, this being generated internally by the oscillator dynamics.
The oscillator modifies its control action u dependent on the system state x. This has the advantage
that a low gain system can be used where the complexity of planning xd is carried out by the
oscillator dynamics rather than by some other system.

The second difference is in terms of the design of the controller, and is illustrated schematically
in figure 1-5. While a traditional controller requires a desired trajectory xd, the oscillator control
generates that signal using its internal dynamics. As before, the traditional approach is more
general, the oscillator system being restricted to the trajectories that are generated by the oscillator
dynamics. Also as before, arranging the control in this way has some practical advantages.

The main advantage of using the oscillator is that the desired trajectory is reactive to the dy-
namics of the system. Referring to the mass-spring system in figure 1-4, the oscillator can generate
a trajectory which complements the motion of the mass, by injecting and removing energy. The
xd generated by the oscillator is reactive since it is calculated within a tight loop, and is synchro-
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nized with the system motion since it is generated relative to the state x. These characteristics are
achieved without a separate system to calculate xd, and without the extra sensing, modeling and
computation that calculation of xd would require.

In the case of oscillators controlling multiple joints of the arm, this internal generation of trajec-
tories is even more advantageous. The oscillators are independent, coupled only through the arm
dynamics. The trajectories for all the joints are thus generated in a distributed manner with coordi-
nation which is correct relative to the motion of the arm. This contrasts with the complexity of the
system which would be needed to generate explicit trajectories for all the joints. This difference is
accentuated by the versatility of the oscillator system. While calculating xd for one task is relatively
straightforward, repeating this for each joint and each new task would be tedious or require the
extra complexity of kinematic modeling and calibration.

A further difference in the robotic case is that the oscillator control system does not deteriorate
as the speed of the task increases and the dynamics of the arm become significant. Both position
and force control for robots degrades at high speeds because of disturbances from the arm dynamics.
If the arm dynamics are aligned with the task, and as the speed increases those dynamics remain
aligned with the task, then the oscillator system will be robust to the change in speed.

1.4 Contributions

The contributions of this thesis are

• The demonstration of the versatility of exploiting natural dynamics by showing implementa-
tions of a wide variety of different tasks on a real robot arm. These tasks include both rhythmic
tasks (e.g. juggling, crank turning, sawing) and discrete tasks (e.g. throwing, hitting, ham-
mering).

• The demonstration of how seemingly complex tasks become simple when cast as resonances of
the arm and task. They can then be performed both simply and robustly using oscillators.

• The demonstration that exploiting the natural dynamics using non-linear oscillators is robust
and easy to implement.

• The demonstration that the principles behind exploiting the natural dynamics can be applied
to create motions which are not completely dictated by the natural dynamics.

• The development of approximate analysis techniques for non-linear oscillators tightly coupled
to mechanical systems, and to systems of oscillators coupled through mechanical coupling.
These techniques predict the final motion, and so ease design and tuning. They also provide
a powerful means of evaluating the robustness and applicability of oscillator based solutions.

• The presentation of exact theoretical results and analysis techniques which describe the os-
cillator capabilities, performance and stability. These results complement the approximate
techniques.

1.5 Thesis outline

The thesis proceeds as follows:
Chapter 2 reviews the relevant literature in robotics. It considers other robotic approaches

which exploit natural dynamics and other approaches using oscillators. It also provides evidence
taken from neuroscience and motor psychophysics that humans also exploit their natural dynamics.

Chapter 3 introduces oscillator solutions for single degree of freedom motions, driving single
links of the robot arm. The oscillator system uses feedback to coordinate its command with the arm,
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responding on a cycle by cycle basis to the arm state. The solutions are also robust in two respects.
A single set of oscillator parameters can accomplish a task for a wide range of system properties
(stiffness, inertia, damping etc.), and for a fixed system, a wide range of oscillator parameters can
be used to accomplish the task. The chapter introduces analysis techniques which can be used to
predict the behavior of oscillator controlled systems, applied to different types of oscillator (e.g.
Matsuoka, Van der Pol etc.), and applied to quite complex tasks such as juggling. The analysis is
also used to explain the origin of the oscillator robustness.

Chapter 4 examines the behavior of oscillators driving the arm using multiple degrees of free-
dom, exploiting mechanical interactions through the arm itself to couple and coordinate the arm
motion. The analysis tools introduced in chapter 3 are extended to model this multiple degree of
freedom case. They indicate that the oscillators find the resonant mode of the underlying mechanical
system. The oscillators find this mode automatically and can thus perform complex coordinated
tasks in a distributed manner. The main example presented is crank turning. The crank attached
to the arm creates a resonant mode which is the correct motion. The oscillators adapt to exactly
coordinate with one another to turn the crank, independent of the arm configuration. This coordi-
nation behavior is also robust. The oscillators maintain coordination with the task in spite of wide
variations in parameters or arm properties.

Chapter 5 moves away from a description of the oscillator properties to consider how to design
motions using oscillators while maintaining their robustness properties. The chapter shows that
connecting oscillators into networks with fixed connections is not as robust as using coupling them
through the natural dynamics. This is because the mechanical coupling “frees up” the oscillator to be
synchronized with the task. The explicit connections force the oscillator outputs to be synchronized
with each other, rather than the task. The chapter shows how using a single oscillator to drive
multiple degrees of freedom or, alternatively, manipulating the dynamics of the arm give an ideal
compromise: the desired motion is achieved with robustness.

Chapter 6 returns to the question of analysis and design for oscillator driven systems. The
analysis methods presented in chapters 3 and 5 are practically useful but only approximate the
system behavior. This chapter presents exact results concerning the boundedness of the oscillator
system, its behavior when coupled to systems, and the local stability of oscillator driven limit cycles.
It also shows an alternative technique for describing the oscillator and driven systems as piecewise-
linear systems which sheds light and intuition on the oscillator behavior. These results are important
and useful in terms of design, giving tools for determining the oscillator behavior when coupled to
a variety of systems.

Chapter 7 brings the thesis back to the practical implementation of tasks using oscillators. It
demonstrates the versatility of oscillator solutions to single motion tasks such as throwing, hitting
and hammering, as well as tasks which are a combination of rhythmic and discrete motions, such
as drumming. The chapter shows that these tasks are easy to implement with oscillators and that
the feedback provides useful behavior—powerful hitting and drumming at a steady rhythm. The
chapter also shows the versatility of the oscillators in terms of the sensory signals that they can use
to coordinate with the world, using both information related to the arm for throwing, and auditory
signals for the drumming application.

Chapter 8 concludes the thesis, and provides suggestions for future work. Following that are a
number of appendices, including information about the arm design.

1.6 Note on data in thesis

This thesis includes many results, some of which are simulated and some taken from the real robot.
To differentiate the source of the data, the figure captions have been formatted differently. Figures
with simulated data are marked sim in the caption, and figures with data from the real robot are
marked real .
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Chapter 2

Literature review

2.1 Introduction

This chapter reviews the relevant literature in robotics, previous work using oscillators, and evidence
that humans exploit natural dynamics to perform tasks.

2.2 Exploiting natural dynamics

There is a considerable range of literature on robotics research which exploits natural dynamics.
The relevant literature has been summarized in table 2.1. This review divides the work into four
categories: research which exploits the robot kinematics and statics, the dynamics of the robot itself,
the static characteristics of the task, and the dynamic characteristics of the task. The literature
is further divided into approaches where passive mechanisms are exploited at the design stage,
approaches where dynamics are used to simplify control, and, lastly, where both the design and the
control are motivated by exploiting the natural dynamics. The papers themselves are discussed in
more detail below.

The idea of designing passive mechanisms that achieve tasks with minimal computation has a
long history. Some of the first tasks which fit in this domain were the use of compliance for robot
force control, (for a review of the early work see Mason (1982)). Adding compliance makes the task
of controlling force significantly easier. The Remote Centered Compliance (Drake, 1977, Whitney,
1982) is a mechanism whose static behavior greatly reduced the difficulty of common assembly tasks.
The properties of the mechanism allow robust assembly without requiring any extra sensing, control
or computation. Ulrich (1990) is a good example of robot design using passive mechanisms to reduce
gravity torques and improve actuator performance.

The passive dynamic walking machines of McGeer (1990), with later developments by Adolfsson
et al. (1998), Fowble and Kuo (1996) and Garcia et al. (1998) are good examples of design to exploit
robot dynamics. These machines are completely passive, yet produce a coordinated walking powered
by gravity. Another example is the masticating robot of Takanobu et al. (1995) where nonlinear
springs were used to create a realistic biting action. The open loop control of force in the sheep
shearing robots of Trevelyan (1992) is also relevant. The open loop behavior of the cutter kept it
a fixed distance above the skin of the sheep, so achieving the goal of only cutting the fleece of the
sheep.

Robot design where the dynamics of the task are exploited include the work of Shannon, whose
passive juggling robot could juggle three balls completely passively (this robot is described in Schaal
and Atkeson (1993)), the gymnastic robots of Playter and Raibert (1994) and Playter (1994), which
exploited the springy dynamics of the arms of a doll to maintain stability while performing flips, and
the drumming robot described by Hajian et al. (1997). The drumming robot used a low impedance
drumstick holder and exploited the bounce of the stick on the drum to produce high frequency drum
rolls.
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Design Control Both

Robot Statics Compliance: Mason (1982)

Remote Centered Compliance:
Drake (1977), Whitney (1982)

Mechanical design: Ulrich (1990)
Robot Dynamics Passive Dynamic Walkers:

McGeer (1990), Adolfsson et al.
(1998), Garcia et al. (1998),
Fowble and Kuo (1996)

Mechanical design: Ulrich (1990)

Chewing robot: Takanobu et al.
(1995)

Sheep shearing: Trevelyan (1992)

Walking robot: Pratt and Pratt
(1998)

Humanoid: Kuniyoshi and Na-
gakubo (1997)

Control: Slotine (1988)

Running robots: Raibert (1986),
Playter and Raibert (1992)

Internal inertia: Brown (1994)

Almost passive walking: der
Linde (1998)

Arm tasks: this thesis

Task Statics Force/position control: Raibert
and Craig (1981)

Impedance control: Hogan
(1985a)

Constrained tasks: Niemeyer and
Slotine (1997)

Task Dynamics Shannon juggler: Schaal and
Atkeson (1993)

Robot gymnastics: Playter and
Raibert (1994), Playter (1994)

Drumming: Hajian et al. (1997)

Juggling: Rizzi and Koditschek
(1994), Schaal and Atkeson
(1993), Mason and Lynch (1993)

Juggling: Lynch et al. (1998)

Arm tasks: this thesis

Table 2.1: Table of literature which exploits natural dynamics
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The second column in table 2.1 describes work which exploits natural dynamics in the control
systems for robots. The work in this area which corresponds to exploiting the robot dynamics
includes the walking robot of Pratt and Pratt (1998) which exploits passive leg dynamics to enable
the use of a simple controller for walking, and the work of Kuniyoshi and Nagakubo (1997) which
exploits the dynamic behavior of a simulated humanoid robot in the task of standing up from a
sitting position. Slotine (1988) argued for the use of physical concepts such as energy in designing
control systems

Work in this area which exploits the static aspects of tasks include hybrid force/position control
Raibert and Craig (1981), where position and force constraints were used to modify the robot
motion in orthogonal directions. Impedance control, Hogan (1985a), generalizes this approach by
manipulating the impedance of the robot endpoint. A more recent example of exploiting constraints
is the work of Niemeyer and Slotine (1997) where the constraint is used to determine the motion, so
that the robot follows the direction of least resistance.

Task dynamics have been exploited for control by a number of authors, a common application
being juggling a ball on a paddle. Rizzi and Koditschek (1994) used controllers that moved the robot
paddle in a scaled mirror image of the ball motion. Schaal and Atkeson (1993) presented a variety
of schemes which exploited the dynamics of the juggling task itself to achieve juggling with very
simple controllers. For example, juggling of one ball could be achieved using a paddle driven with a
constant frequency sine wave. The ball natural behavior is to entrain with the paddle motion, giving
a stable juggling action with no explicit control. This contrasts with the control scheme of Rizzi and
Koditschek (1994), where the paddle position was carefully controlled dependent on the ball state.
Mason and Lynch (1993) described another juggling application, using a hand-coded controller to
control the throw of a juggling club.

The final column of table 2.1 concerns approaches where the natural dynamics are exploited both
in terms of design and control. A good example of this approach in terms of robot design are the
running robots of Raibert (1986). Raibert used hydraulic actuators which gave his running robots a
springy bouncing behavior, and then used three simple controllers to modify the speed, height and
pitch stability of the bouncing motion. This approach yielded robots which could run fast as well
as do gymnastic maneuvers (Playter and Raibert, 1992). Another example is the work of Brown
(1994), who designed a robot to exploits its internal inertia for tasks such as tugging on a stuck door
and weight lifting. The walking robot of der Linde (1998) augments a passive dynamic walker with
small amounts of control to achieve an energy efficient walking robot.

An example of exploiting task dynamics is the robotic juggling robot presented by Lynch et al.
(1998). This robot used a carefully designed hand and controller to manipulate the ball.

The work presented in this thesis fits into the final column of table 2.1. The arm used is
specifically designed to be compliant and have spring-like dynamics. These dynamics are then
exploited by the oscillator control. The work fits into two rows of the table: the robot dynamics
are exploited to create efficient movement, and the task dynamics are exploited to coordinate the
various joints of the arm with the task itself. The work extends previous research both in terms of
the complexity and variety of applications demonstrated.

2.3 Behavior-based robotics

The work in this thesis is motivated by research on behavior-based robotics (Brooks, 1986). This has
enjoyed considerable success in the mobile robotics community for tasks such as obstacle avoidance
and navigation. The ideas have not been well accepted in the manipulation community and there
are just a few examples of the ideas being applied to robot manipulation. For example, Smithers
and Malcolm (1988) used reactive controllers with a traditional planner for assembly tasks.

The main reason for the lack of transfer is the complex kinematics of robot arms and tasks
as compared to mobile robots. There is not the same obvious mapping from sensors to actions
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(e.g. if the arm hits something it is not obvious how to move away from the obstacle). This has
lead to solutions where the motion of the joints was directly mapped to the task (e.g. Asteroth
et al. (1992)), very simple arms are used (Connell, 1988), or simple combinations of joints are
used (Williamson, 1996, Marjanović et al., 1996). Connell (1994) decomposed the problem into a
number of sensor-driven primitives which he combined to pick objects from cluttered work areas.
Gershon (1990) described the decomposition of a sewing task into independent modules which were
combined to robustly respond to the unpredictable behavior of the fabric. Combining behaviors is
also more complicated for arms than for mobile robots. Beccari and Stramigioli (1998) suggested
using impedance control to combine behaviors for assembly tasks.

Most behavior-based approaches build successively more complex behavior by combining simple,
reactive controllers. The work in this thesis shows how a range of behaviors can be obtained with
a single reactive controller. However, some characteristics of the oscillator control are analogous
to behavior-based methods. The oscillator is tightly coupled to the environment, and relies on
interaction with the environment to create complex behavior. The system also produces complex
behavior without requiring explicit models of the controller or the environment.

2.4 Previous work using oscillators

A table summarizing the previous work using oscillators is included in table 2.2. The table compares
the literature on a number of axes: whether the papers describe learning, the type of oscillator used,
the task described, whether networks of oscillators are used, whether feedback is used, and whether
the paper describes a simulated or real implementation. The papers are roughly ordered and grouped
in terms of task complexity.

The first group of papers describe learning algorithms to set the connection strengths between
groups of oscillators. Doya and Yoshizawa (1989) describes back-propagation for recurrent neural
networks, Ermentrout and Kopell (1994) give a method to tune connection strengths in models of
biologically plausible neurons, and Nishii (1998) provides methods for tuning connection strengths
for oscillators described by phase dynamics. The task in all these papers was to produce a desired
frequency and phase output from an oscillatory network. The work in this thesis for the most part
exploits the natural dynamics to coordinate multiple oscillators and, so, does not use learning of
connection strengths.

The next group of papers exploit the dynamics of an oscillator network to generate gait patterns
similar to those observed in quadrapedal locomotion. The idea behind using an oscillator network for
this is to produce a variety of different gaits under the control of one parameter. The network provides
the coordination of the limbs, and the overall characteristics are controlled by other parameters.
An ideal implementation would respond to an increase in frequency by changing from walking to
trotting and then to a galloping rhythm. Kimura et al. (1993) presented an oscillator model for
insect walking gaits, and Pribe et al. (1997) presented a different oscillator model (Elias-Grossberg)
which also had gait changing properties. Collins and Richmond (1994) argued that the details of the
network connectivity, rather than the detailed dynamics of the individual oscillators are important
to produce patterns and transitions. Zielińska (1996) used a Van der Pol oscillator to generate the
rhythm for a two joint leg, and Cohen et al. (1982) showed how coupling between simple oscillators
could be used to generate an undulatory locomotion pattern. None of these papers take the dynamics
of the task into account, which differs from the work in this thesis. The thesis work requires the
natural dynamics in order to coordinate multiple degrees of freedom, and uses that dynamics to
remove the need for explicit networks of oscillators.

The next two papers considered address the oscillator property of resonance tuning which is
automatically driving a mechanical system at its resonant frequency. An oscillator system with this
property was presented by Hatsopoulos et al. (1992), who subsequently used this task to argue for
the use of oscillators coupled to systems (Hatsopoulos, 1996). This thesis further demonstrates the
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Paper Learning Type of Task Connections Feedback Real
oscillator

Doya and Yoshizawa (1989)
√

S Matching phases
√

Ermentrout and Kopell (1994)
√

C Matching phases
√

Nishii (1998)
√

S Matching phases
√

Kimura et al. (1993) C Gait pattern
√ √

Pribe et al. (1997) C Gait pattern
√

Collins and Richmond (1994) VDP, C Gait pattern
√

Zielińska (1996) VDP Gait pattern
√ √

Cohen et al. (1982) S Undulatory pattern
√ √

Hatsopoulos et al. (1992) C Resonance tuning Single dof

√

Hatsopoulos (1996) VDP Resonance tuning Single dof

√

Doya and Yoshizawa (1992)
√

C Simple locomotion
√ √

Nishii (1995)
√

S 1 DOF hopping Single dof

√

Wadden and Ekeberg (1998) C Single leg
√ √

Taga et al. (1991) M Bipedal walking
√ √

Taga (1995a,b) M Bipedal walking
√ √

Miyakoshi et al. (1998) M 3D Bipedal walking
√ √

Kimura et al. (1998) M Quadrapedal walking
√ √ √

Ekeberg (1993) C Undulatory locomotion
√ √

Ijspeert et al. (1998) GA C Undulatory locomotion
√ √

Hollerbach (1981) S Handwriting
Miyakoshi et al. (1994) M Juggling Single dof

√

Schaal and Sternad (1998) M Arm control
√ √

this thesis M Arm control
√ √

Table 2.2: Table of literature of previous work using oscillators. The type of oscillator is indicated with S, meaning simple phase dynamics,
VDP meaning Van der Pol oscillator, M meaning Matsuoka oscillator, and C meaning a different oscillator with complex dynamics.
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power of coupling between oscillators and mechanical systems and extends their application to a
broad range of tasks.

A large proportion of the oscillator literature is devoted to locomotion partly because it is an
obvious rhythmic task and partly because of the biological origins of central pattern generators
for locomotion (see section 2.6). Nearly all the work in this field is simulated, with rare examples
of implementations on real robots. The next group of papers give a number of applications in
locomotion.

There is a considerable range of applications, perhaps the most simple being the rolling example
given by Doya and Yoshizawa (1992). An oscillator was tuned to move a mass on a disk, so causing
it to roll.1 Single degree of freedom control of a hopping robot was described by Nishii (1995),
and the control of a single leg was described by Wadden and Ekeberg (1998). A task with more
reasonable complexity was addressed by Taga et al. (1991). Taga presented a bipedal robot which
walked using a network of neural oscillators to control the joints of the robot. The oscillators used
feedback from the biped joint angles to entrain the oscillators with the motion. The biped was
robust to perturbations and could walk up inclines due to this coupled oscillator-system dynamics.
Later papers have added impedance control and finite state machines to control the walking (Taga,
1995a,b), and the latest papers describe obstacle avoidance using the dynamics of the oscillator
system (Taga, 1998), and an application to 3D walking (Miyakoshi et al., 1998). These papers
are responsible for the popularity of the Matsuoka oscillator used throughout this thesis and have
inspired at least one implementation on a real robot (Kimura et al., 1998).

Undulatory locomotion is another application domain, inspired by work in the neuroscience and
mathematical community on the lamprey (e.g. Cohen et al. (1982)). This primitive fish appears
to use a set of coupled oscillators to produce its undulatory motion. Ekeberg (1993) described a
computer model of lamprey swimming which included turning and noted the use of feedback to
the oscillators to overcome perturbations. Ijspeert et al. (1998) used genetic algorithms to evolve a
similar creature, although he also added legs to produce a creature that could both walk and swim.

As with previous work, the emphasis in these approaches is the connections between oscillators
to produce the required coordination patterns for locomotion. Feedback has a minor and poorly
understood role making the systems more robust to system perturbations. The work in this thesis has
the opposite emphasis. Feedback is taken to be most important, being used to provide coordination
and robustness, and connections are shown to be more difficult to tune, and not able to provide
motion which adapts to the dynamics of the task at hand.

There are very few implementations of oscillators for arm control. Hollerbach (1981) described
using simple oscillators to model and generate handwriting, and Miyakoshi et al. (1994) presented a
simulated juggling task. Schaal and Sternad (1998) suggested a general framework of using oscillators
to generate rhythmic movements of arms. The work presented in this thesis extends the use of
oscillators to considerably more complex tasks than described in the literature. It also differs from
most of the literature in that it is implemented on a real robot.

2.5 Oscillator analysis

Given the range of literature on oscillators, it is surprising that there is not more practical analysis of
oscillator behavior. The work of Matsuoka (1985, 1987) examined stability of networks of neurons,
but did not address the effect of feedback. The effect of inputs to neurons is often described using
phase-response curves (e.g. Canavier et al. (1997), Dror et al. (1999)), although these appear to be
appropriate for oscillators which are accurate models of biological neurons, producing spikes rather
than sinusoidal-like outputs. Other work on neurons is more mathematical (for example Terman

1This task was presented as a learning problem although simply connecting a Matsuoka oscillator to the same
system resulted in rolling with minimal tuning. The reason for this may be the difference in the dynamic richness of
the Matsuoka oscillator and the oscillator used by Doya and Yoshizawa (1992).
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et al. (1998) and other work by Kopell) and has the aim of understanding the dynamics of biological
neurons. The analysis presented in this thesis provides accurate, simple analysis which is geared
towards understanding the behavior of oscillators coupled to systems, as well as providing practical
information for tuning purposes.

2.6 Biological central pattern generator evidence

There is considerable evidence for oscillator or central pattern generator control of human and animal
limbs. The most striking evidence comes from observing the behavior of the hind legs of spinalized
cats, when placed on a treadmill. The action of the treadmill on the legs causes the legs to walk,
even though there is no direct spinal control (see Rossignol and Dubuc (1994), Rossignol (1996) for
reviews). The legs coordinate with each other, and produce a fairly normal looking stepping pattern.
There is also evidence that humans have a similar behavior (see Barbeau and Rossignol (1994) for
a review).

Another thread of research is the physiology of invertebrates, where pattern generators are
thought to be responsible for locomotion of insects, lampreys etc.. Arshavsky et al. (1991) and
Getting (1988) provide reviews of the literature in this field, and Pearson (1993) relates the inverte-
brate and vertebrate literature.

2.7 Human arm control

There is considerable evidence that humans exploit the dynamics of their bodies in the way that we
perform tasks, move, and perceive objects.

For example, we organize our kinematics in many different ways to be appropriate for different
tasks. When playing pool, our whole bodies are arranged to put the cue in line of sight of our
eyes, and the mechanical control is directed from one isolated joint. When writing or performing
a delicate task, we often brace our hands on a hard surface, isolating and removing excess degrees
of freedom, and aligning those that are left with the axes of the task. Another example is using
our skeleton rather than our muscles to carry loads. Hogan (1985b) described the effect of postural
changes and musculature on the mechanical properties of arms.

There is evidence that human exploit the compliant spring-like dynamics of our limbs in a
variety of ways. The compliance itself appears to be passive (Mussa-Ivaldi et al., 1985) and thus
appropriate for interacting with objects in a stable manner. The spring-like properties of our muscles
and tendons are exploited during running (Alexander, 1990). The resonant properties of our limbs
are also exploited during ordinary movement, Herr (1993) and Hatsopoulos and Warren (1996)
showing that the preferred frequency of swinging arms is the resonant frequency of the limb and its
environment, determined by measuring the most “comfortable” swinging frequency when the arm
dynamics had been augmented by either extra springs or added weights. In addition Herr (1993)
provided experimental data that the comfortable frequency corresponded to a minimum of work.
Even babies seem to be able to respond to the resonant properties of the environment, quickly finding
the resonant frequency of bouncing supports (Goldfield et al., 1993). Bingham et al. (1989) showed
that when throwing objects a sequence of postures is used which exploits the dynamical coupling
between the limb segments. He also showed that the mass properties of the object are estimated
in order to tune muscle stiffnesses for a powerful throw. The idea that when the arm performs a
task it is a “smart” mechanism, adjusting its passive properties for the task has been suggested by
Saltzman and Kelso (1987) and Bingham et al. (1991) amongst others.

There is some evidence from development (Thelen et al., 1992) and also from motor learning
(Schneider et al., 1989) that the goal of learning is to correct the timing and strength of the muscle
forces to complement the natural dynamics. Thus the interaction forces between the limb segments
are harnessed to produce the movement, or in the words of Bernstein:
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...the secret of co-ordination lies not only in not wasting superfluous force in ex-
tinguishing reactive phenomena but, on the contrary, in employing the latter in such
a way as to employ active muscle forces only in the capacity of complementary force.
(Bernstein, 1967, p. 109)

The interplay between explicit control and natural dynamics is a subject of debate. If the natural
dynamics were the most important aspect of arm control, one might expect the same task to be
carried out differently in different parts of the workspace because of the different mechanisms used.
This does not seem to be the case, there being a remarkable similarity between arm motions in
different parts of the workspace, and tasks performed at different scales. For example, signatures
tend to look the same when written very small, very large or even when written with other body parts
such as one’s foot. Humans also tend to produce roughly straight movements over the workspace
of the arm (Morasso, 1981, Atkeson and Hollerbach, 1985). Although some researchers argue that
many of the qualities of arm motion can be explained either by complex muscle models (Gribble
et al., 1998), or neural network models (Massone and Myres, 1996), the similarity of movements
suggests that a fairly complex mechanism is controlling the arm to compensate for the dynamics of
the arm itself.

A complex mechanism is required because the dynamics of human arms are considerable, their
stiffness being low and the stiffness decreasing during movement (Zajac, 1989, Bennett et al., 1992).
Experiments where the arm dynamics are perturbed (e.g. Gandolfo et al. (1996)) or where the
perception of the arm is perturbed (e.g. Wolpert et al. (1995)) both show humans rapidly adjusting
their movement towards straight line motion. This further suggests active control of the arm.
Whether this control is an explicit controller or whether it is something more aligned with Bernstein
ideas is also a subject of debate.

One experiment which illustrates the trade off between control and exploiting dynamics is the
study on obstacle avoidance by Sabes and Jordan (1997). Sabes found that the closest distance
between the object and the arm correlated well with the arm’s inertial properties at that point.
The arm was controlled to avoid the obstacle, but the “safe distance” was determined by the arm
dynamic properties.

The dynamics of objects also appear to be important in perception. Many perceptual properties
can be explained by humans sensing the inertia of objects (Turvey and Carello, 1995). For example,
humans are good at estimating the lengths of objects they manipulate, properties that correlate
well with the objects inertia. (Pagano and Turvey, 1995) suggested that this mechanism is used to
determine limb orientation. Weights were added to the arm which caused subjects to point not with
the axis of their arm but with the inertial axis of their arm and the added weights.

2.8 Conclusion

This chapter has situated the work in this thesis in the relevant literature. The approach taken
exploits the natural dynamics of the robot and the task, and does so both in terms of the robot
design, but also in the choice of control. The work extends previous work on oscillators by addressing
a wide range of complex tasks, and by being implemented on a real robot. The emphasis on feedback
rather than networks of oscillators also differentiates this work from most oscillator research. The
analysis tools presented in this thesis also extend the available analysis techniques.

The chapter has also shown that using oscillators has a firm biological basis, and that exploiting
natural dynamics is an approach which humans take when performing particular tasks, and may
also be important from general motion.



Chapter 3

Single degree of freedom motions

This chapter introduces the oscillators which are used throughout this thesis. It describes their
governing equations, and how they are coupled to the joints of the arm. The chapter then introduces
an analysis technique using describing functions which is useful for understanding the non-linear
behavior of the oscillators. This analysis technique is accurate, and can be used in a number of
ways. The analysis makes clear the effect of parameters on the overall system behavior, which
facilitates tuning of parameters. It also shows the inherent robustness of the oscillator properties to
parameter and system changes.

The analysis is not restricted to the Matsuoka oscillator and can be equally applied to other
oscillator types. The chapter shows its application to the well known Van der Pol oscillator. Neither
is the analysis restricted to simple tasks, the chapter describing its application to the design of
oscillator driven juggling. This is implemented on the robot.

The chapter concludes by stressing the coordination between the oscillator dynamics and the
arm dynamics, and the sensitivity of the oscillators to the exact motion of the arms.

3.1 Introduction

The oscillator used throughout this thesis was originally analyzed by Matsuoka (1985, 1987). It
consists of two simulated neurons in mutual inhibition as shown in figure 3-1. The oscillator model
approximates the envelope of the firing rate of a real biological neuron with self-inhibition. The
model has 4 state variables, governed by the following equations:

τ1ẋ1 = c− x1 − βv1 − γ[x2]+ − Σjhj[gj ]+ (3.1)
τ2v̇1 = [x1]+ − v1 (3.2)
τ1ẋ2 = c− x2 − βv2 − γ[x1]+ − Σjhj[gj ]− (3.3)
τ2v̇2 = [x2]+ − v2 (3.4)

yi = [xi]
+ = max(xi, 0) (3.5)

yout = [x1]+ − [x2]+ = y1 − y2 (3.6)

Each simulated neuron is governed by two equations, neuron 1 by (3.1) and (3.2) and neuron
2 by (3.3) and (3.4). The variables x1, x2 represent the firing rate of the neurons, and the v1, v2

variables are internal states representing the self-inhibition. The outputs of the neurons are taken to
be the positive parts of the firing rates, with y1 = [x1]+ and y2 = [x2]+. The output of the oscillator
is taken to be the difference of these signals (3.6). The neurons inhibit one another, with the output
of the other neuron appearing in the update for the firing rate, as in the term −γ[x2]+ in (3.1).

The parameters of the oscillator are β, γ which are constant,1 the constant or tonic parameter c,
which determines the amplitude of the oscillator output (defined as An), and the two time constants

1The values used throughout the thesis were β = 2, γ = 2. Working parameter ranges are described by Matsuoka
(1985)
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τ1, τ2 which determine the frequency and shape of the output. For stable oscillations τ1/τ2 should be
in the range 0.1–0.5.2 Keeping the ratio τ1/τ2 constant makes the natural frequency of the oscillator
ωn (the frequency of the oscillator without an input) proportional to 1/τ1, as shown in figure 3-2.
Figure 3-3 shows a typical output from the oscillator.

Inputs are applied to the oscillator through the variables gj, weighted by gains hj . The inputs
are arranged to always inhibit the neuron, applying the positive part [gj ]+ to one neuron, and the
negative part [gj ]− = max(−gj, 0) to the other. To remove offsets in gj a high pass filter is used to
remove the dc component.

When no input is applied to the oscillator, it oscillates at a natural frequency wn determined
by the time constants τ1, τ2, with a fixed amplitude defined by the tonic c, as shown in figure 3-
2. If an oscillatory input is applied, the oscillator entrains the input, producing an output at the
same frequency as the input. This entrainment behavior is illustrated in figure 3-4 which shows the
output of the oscillator as the size of the input signal is increased. The oscillator tends to entrain
very quickly, within one cycle in the lower graph in figure 3-4. The oscillator can lock onto input
frequencies over a wide range of frequencies and sizes of inputs as illustrated in Figure 3-5. The figure
shows the minimum input required to frequency lock the oscillator as a function of frequency. The
plot was obtained by varying the input magnitude and comparing the oscillator frequency (taken as
the frequency with the maximum magnitude in a Fourier transform of the output), with the input
frequency. The entrainment range is large, in this case wn = 7 rad/s, and the range is 1.5 to 35
rad/s.

For most of the work in this thesis, the oscillator is connected to the joints of the robot arm. As
described in chapter 1, the position of each joint is controlled using a simple proportional-derivative
control law, making the commanded torque at the ith joint

udi = ki(θvi − θi)− biθ̇i (3.7)

where ki is the stiffness of the joint, bi the damping, θi the joint angle and θvi the equilibrium point.
The oscillator is connected to the arm using the oscillator output to control the setpoint for the joint
with an output gain ho and offset θpi

θvi = hoyout + θpi (3.8)

and connecting either the joint angle θi or the joint torque ui to the input g of the oscillator. The
offsets in these signals are removed using a high pass filter. Coupling the oscillator in this way results
in a number of useful properties. These are described in the following sections.

3.2 Analysis methodology

The oscillator is a non-linear system, and its behavior when coupled to the mass-spring system
of a robot joint is complex. The final motion depends on the interaction between the oscillator
dynamics and the system dynamics. This section describes an analysis method that can be used to
understand the nature of this interaction, and shed light on the oscillator behavior, stability, tuning
and robustness. The analysis is based on expressing the oscillator and the driven system as frequency
responses, and determining conditions for oscillation. This technique is known as describing function
analysis (Gelb and Vander Velde, 1968, Slotine and Li, 1991, Khalil, 1996).

The coupled system is illustrated in figure 3-6, where the driven system or plant is assumed to
be linear with transfer function G(jω), where j = +

√
−1 and ω is the frequency. The oscillator is

non-linear and so does not have a frequency response. An approximation to the frequency response
can be made by sampling over a range of frequencies and input amplitudes. Writing this linearized

2The ratio used throughout the thesis was τ1/τ2 = 0.5.
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Figure 3-1: Schematic of the oscillator. The oscillator equations simulate two neurons in mutual
inhibition as shown here. Black circles correspond to inhibitory connections, open to excitatory.
The mutual inhibition is through the γ[xi]+ connections, and the βvi connections correspond to
self-inhibition. The input gj is weighted by a gain hj, and then split into positive and negative
parts. The positive part inhibits neuron 1, and the negative part neuron 2. The output of each
neuron yi is taken to be the positive part of the firing rate xi, and the output of the oscillator as a
whole is the difference of the two outputs.
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Figure 3-2: sim Oscillator behavior under changing tonic c and time constant τ1. The left hand
figure shows the output frequency of the oscillator wn plotted against 1/τ1, and the right hand
graph shows the amplitude of the oscillator output An plotted against the tonic excitation c. For
this example τ1/τ2 = 0.5, β = 2.5, γ = 2.5.
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Figure 3-3: sim A sample output from the oscillator. The top graph shows the variation with time of
the states of the oscillator x1, x2, v1, v2 during normal operation. The bottom graph shows the output
of the oscillator yout = [x1]

+ − [x2]
+. For this example τ1 = 0.25, τ2 = 0.5, c = 1.5, β = 2.5, γ = 2.5.
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Figure 3-4: sim Figure showing effect of increasing input signal. For small input (top graph), the
oscillator is not entrained, and oscillates at its endogenous frequency wn. In the middle graph, the
input is larger, and the oscillator is almost entrained, but slips every couple of cycles. The lower
graph shows the oscillator locked onto the frequency of the input. For this example c = 1.0, τ1 =
0.1, τ2 = 0.2.
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Figure 3-5: sim Minimum input for entrainment. The figure shows the minimum input signal
required for entrainment of the oscillator. The oscillator natural amplitude and frequency are given
by the horizontal and vertical lines respectively. For this example c = 1.0, τ1 = 0.1, τ2 = 0.2.

response at frequency ω and input amplitude A as N(jω,A), then the condition for steady state
oscillation is that the loop gain is unity:

N(jω,A)G(jω) = 1 (3.9)

Calculating N and solving this equation for the frequency and amplitude of the limit cycle
solution (ωf , Af ) provides much insight into the capabilities and tuning of oscillator driven systems.
The following section describes how to calculate N for a particular choice of oscillator, and how to
solve this equation to calculate the final solution.

3.3 Oscillator describing function

The oscillator describing function N(jω,A) expresses the gain and phase difference between input
and output of the oscillator as a function of input amplitude and frequency. This can be calculated
by applying an input gj = A sin(ωt), and measuring the output yout. If the oscillator is entrained,
the frequencies of input and output are the same and a Fourier transform can be used to calculate an
approximation to the gain and phase of the oscillator. By applying inputs over a range of frequencies
and amplitudes and removing points where the oscillator is not entrained, N can be calculated.3

Figure 3-7 shows N plotted as a Bode plot. The plots show the variation of gain and phase
with frequency. The multiple lines correspond to different values of A, the arrow referring to the
direction of increasing A. Changes in amplitude affect the gain (gain decreasing with increasing A),
but not the phase, which remains roughly independent of A. For this oscillator, the gain is actually
proportional to 1/A, as the output amplitude is approximately constant. This is because the input is
arranged to always inhibit the neurons. If the input is applied without the max operator, the output

3It is also possible to calculate this analytically, using some advanced techniques in describing function analysis,
taken from Gelb and Vander Velde (1968).
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Figure 3-6: System schematic. The figure shows an oscillator tightly coupled to a system. The
oscillator output yout drives the input of the system, whose output g is the oscillator input. The
analysis of the system proceeds by looking at the frequency responses of each system and calculating
the condition for oscillation. At a frequency ω, and input amplitude A, the linearized frequency
response of the oscillator can be written as N(jω,A), where j = +

√
−1. The frequency response

of the system is G(jω). There will only be stable oscillations when the loop gain is unity, or
N(jω,A)G(jω) = 1.

amplitude becomes a function of A, and the range of possible gains is reduced (see Appendix C for
more details).

A common situation is the oscillator driving a single link of the arm. In this case the plant or
driven system can be modeled as a mass m actuated through a spring of stiffness k, and a damper
b (where k and b are the stiffness and damping terms in the joint level control, equation (3.7)).
Ignoring the actuator dynamics, the dynamics of the link are given by the equation

mθ̈ + bθ̇ + kθ = kθv (3.10)

where θ is the position of the link, and θv is the desired position. Since the link is connected in the
usual way to the oscillator, with yout = θv, and gj = θ, the transfer function for the plant is between
θv and θ:

G(jω) = k/(k −mω2 + jωb) (3.11)

The condition for limit cycles (equation (3.9)) can now be solved graphically by plotting G(jω)
and 1/N(jω,A) on the complex plane and finding points where the graphs intersect at the same
frequency. This plot is shown in figure 3-8. There are many intersection points, but there is only one
where the frequencies of both transfer functions are the same. Since the exact solution is unlikely to
be at the points sampled when calculating N and G, a simple interpolation routine is used to find
the limit cycle solution. The intersection point (marked with a •), determines both the frequency
and amplitude of the limit cycle solution. In this case ωf = 8.9 and Af = 0.52.

3.4 Predictive accuracy

Describing function analysis is an approximate method, and relies on the assumption that the system
is well described by the lowest frequency harmonic (Slotine and Li, 1991, Khalil, 1996). This requires
firstly that the output of the oscillator not contain many higher harmonics, and secondly that the
gain of the linear system be much lower at these harmonics, i.e. that the linear system be a low pass
filter. The Fourier transform of the oscillator output is shown in figure 3-9. Most of the energy is
located around the natural frequency of the oscillator. Since the mass-spring system has a low pass
characteristic, it is appropriate to use the describing function analysis in this case.

The accuracy of the prediction can be found using simulation. Figure 3-10 shows the predicted
and measured (from a simulation of the system) frequency and amplitude as the stiffness of the spring
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Figure 3-7: sim Oscillator Bode plot. The top graph shows the gain |N(jω,A)| plotted against
frequency, and the lower plot the phase. The multiple lines correspond to different values of input
amplitude A as indicated by the numbers and arrows on the plot. The gain is inversely related to A
and is roughly constant with frequency. The phase is less dependent on A, and reduces from around
180◦ to 60◦ as the frequency is increased. The natural frequency of the oscillator is indicated by the
vertical line.
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τ1 = 0.1, τ2 = 0.2, c = 1, hj = 1, k = 20,m = 0.4, b = 2.
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Figure 3-9: sim Power density spectrum for the Matsuoka oscillator. The plot shows power plotted
against frequency, expressed as a function of the oscillator natural frequency ωn. The plot shows a
clear peak at the natural frequency, and a much smaller one at ω = 3ωn. The sinusoidal nature of
the oscillator output confirms the accuracy of the describing function approximation.

is altered. Changing stiffness alters the shape of the G(jω) plot, and so alters the final solution found
by the oscillator. The figure shows that the prediction is accurate, with possible errors coming from
the calculation of N(jw,A), as well as the estimation of the frequency and amplitude of the mass
motion.

3.5 Local stability

The plot of G(jω) and 1/N(jω,A) can also be used to determine the stability of the final motion,
using an extended version of the Nyquist Criterion. The criterion is taken from (Slotine and Li,
1991, p. 186):

Limit Cycle Criterion: Each intersection of the curve G(jω) and the curve 1/N(A) corre-
sponds to a limit cycle. If points near the intersection and along the increasing–A side of the curve
1/N(A) are not encircled by the curve G(jω), then the corresponding limit cycle is stable. Otherwise
the limit cycle is unstable.

In the case of the Matsuoka oscillator driving a mass, examining figure 3-8 shows that for low
A, the points are encircled by G(jω), but, as A increases, the points move into an un-encircled
region. This corresponds to locally stable behavior. Since the analysis only considers the steady
state solutions and not the transient behavior, it cannot predict global stability. Experimentally,
the cycles are also observed to be stable. Figure 3-11 shows a phase plot for the motion of a robot
arm link, for a number of different initial conditions. The system converges to the limit cycle very
rapidly, within one cycle in this case.
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Figure 3-10: sim Predictive accuracy. The plot shows the prediction (line) and measured (*)
frequency (top plot) and amplitude (lower plot) for an oscillator driving a mass, as the stiffness of
the spring was varied, so varying the natural frequency of the system. The accuracy is good, with
a constant offset error for amplitude. The error in frequency is partly due to noise in the frequency
measurement of the simulated mass motion.
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Figure 3-11: real Phase plot of robot motion. The plot shows velocity v. position for an oscillator
driving a mass, recorded from one link of a robot arm. Shown are three traces overlaid starting from
three different initial conditions. The three traces all converge to the limit cycle, indicative of the
anecdotal observation that all initial conditions converge to the limit cycle.
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3.6 Effect of parameter changes (a): Design

The oscillator has a number of parameters, time constants, input gains, tonic excitations etc. which
affect the final motion of the coupled system. The describing function analysis sheds light on the
effect of changes in those parameters, by looking at the effect on the plots G(jω) and N(jω,A). The
effect of most parameters is to scale or shift N while preserving its shape. This means that design
can be accomplished without requiring the laborious recalculation of N .

Frequency and amplitude parameters. Altering the natural frequency of the oscillator does
not alter the shape of N , but simply scales the frequency of the plot. The shape of the plot is the
same if the frequencies are measured with respect to the oscillator natural frequency ωn. Since for
the Matsuoka oscillator ωn ∝ 1/τ1, changes in time constants can be easily accounted for.

Similarly, the amplitude of the oscillator is proportional to the parameter c. Changing c increases
the amplitude of the oscillator, but does not not change N , except that larger inputs are needed
to entrain the system. The shape of the plot remains the same when the input is scaled by the
oscillator natural amplitude An.

Input and output gains. In general, the oscillator input is multiplied by a gain hj , and the
output also has an output gain ho, as shown in figure 3-12. The effect of these gains is to change
N(jω,A) to hjhoN(jω, hjgj), which alters the magnitude but not the phase. Changing the gains
thus changes the overall size of N , and can be used to move the plots over one another, or to change
the limit cycle solution. Rather than recalculating N , the effect of the gains can be lumped with G,
i.e. G′(jω) = hjhoG(jω), which is easily recalculated.

h j N(jw, A) h o
A y

G(jw)

Figure 3-12: If N has an input gain hj , and an output gain ho, the overall gain of the oscillator
becomes hjhoN(jω,A). Since N depends on A, i.e. amplitude after the gain hj , it makes sense to
combine the gains with the plant transfer function G, i.e. G′(jω) = hjhoG(jω).

Input and output variables. Choosing a particular oscillator type fixes N(jω,A), while choosing
outputs and inputs fixes G(jω). As shown above, changing oscillator parameters can scale the size
of N , but not alter its phase. Thus G needs to be chosen so that the two plots can intersect (there
are phases that match). It is then relatively easy to find gains to place the plots over one another.
This aspect of tuning is also discussed in appendix B.

Taking for example the mass-spring system of equation (3.10). If instead of position θ, the
velocity of the mass θ̇ is used as input, the frequency response becomes

G′(jω) = jωG(jω) = jωk/(k −mω2 + jωb) (3.12)

which is the same as before, only rotated 90◦ counterclockwise, and scaled by ω.
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3.7 Effect of parameter changes (b): Robustness

The describing function analysis can also be used to examine the robustness of the oscillators.
Robustness in this context means either that the coupled system has the same performance or
behavior over a wide range of oscillator parameters, or that given a single set of parameters, a wide
range of system properties give the same behavior. The oscillators are robust in both senses of the
word. The oscillator parameters are generally well-behaved, with a smooth monotonic effect on the
system behavior, decoupled from the effects of the other parameters.

Robust properties greatly ease the implementation of oscillator driven systems since very little
tuning is required to achieve good results. This section evaluates each of the oscillator parameters
in turn.

Input gains and tonics. The tonic parameter c affects the output amplitude of the oscillator
and is effectively decoupled from the all the other parameters. The output amplitude is independent
of input size and frequency (as shown in figure 3-7). This independence is a consequence of the
non-linearities on the input g in equations (3.1) and (3.3). Appendix C shows that without these
non-linear terms the system output is a function of input size, and is less well-behaved. The effect
of the tonic parameter is monotonic, as was shown in figure 3-2.

The input parameter h is also decoupled from the oscillator parameters which set frequency.
It has a more interesting effect on the overall system properties. In practice, the parameter does
not have much effect on the final motion. It needs to be large enough to cause entrainment, but
other than that its value is unimportant. The reason for this can be seen in figure 3-13, which plots
the describing function for the oscillator with two different values of input gain. The two different
solutions are ωf = 8.82, Af = 0.38 for h = 0.7, and ωf = 8.98, Af = 0.77, for h = 1.7. In spite
of the gain more than doubling, the frequency changes by less than 2%. Since Af is the amplitude
of input to the oscillator, the actual motion has amplitude Af/h, which is 0.55 when h = 0.7, and
0.45 when h = 1.7, a change of about 15%. Looking at figure 3-13, the reason for this robustness
is the approximately radial lines of the oscillator describing function, particularly in the middle
frequencies. The oscillator is inherently robust to changes in input size, giving approximately the
same performance for a wide variety of parameter values.

For a fixed set of gains, the range of phases, frequencies, and gains that the oscillator can
produce is large, so that any part of the system phase plot which overlaps with the area covered by
the oscillator will produce an oscillatory solution. This contributes to the robustness of the oscillator
itself.

Time constants. The main effect of changing the time constants of the oscillator is to change
the frequency range of the oscillator. This effect is monotonic, as shown clearly in figure 3-2. As
mentioned above, the effect is decoupled from the input gain and tonic parameters.

Referring to figure 3-13, if the lines were radial, then the effect of changing the time constants
would be a monotonic change in the frequency of the coupled system. The lines are not exactly
radial, which gives rise to the resonance tuning behavior of the system. The oscillator can tune into
the resonant frequency of a driven system for a wide range of oscillator parameters, and conversely,
for a fixed set of oscillator parameters, can tune into the frequency of a range of systems.

Figure 3-14 shows the range of settings of input gain and time constant which have a final solution
which is within 10% of the system natural frequency. The plot shows that the oscillator natural
frequency can vary from 3.5–5.5 rad/s which is a percentage change of 40 %, and the gain can vary
even more (from 0.2 to 2), while still finding the resonant frequency. This was for a simulated system
with k = 20,m = 0.4, b = 5.2.

Taking parameters for the oscillator in the middle of these values, i.e. wn = 4.5, h = 1, the
robustness of the oscillator to changing systems can be measured. The stiffness can be varied from
14–25.4 Nm/rad with the final frequency remaining within 10% of the natural frequency. This is a
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Figure 3-13: sim Figure showing the effect of the gain on the describing function of the oscillator.
The plot shows 1/N(jω,A) plotted on the complex plane for two values of input gain h, as marked.
It also shows G(jω) for a typical mass-spring system, with the limit cycles marked with a ◦ for
h = 0.7, and a 2 for h = 1.7. Because the lines of 1/N are approximately radial (especially for
the middle frequencies), the effect of doubling the gain on the coupled system behavior is small.
For high and low frequencies, changing the gain will alter how the oscillator couples with another
system but the effect of the gain is still minor, given the acute angles between the lines and the
radial directions.
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Figure 3-14: sim Figure showing the range of values of the oscillator natural frequency, and oscilla-
tor input gain over which the final frequency of a coupled oscillator, mass-spring system was within
10% of the system natural frequency. The mass-spring system had values k = 20,m = 0.4, b = 5.2
corresponding to a natural frequency of 8.66 rad/s and damping ratio of 0.3.

30% change in stiffness, or approximately a 12% change in system resonant frequency. These results
demonstrate clearly the robustness of the oscillator to parameter values and to changes in the system
properties.

This resonance tuning behavior is the natural behavior of the coupled system. Since the oscillators
entrain quickly, this means that the oscillator system is reactive to fast changes in the dynamics. An
alternative method would be to identify the system and use a constant frequency command to excite
the resonant frequency. While this method would probably give more accurate resonant tuning, it
would not be responsive to changes in the dynamics without re-identifying the system.

The resonant frequency is also the most efficient speed to move the mass-spring system, with
the minimum of real work required to produce the motion. The fact that the oscillator can find and
drive at this frequency, while still adapting to the system properties is thus a useful behavior.

System changes The oscillator is also robust to other changes in the system properties. For
example, changing the damping in the system alters the shape of G(jω), but does not alter the
frequency. Since the oscillator can produce a variety of gains and frequencies, it is automatically
robust to these changes. For example, the damping ratio of the example system described above
can be altered from 0.12 to 0.5 while still remaining entrained, with the entrained frequency varying
from 7.56 to 6.59 rad/s where the resonant frequency is 7.07 rad/s, as shown in figure 3-15. This
corresponds to a 7% change in frequency.

Entrainment The final aspect of the oscillator control which is practically useful is that it tends
to entrain very quickly, usually within one cycle. This means that it is easy to tell whether a
parameter is correct or not as the system settles quickly. This is also improves the robustness, since
the oscillator responds quickly to changes in the dynamics.
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Figure 3-15: sim Figure showing the effect of varying the damping ratio of the mass-spring system.
The plot shows the describing function for the oscillator with lines for G(jω) for different values
of the damping ratio as marked. The damping ratio can be altered from 0.12 to 0.5 while remain-
ing entrained, with only a 7% change in the output frequency away from the resonant frequency:
frequency varies 7.56–6.69 rad/s, with the resonant frequency of 7.07 rad/s.

3.8 Design example: Resonance tuning

The describing function analysis is not only appropriate for analyzing the Matsuoka oscillator. This
section shows how it can be used to analyze the well known Van der Pol oscillator, for the task of
resonance tuning. There have been a number of papers concerning the resonance tuning property
of neural oscillators (e.g. Hatsopoulos et al. (1992), Hatsopoulos and Warren (1996), Epstein and
Kopell (1999)), without any full explanation of why this behavior is observed or predictions of its
limits. The describing function analysis provides answers to both of those questions.

The Van der Pol (VDP) oscillator (Strogatz, 1994, p. 198), is described by the following equa-
tions:

τu̇ = wv + f(u) + hjgj (3.13)
τ v̇ = −εu (3.14)

f(u) = u− u3/3 (3.15)
yout = hou (3.16)

where u and v are state variables, gj is an input, hj a gain on the input, ho is a gain on the output,
τ determines the speed of the oscillator, and ε is a parameter.4

The describing function for this oscillator is illustrated in 3-16, which shows a rather different
pattern from the Matsuoka oscillator. The same trends are evident; the gain reduces with increasing
A, although the output amplitude alters as a function of A, making the range of gains less uni-
form. The gain as before is roughly constant with frequency. The phase is roughly independent of
amplitude, in the range ±30◦.

4Reasonable values are 0.1 ≤ ε ≤ 0.1, 1 ≤ hj ≤ 30, 0.1 ≤ ho ≤ 1.
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Figure 3-16: sim Van der Pol Bode plot. The top graph shows the gain |N(jω,A)| plotted against
frequency, and the lower plot the phase. The multiple lines correspond to different values of input
amplitude A as indicated by the numbers and arrows on the plot. The gain is inversely related to
A and is roughly constant with frequency. Unlike the Matsuoka oscillator, the output amplitude of
the VDP oscillator is a function of the input amplitude. This results in the lines in the gain plot
not being equally spaced (compare to figure 3-7). The phase is less dependent on A, and is grouped
around zero degrees. The natural frequency of the oscillator is indicated by the vertical line.
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Figure 3-17: sim Plot of G(jω) and 1/N(jω,A) in the complex plane for the VDP oscillator.
G(jω) is the thick line, with numbers indicating frequency. The lines for 1/N(jω,A) correspond
to constant frequency, with amplitude A increasing along each line as indicated by the numbers
and arrow. There is a limit cycle solution at the point where the two graphs intersect at the same
frequency. The intersection point is indicated by a filled circle, at ω = 7.0 and A = 7.4. This plot
was produced for τ1 = 0.03, ε = 0.1, ho = 0.2, hj = 1, k = 20,m = 0.4, b = 2.

If this oscillator is connected to a mass-spring system as before, because the Van der Pol oscillator
can only produce phases in the range ±30◦, the intersections would all be at low frequencies. How-
ever, if the velocity rather than the position is used as input, those phases correspond to points near
the resonant frequency of the system. This is illustrated in figure 3-17, which shows G(jω) for a mass-
spring system with input θv, and output velocity θ̇, plotted together with 1/N(jω,A). The input
and output gains are calculated to position the two plots over one another, here hj = 1, ho = 0.2.
As before, there are limit cycle solutions where the graphs intersect at the same frequency, here
ω = 7.0, A = 7.4.

Because of the shape of the phase plot of the VDP, the oscillator can tune into the resonant
frequency of the plant motion over a range of system frequencies. The Matsuoka oscillator also has
this effect, but because the lines of its describing function are not as parallel, or as aligned with the
resonant phase difference as the VDP characteristic, the resonance tuning behavior is not as strong.
Using the describing function analysis, the resonance tuning effect of the VDP can be calculated,
and measured in simulation. Figure 3-18 shows the result of this prediction. The plot shows the
oscillator tuning into the resonant frequency of the system over a large range of frequencies. The
accuracy of the describing function prediction is also shown in the graph.

To confirm this result, the VDP oscillator was implemented on the robot, and a similar experi-
ment was conducted, varying the stiffness of a robot joint, and measuring the final frequency. The
results from this are plotted in figure 3-19. The results show that over a range of frequencies cor-
responding to a four-fold increase in stiffness, the VDP oscillator drove the system at its resonant
frequency.

This example illustrated not only the performance of the VDP oscillator system in this task, but
also the use of describing function analysis to design and predict final system performance.

The VDP oscillator is in general less robust than the Matsuoka oscillator. This is because the
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Figure 3-18: sim Prediction of VDP oscillator driving a mass, using velocity as the oscillator
input. The upper plot shows the accuracy of the prediction, and the resonance tuning behavior of
the oscillator. The oscillator drives the mass at the resonant frequency of the mass-spring system,
over a range of different conditions (here the frequency of the mass-spring system is varying from
5 to 9 rad/s). The lower plot shows the accuracy of the prediction of motion amplitude. For these
plots τ1 = 0.03, ε = 0.1, ho = 0.1, hj = 2, k = 20,m = 0.4, b = 2.

output amplitude is dependent on the input amplitude, making tuning difficult, and because the
range of output phases is much less.

3.9 Design example: Juggling

This section describes the application of describing function analysis to a more complex task, that
of juggling a ball on a paddle. The setup is illustrated in figure 3-20. This task has been addressed
by a number of researchers, (Schaal and Atkeson, 1993, Rizzi and Koditschek, 1994), including one
using neural oscillators (Miyakoshi et al., 1994). Using the method presented in this chapter, not
only can the parameters be easily tuned without intensive simulation, but the robustness of the
system can be calculated and compared to other approaches.

Schaal and Atkeson (1993) showed that when juggling a ball on a paddle, stable motion is
achieved when there is a particular constant phase difference between the paddle and ball motion.
This motivates the approach of writing the juggling problem as a describing function, where stable
juggling is defined in terms of a phase between input (paddle motion) and output (ball motion), as
well as a gain (the amplitude of the ball). Although this is a rough approximation to juggling, it
allows analysis of the situation. The setup is shown in figure 3-21, where the paddle is assumed to
move sinusoidally, i.e. y(t) = B sin(ωt), and the ball bounces with height x. Since the juggling is
stable, the velocity of the ball before and after impact is the same, so the impact equation is

(ẋ− ẏ) = −α(−ẋ− ẏ) (3.17)

where α is the coefficient of restitution. Calculating the time between bounces (which is 2π/ω), and
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Figure 3-19: real Plot shows resonance tuning action of a VDP oscillator actuating a joint on the
real robot. The stars mark measured frequency, plotted against the natural frequency of the system
(also measured), as the stiffness of the system was altered. The results fit with the predictions of
the describing function analysis. Because the natural frequency is a function of the square root of
the system stiffness, the actual stiffness varied from 9 to 42.

Figure 3-20: Picture of robot in juggling task. The paddle is a table tennis bat attached to the
robot’s arm. The ball is restrained to travel in one dimension by being mounted on a rotating boom.
The angle of the boom is measured using a potentiometer at the pivot point, and this feedback
signal is used by the oscillator to coordinate the arm motion with the ball motion.
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Figure 3-21: Schematic of the juggling action. The thick line shows the motion of the paddle
y(t) = B sin(ωt), and the thin line the ball trajectory x(t). The ball impacts the paddle at a phase
φ of the sine wave. The analysis expresses the juggling as a describing function, writing a stable
solution in terms of the phase difference between ball and paddle trajectories (φ + π/2), and the
amplitude of the ball motion x.
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Figure 3-22: Oscillator driven juggling. The amplitude of the ball motion is x, the input to the
oscillator is A = hjx, and the output of the oscillator drives the paddle (G(jω)) with amplitude B.
The ball motion can then be calculated using Nj. As before, there can be only a limit cycle when
the loop gain is unity.

substituting ẏ = Bω cos(φ) at impact gives an equation for the phase at impact:

φ = arccos
[

πg

Bω2

(
1− α

1 + α

)]
(3.18)

Calculating the maximum height of the ball (at the time halfway between bounces) gives an expres-
sion for the ball amplitude:

x = gπ2/4ω2 (3.19)

This makes the describing function for the juggling Nj(jω,B, α) = x exp(−j(φ + π/2)). The
paddle is driven by an oscillator with the same control system as before, i.e. through a spring, so
that the oscillator output drives the desired position of the paddle, and the input is the ball trajectory
x, as illustrated in figure 3-22. Since the juggle describing function is a non-linear function of B,
which is itself generated by the non-linear oscillator/paddle, the functions cannot be separated and
plotted as before. A loop gain, and a condition for stable oscillator driven juggling can still be
calculated:

x = Nj(jω, [hjxN(jω, hjx)G(jω)], α) (3.20)

This can be solved numerically for the values of A, and ω which give stable juggling given the
other parameters (hj , An, k,m etc.).
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Figure 3-23: sim Robustness to changes in α. The plot shows ranges of α for which stable juggling
can be achieved by either an oscillator with natural frequency ωn, (•), or a constant frequency sine
wave B sin(ωnt), (◦), as the frequency ωn is varied. Because the oscillator can alter its frequency, it
is more robust to changes in α than the constant frequency solution, and thus more suitable for the
task.

Solving this equation is a powerful tuning tool. Using the equation, it was found that using ball
velocity ẋ rather than the ball trajectory x as input gave more robust solutions. This would have
been very difficult to discover without this analysis.

Solving this equation is also powerful for measuring robustness and comparing solutions. The
robustness of the oscillator solution can be measured by fixing the oscillator parameters and calcu-
lating whether solutions exist for different values of restitution coefficient α. This can be compared
to a similar calculation for a constant sine wave y(t) = B sin(ωt). For the sine wave, the limit on α
is given by real solutions of equation (3.18). The maximum value of α is 1, and the minimum is a
function of frequency:

αmin = min(0, (1−Bω2/gπ)/(1 + Bω2/gπ)) (3.21)

Figure 3-23 shows the comparison between oscillators with natural frequency ωn against sine
waves of frequency ωn, over a range of different ωn’s. The oscillators use velocity as input. The lines
on the graph show the range of α’s over which the different methods could stably juggle. Because
the oscillator can produce outputs over a range of frequencies, it can juggle with a wider range of
α’s than the constant frequency solution. This result shows that oscillators are a better solution
than a constant sine wave for this task.

Motivated by these results, juggling was implemented using a paddle attached to the arm of the
robot. The setup is shown in figure 3-20. The ball was restricted to move in one dimension by a
lightweight boom whose angle was measured using a potentiometer. As indicated by the analysis,
ball velocity was chosen as the input signal to the oscillator. Figure 3-24 shows a short transient
from the juggling performance. The juggling is much more variable than a simulated version, since
there is a great deal of noise not only in the sensor signal, but also in the way the robot hits the
tethered ball, effectively altering α for each impact. The change in speed of the oscillator driven
paddle is visible in the plot. The oscillator responds on a hit by hit basis, remaining coordinated
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Figure 3-24: real Plot showing paddle position (solid) and ball trajectory (dashed) against time
for 2 traces of the robot juggling. Because of the way the arm hits the ball, there is significant noise
in the system. The oscillator responds to the changing amplitude of the ball by adjusting its speed
slightly, which is noticeable in the middle of the trace.

with the ball motion.

3.10 Adaptation

As well as responding to the type of system, and adjusting its frequency with respect to the system
properties, the oscillator synchronizes itself with the mass motion. This was seen in the juggling
example, the oscillator coordinating the motion of the paddle with the height of the ball on a hit by
hit basis. The same action occurs when driving a single robot joint. This is because the oscillator is
tightly coupled, and the oscillator output is referenced relative to its input, which is the motion of the
joint. This means that the oscillator is sensitive to changes in the motion of the joint. For example
if the oscillator is moving a certain link back and forth, and something or someone moves the link,
the oscillator entrains with the imposed motion, and remains synchronized. This is illustrated in
figure 3-25. The oscillator is sensitive to the exact motion of the joints, and not just the general
system properties. This behavior and sensitivity is important and useful for providing coordination
between the joints through the natural dynamics. This topic is examined in more detail in chapter 4.

3.11 Conclusion

This chapter has introduced the oscillators, and described their behavior coupled to single degree of
freedom mechanical systems. Analysis using describing functions was introduced, and was shown to
be powerful for analyzing the motion, predicting the behavior of the coupled system, and a practical
tool for tuning, evaluating the robustness of the parameters, and evaluating the oscillator approach.

Using this analysis on oscillators reveals some general principles which apply to the oscillator
solutions.
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Figure 3-25: real Effect of external disturbances on the oscillator entrainment. The plots show the
oscillator outputs (solid) and the joint angle (dash dot) for a single joint of the robot. Approximately
halfway through the trace, the arm was moved by the author at a higher frequency and larger
amplitude. When feedback is used (top graph), the oscillator responds to the extra motion, and
remains entrained, its output tracking the imposed motion. In the lower trace when the feedback is
off, the oscillator ignores the imposed motion, which is thus more jerky, since the oscillator and the
disturbance are not coordinated.
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• Robustness in parameter settings. Due to the wide range of gains that the oscillator can
produce, the oscillator will entrain with a wide range of different systems. The behavior of the
oscillator also makes the parameters of the oscillator robust because changing them either has
a minor, or a predictable effect. The effect of varying parameters is smooth, monotonic, and
they are decoupled from one another. This has the consequence that the system is easy to use
in practice, it being easy to choose working parameters.

• Sensitivity to system changes. Again due to the shape of N , oscillator systems are sensitive
to changes in the resonant frequencies of the mechanical systems, driving them at frequencies
close to the resonant frequency. This occurs over a wide range of oscillator parameters, and
a range of system frequencies. The oscillator behavior is automatic and is reactive, altering
quickly when the system dynamics change. Since the resonant frequency is an efficient speed
to move a mass-spring system, the oscillator behavior is finding the best speed, dependent on
the natural dynamics.

• Stability of final solutions. Due to the shape of the plots, the oscillators produce stable motions
actuating common mass-spring mechanical systems. This together with their observed fast
entrainment to limit cycle solutions makes them well suited for practical applications.

• Synchronization. The oscillator produces a command to the joints which is defined relative
to the joint motion. The oscillator is thus sensitive and responds to the joint motion, driving
slower or faster when the joint is forced by the system, be it another joint of the arm or a
human grabbing and moving the arm. This adaptation is crucial to the oscillator behavior
when driving multiple degrees of freedom, as described in the following chapter.
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Chapter 4

Coupling through natural
dynamics

This chapter examines the behavior of the oscillators while driving multiple degrees of freedom of
the arm, as opposed to the single degree of freedom motions examined in the previous chapter. The
oscillators are connected to drive each joint of the arm independently, as shown in figure 4-1. There
is a tightly coupled oscillator at each joint, with no connections between them. The oscillators use
mechanical coupling through the physical arm to coordinate with one another and the task.

θ1

θv2

θv1 θv3

θ3

θ2

Figure 4-1: Figure showing configuration of oscillators and arm throughout this chapter. The
oscillators are tightly coupled to each joint, with their output driving the setpoint θvi, and their
input being either the joint angle θi, or the joint torque ui. There are no software connections
between the oscillators; they use mechanical coupling through the physical arm detected using the
feedback to coordinate with one another and the task.

The versatility of this configuration is demonstrated using a number of examples, including crank
turning using both one and two arms, and with the arms in both redundant and non-redundant
configurations. Other position constrained tasks such as pumping a bicycle pump have also been
demonstrated. The configuration can also exploit the dynamics of objects for coordination of the
joints; the chapter includes the example of two arms coordinated through the dynamics of a Slinky
toy, which is passed from hand to hand.

The analysis tools introduced in chapter 3 are extended to analyze these multi-degree of freedom
motions. The analysis indicates again the sensitivity of the oscillators, showing that their behavior
is to drive the resonant mode of the mechanical system. This is appropriate for a range of tasks, for
example, attaching a crank to the arm creates a low frequency resonant mode of the system, which
the oscillators automatically find and drive.

The crank turning example is analyzed in the context of these results, showing also the robustness
of the oscillator solutions, with many different parameter settings giving crank turning, and a single
set of oscillator parameters being robust to large changes in the arm dynamics.

55
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Figure 4-2: real Crank turning with one arm. The picture shows the robot using its left arm to
turn the crank. Oscillators are used at the shoulder and elbow in this configuration. The oscillators
are initially uncoordinated, but use feedback from the motion of the joints to adjust their outputs,
so turning the crank.

The chapter as a whole points out the self-organizing property of the oscillators, performing
complex mechanical tasks which require coordination between the joints in a simple and robust
manner.

4.1 Examples

The first example is crank turning. The oscillators have been used to turn cranks in a variety of
different configurations, the most simple of which is shown in figure 4-2. Here two oscillators driving
the shoulder and elbow joints are used to turn the crank in the plane. They use feedback of the
joint angle to modify their outputs. As described above, there is no explicit connection between
the oscillators at the two joints, their only connection being through the mechanics of the arm, and
their feedback.

When the feedback is off, the oscillators oscillate at their natural frequencies, producing un-
coordinated rhythmic drives to the arm joints. When the feedback is switched on, the oscillators
respond to the dynamics of the situation, become coordinated with one another, and turn the crank
smoothly, as shown in the transients in figure 4-3. Because the oscillators entrain rapidly, the crank
turning settles down rapidly to a steady motion. The crank turning behavior is robust to changes in
most of the oscillator parameters (gains, time constants etc), and is sensitive more to the posture of
the arm, and the sizes of the oscillator amplitudes (tonic). The posture and the amplitudes deter-
mine whether the arm goes all the way round, and whether the final motion is smooth and energy
efficient, or more violent. Because the arm is compliant, the system is still fairly robust to these
values, with a variety of postures and amplitudes giving crank turning motion. This is considered
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Figure 4-3: real Figure showing the effect of feedback for crank turning using two degrees of
freedom in the configuration shown in figure 4-2. The lines show the angles of the joints. When the
feedback is on, the oscillators are coordinated with one another, and the crank is turned (the crank
angle is the dash-dot line, which wraps around at 180 degrees). Without feedback the oscillators
revert to their natural frequencies, which does not result in smooth crank turning. The glitch in the
crank trace is caused by the angle sensor wrapping round, not by a jerk in the motion.
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Figure 4-4: real Crank turning with more than one arm. Since the oscillators are independent,
the crank turning can be easily extended to use more than one arm. Here two arms are used to turn
the crank, using four oscillators with two on each arm. As before, the oscillators are synchronized
through mechanical coupling, there being no explicit connections between the oscillators on a single
arm, or between the two arms.

in detail in section 4.7.
Since the control of the joints is independent, it makes no difference whether one or two arms

are used. Figure 4-4 shows two arms turning the crank where each arm is in the same configuration
as before. Four oscillators are used to achieve the motion, driving both shoulders and both elbows.

The crank is connected to the arm, and thus provides a strong constraint on how the arm can
move. This is particularly the case in the configurations shown in figures 4-2 and 4-4 because the
arm is not in a redundant configuration.1 The motion of the crank determines how the shoulder
and elbow joints can move. Because the oscillators use feedback from the joint angle, and because
they provide an output which is a certain phase difference from their input signal (as described in
chapter 3), they respond to the constraint by driving the arm around it.

The oscillators can also find crank turning solutions when the arm is redundant, i.e. configurations
where the crank does not completely specify how the joints should move. A redundant configuration
is shown in figure 4-5, where between four and six degrees of freedom can be used to turn the crank.
The turning in this redundant case has the same properties as the non-redundant configurations:
coordination through mechanical coupling, quick entrainment (see figure 4-6), and robustness to
parameter changes. The oscillators have also been used for other constrained tasks such as pumping
a bicycle pump.

Since the oscillator outputs are approximately sinusoidal, and the joint angle motions induced
by the constraint are not sinusoidal (as in figure 4-6), there is a considerable tracking error. If the
arm were stiff, this would be a problem and might cause the arm to jam. However, because the
arm is compliant, the error is absorbed in the arm compliance, and the final motion is smooth. The
compliance of the arm thus gives robustness. In addition, the compliance together with the position
constraint expands the repertoire of the oscillators. The system exploits the crank itself to create a
motion which is not solely created by rhythmic commands at the joints.

There have been many robotic approaches to crank turning, for example using impedance control

1There are actually three joints in the plane of the arm, the shoulder, elbow and wrist, which makes this config-
uration redundant. However, the wrist joint was not actuated and maintained a constant stiffness, so to all intents
and purposes the configuration is not redundant.
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Figure 4-5: real Crank turning using a redundant arm. The oscillators can be used to turn cranks
even when the arm is redundant, as shown here. The arm uses 4 oscillators, driving 4 degrees of
freedom, two in the shoulder, and two in the elbow. The transients from this system are shown in
figure 4-6.

(Hogan, 1985a), or hybrid force/position control (Raibert and Craig, 1981). These approaches use
knowledge about the arm and crank kinematics to both move the arm to the crank, and to coordinate
multiple degrees of freedom to turn the crank. They use this kinematic knowledge to deal with cranks
of different sizes and different locations. The oscillator solution requires no calibration or kinematic
transformations, but is only solving half of the problem. The arm starts connected to the crank, the
posture and oscillator amplitudes set for the particular crank size and position, and the oscillators
only provide the coordination for the motion. Even for creating the motion, the oscillator solution
is more simple, with uncalibrated identical local controllers interacting through the arm mechanics,
compared to a single complex calibrated kinematic controller.

The reason why the local control works is that the arm is compliant, making the interaction
with the crank robust and giving some dynamics to exploit, and that the oscillators have the right
properties to be local controllers for these tasks. These properties are examined later in this chapter.

Even in the redundant case, the crank provides a strong constraint on how the arm can move.
However, the oscillators do not need such a strong constraint in order to coordinate multiple degrees
of freedom through mechanical coupling. A different task accomplished in this manner is passing
a Slinky toy from hand to hand, as illustrated in figure 4-7. An independent oscillator is used to
control each arm, only coupled by mechanical interactions with the Slinky toy itself. The oscillators
quickly converge on an out of phase motion of the Slinky, as shown in figure 4-8. The coupling forces
from the Slinky are small compared to the crank forces, but are still large enough to entrain the
oscillators.

In all these examples, the oscillators are using the mechanical coupling though a physical structure
to become coordinated with one another. This allows them to perform complicated tasks in a
very simple manner. In the following section a simple model of this coupling is developed. The
model shows that the behavior of the oscillators is to find the resonant mode of the mechanical
system. Connecting the arm to the crank, or connecting the arms with a Slinky can thus be seen as
altering the natural dynamics of the system so that the resonant mode is the movement required to
successfully complete the task.
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Figure 4-6: real Transients of crank turning with a redundant arm (the configuration shown in
figure 4-5). Three degrees of freedom are shown here, for two shoulder joints and one elbow joint.
The top two graphs show the joint angles, and the motion of the crank as the feedback is turned on,
which occurs at the vertical line. The system has a short transient before finding the stable motion.
The lower two plots show the same result, only this time the feedback is turned off at the vertical
line. The system quickly falls out of coordination, and the crank stops being turned smoothly. The
glitch in the crank trace is caused by the angle sensor wrapping round, not by a jerk in the motion.
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Figure 4-7: Picture of Cog passing the Slinky toy from hand to hand. The two elbow joints are
used to move the hands up and down, where the coordination between the hands is given by the
interaction between the oscillator dynamics and the coupled arm-slinky system.
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Figure 4-8: real Two examples of Slinky operation. Both plots show the outputs from the
oscillators as the torque feedback (dash-dot) is turned on and off. When the traces are in phase,
the Slinky is moving in anti-phase. When the feedback is on, the two arms are coordinated and
the outputs are synchronized, but when off, the oscillators are no longer synchronized. The only
connection between the oscillators is through the physical structure of the Slinky.
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4.2 Coupling model

The action of the mechanical coupling through the arm is to constrain the motion of each joint
dependent on the motion of the other joints. Since the arm is compliant and in most configurations
redundant, the coupling is not very stiff, i.e. there is some slop in the system. A simple approximation
to this coupling is shown in figure 4-9. This shows two robot links represented as masses, with the
joint level control appearing as a spring and damper connected to each mass. The coupling is
included as a spring coupling the two masses, the stiffness of which can be varied to model the
strength of the coupling. Using describing function analysis to represent the oscillators driving each
mass extends the results in chapter 3 to this higher dimensional system.

In detail, the coupling model in figure 4-9 consists of two masses m1,m2 driven through springs
k1, k2 and dampers c1, c2 by oscillators. The motion of each mass is coupled to the other by the
coupling spring kT .2 The motion or angle of each mass is θ1, θ2, and the oscillator outputs are
θv1, θv2.

m m1

k 1 k 2k T

θv1 θ1 θ2 θv2

c 1 c 2,,

2

Figure 4-9: A simple model of coupling through the natural dynamics. The model consists of two
masses driven by oscillators, connected by a coupling spring kT .

The equations of motion for this system are

m1θ̈1 + c1θ̇1 + (k1 + kT )θ1 − kT θ2 = k1θv1

m2θ̈2 + c2θ̇2 − kT θ1 + (k2 + kT )θ2 = k2θv2 (4.1)

This is a resonant mass-spring system, which has a free-vibration behavior when there is no driv-
ing input (i.e. θv1 = θv2 = 0). There are two resonant modes, at two different resonant frequencies.
These can be determined by assuming solutions of the form Θ = Aejωt, and solving the eigenvalue
problem (

(k1 + kT )/m1 −kT /m1

−kT /m2 (k2 + kT )/m2

)(
Θ1

Θ2

)
= ω2

(
Θ1

Θ2

)
(4.2)

for values of ω and ratios Θ1/Θ2.
When this system is driven by an oscillator, the behavior of the oscillator can be modeled using

the describing function analysis developed in chapter 3. The oscillator behavior is expressed as a
transfer function Ni(jω,A), with a gain gi and phase φi, evaluated over a range of frequencies and
input amplitudes, i.e.

gie
jφi = Ni(jω,A) (4.3)

2In general the coupling should include a damper. Including the damper complicates the equations without
changing their fundamental result so it was ignored.
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Because the oscillator provides a driving force which is a function of the joint angles Θ, the effect of
the oscillator is to turn the system from being a driven resonant system (4.1), to a freely vibrating
system:(

(k1 + kT + jωc1 − k1g1e
jφ1)/m1 −kT /m1

−kT /m2 (k2 + kT + jωc2 − k2g2e
jφ2)/m2

)(
Θ1

Θ2

)
= ω2

(
Θ1

Θ2

)
(4.4)

If this system has a steady state vibrating solution, then the solutions for ω must be real, since
complex values of ω correspond to solutions which either decay or grow. This implies that the
oscillator must cancel out the damping in the system, or in this case that the imaginary parts on
the diagonals must be zero (Strang, 1993).

ωc1 − k1Im[g1e
φ1 ] = ωc2 − k2Im[g2e

φ2 ] = 0 (4.5)

If the two oscillator driven systems are assumed to have the same damping factor ζ then this equation
can be simplified. Writing ωni =

√
ki/mi and 2ζωni = ci/mi for each mass, the equation becomes

2ζω = ωn1g1 sinφ1 = ωn2g2 sinφ2 (4.6)

This defines an important relation between the two oscillators, as well as a relation between the
gain and phase of the individual oscillators and frequency. Because gi and φi are both functions of
frequency this equation can be solved numerically, fixing the frequency, and finding the value of A
where

2ζω = ωniIm[Ni(jω,A)] (4.7)

Figure 4-10 shows the solution to this equation for a typical choice of values for the masses and
springs. The solution for each oscillator is indicated by the squares and stars on the plot. There
are a range of solutions which vary in frequency, the extent of the solutions indicating the range
of frequencies over which the oscillators can cancel out the damping, and produce steady state
solutions.

The actual frequency of the motion depends on the solution for the eigenvectors of the complete
system. When the imaginary parts have been removed, the problem reduces to

(
(k1 + kT − k1Re[g1e

jφ1 ])/m1 −kT /m1

−kT /m2 (k2 + kT − k2Re[g2e
jφ2 ])/m2

)(
Θ1

Θ2

)
= ω2

(
Θ1

Θ2

)
(4.8)

The effect of the oscillator is through the real part of its transfer function, Re[giejφi ] = gi cosφi. If
the phase φi = 90◦, then this term is zero, and the equations reduce to the underlying mechanical
system. This would imply that the oscillator driving this system simply removed the damping, but
did not interfere with the shape of the motion. Unfortunately the phases are not exactly 90◦, as
show in figure 4-10. They lie in the range 90◦ − 160◦, which means that they affect the system.
However, as the analysis below will show, they affect the frequency of the oscillation far more than
the final mode shape.

The expression for the eigenfrequencies is obtained by solving (4.8) and is complicated:

ω2 =
1
2

[
G1 + G2 + kT (

1
m1

+
1

m2
)±

√
(G1 −G2)2 + 2kT (

1
m1
− 1

m2
)(G1 −G2) + k2

T (
1

m1
+

1
m2

)2

]
(4.9)

where Gi = (ki/mi)(1−gi cosφi). The values of gi and φi are taken from the solutions to the damping
constraint and are both functions of frequency. The equation can be solved numerically, with the
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Figure 4-10: sim Figure showing solutions to the damping constraint (4.6). The plot shows
N(jω,A) in the complex plane, where the lines correspond to constant frequency, with increas-
ing amplitude A as shown by the arrow. The squares and stars show the points where the damping
in the system is zero (∗ - mass 1, 2 - mass 2). The numbers show the frequencies of these solu-
tions. The range of solutions indicates the range of frequencies over which the oscillators can drive
the system. The solutions at the same frequency are close together, with similar amplitudes and
phases. The phases vary from about 90◦ for ω = 10 to near to 160◦ for ω = 6.8. For this example,
k1 = 30,m1 = 1, c1 = 4.65, k2 = 25,m2 = 1, c2 = 3, kT = 30.
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graphical interpretation of the solution shown in figure 4-11. This shows ω2 plotted together with
the right hand side of (4.9) evaluated at the damping solutions. In this case there are two possible
solutions where the lines intersect, at ω = 7.4, 9.7. The two solutions correspond to two different
modes of the system motion, which can be calculated by evaluating the eigenvectors at those solution
frequencies.
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Figure 4-11: sim Figure showing solutions for the final system frequency. The plot shows ω2 plotted
together with the expression for the eigenvalues (equation (4.9)) evaluated at the oscillator solutions
to the damping constraint. There are steady state solutions where the lines intersect, in this case
there are two solutions at ω = 7.4, 9.7. The plot shows that the oscillators produce at most as many
solutions as there are modes of the underlying system, since there are only two possible intersections
here.

The expression for the eigenvectors (4.9) carries little intuition, but can be simplified by consid-
ering the relationship between the damping constraint and the oscillator properties. The damping
constraint (4.6) implies that the imaginary part of N multiplied by the local resonant frequency ωni
is constant. The oscillators behavior is such that at constant frequency, the phase of N does not
change greatly with input amplitude (see chapter 3, figure 3-7). This is also evident in figure 4-10,
where the phases for the two solutions are approximately equal. Under this assumption,

G1 −G2 = (ω2
n1 − ω2

n2)− (ω2
n1g1 cosφ1 − ω2

n2g2 cosφ2)
≈ (ω2

n1 − ω2
n2) (4.10)

Assuming that this can be neglected compared to the other terms in the eigenvalue expression,
(4.9) can be simplified, giving the two values of frequency ω:

ω2 ≈
{

(G1 + G2)/2 + kT ( 1
m1

+ 1
m2

)
(G1 + G2)/2

(4.11)

From which the eigenmodes of the system can be calculated. The ratio Θ1/Θ2 also has two
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values:

Θ1/Θ2 ≈
{

2kT /m1
k1/m1−k2/m2−2kT /m1

2kT /m1
k1/m1−k2/m2+2kT /m2

(4.12)

which is approximately the same as the resonant modes of the underlying mechanical system. Fig-
ure 4-12 shows the comparison between the modes of the mechanical system, and the modes found
by the oscillator in this case.

Interestingly and importantly, the oscillator only finds one mode of the system. This is unlike the
linear case, where the final solution is normally a superposition of the eigenmodes. One important
constraint on the oscillator behavior is that it can only entrain over a limited range of frequencies.
If the mode of the original system has a natural frequency which does not lie in this range, then the
oscillator cannot have that mode as a periodic solution i.e. the lines in figure 4-11 will not intersect.

There are cases where there are two possible stable solutions, as in the example above. In that
case the oscillator finds one or the other depending on initial conditions. Figure 4-14 shows two time
traces of the transients finding either of the two modes for the example above. The reason for finding
one solution is that the two modes correspond to different entrained frequencies for the oscillator.
The oscillator can only output one frequency, (see chapter 3, figure 3-9), and thus cannot drive
both modes simultaneously. This characteristic appears to be peculiar to the Matsuoka oscillator,
as the Van der Pol oscillator (introduced in section 3.8) can drive two modes at once, as shown in
figure 4-15. Driving two modes is undesirable for most applications.
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Figure 4-12: sim Plot showing eigenmodes of original system (thick arrow), and oscillator driven
system (thin arrow). The mode is plotted as a vector in Θ1,Θ2 space. The arrows are close together,
indicating that the oscillator solution is close to the resonant mode of the underlying mechanical
system.

This behavior is robust, both to changes in oscillator and system parameters as shown in figure 4-
13. It is also accurate. The oscillator drives relative to the motion of the system and accurately
tracks the resonant mode. If the resonant mode of the system is the desired motion (as in the
crank turning case described in the following section), then the oscillator behavior is automatically
synchronized with the correct motion for the task.
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Figure 4-13: sim Plot showing robustness of oscillator to finding mode of system, under changing
oscillator and system parameters. The y axis of the plots shows the angle of the mode in Θ1,Θ2

space, i.e. arctan(Θ1/Θ2). The left hand plot shows the effect of varying the natural frequency of the
oscillator, with the lines indicating the underlying mechanical system modes. The accuracy of the
oscillator is remarkable, given that the oscillator frequency doubles over the plot range. The right
hand plot shows the effect of altering the stiffness of k1, while keeping the other stiffness constant at
k2 = 25 Nm/rad. When k1 is close to 25 Nm/rad the error in the modes is very low. As the stiffness
gets bigger or smaller, the approximation k1/m1 ≈ k2/m2 becomes less accurate, and the error gets
bigger. However this is a minor effect. The robustness of the oscillator system is remarkable, given
the change in stiffness of six times (k1 = 10↔ 60 Nm/rad).
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Figure 4-14: sim Plot showing the motion of mass 1 (solid) and mass 2 (dashed) of the oscillator
driven system under two different initial conditions. The oscillator converges on one of the two
modes of the system, with no mixing or superposition.
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Figure 4-15: sim Plot showing transient of the two mass system when a Van der Pol oscillator is
used. This oscillator was described in section 3.8. The plot shows the motion of mass 1 (solid) and
mass 2 (dashed) over time. Unlike the Matsuoka oscillator, this oscillator can give final periodic
solutions which consist of a mixture of frequencies, as shown in the traces.

4.3 Local stability

The local stability of the oscillator limit cycle motion can be easily determined by examining the
effect of amplitude changes on the damping in the system. At steady state, the oscillators exactly
cancel the damping in the system, giving a constant amplitude oscillation. If an increase in amplitude
results in positive (dissipative) damping, and a decrease in amplitude results in negative (excitatory)
damping, then the limit cycle is stable.

The damping term is given by the diagonal elements of the system matrix:

ctot = 2ζω − ωniIm[giejφi ] (4.13)

Figure 4-16 shows gie
jφi plotted together with the line j2ζω/ωni, for an example frequency

ω = 7.8. The steady state solution is marked with a box. If the amplitude of the oscillation
increases, Im[giejφi ] < 2ζω/ωni, so ctot > 0 which corresponds to positive damping, reducing the
size of the oscillation. A decrease in amplitude has the opposite effect, confirming that the steady
state oscillation is locally stable.

4.4 Summary of conclusions from the model

To conclude, the periodic solutions which exist for a set of oscillators driving a spring-mass system
have the following characteristics

• The solutions are stable steady state solutions, with the oscillator canceling out the damping
in the original system.

• The modes of the system are close to the eigenmodes of the original unactuated system, over
a wide range of oscillator and system properties.
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Figure 4-16: sim Figure showing N(jω,A) and the line j2ζω/ωni to indicate the stability of the
oscillator driven system. The damping term is given by ctot = 2ζω/ωni − Im[giejφi ], which is zero
at the steady state solution marked by a 2. An increase in the amplitude of the motion moves the
system to the point marked by the ◦, for which point the damping is positive because 2ζω/ωni >
Im[giejφi ]. The positive damping will make the amplitude decrease. Similarly, a perturbation to
lower amplitude results in negative damping, causing an increase in amplitude. The periodic solution
is thus stable.
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• The frequency of the final solution is not the eigenfrequency of the original mode, but is given
by the interaction of the oscillator and system as defined by equations (4.6), (4.9).

The oscillator behavior of finding the resonant mode is useful because in some tasks such as crank
turning the mode is exactly the desired motion for the task. The oscillators thus automatically find
the correct coordination with the task. This complex property emerges from the interaction of
the oscillators with the dynamics of the arm. No calibration, very little tuning, and no kinematic
calculations are required to drive the arm along its resonant mode.

The following sections will show that the robot performance during both the crank turning and
the Slinky toy tasks fit well with the simple model, providing evidence that exploiting the resonant
mode is useful in practice.

4.5 Crank turning

Figure 4-17: [
Picture of Cog turning a crank]Picture of Cog turning a crank. The robot is using two shoulder
joints and two elbow joints to create the motion of the crank.

The crank turning behavior is a good example of the oscillators coordinated through the natural
dynamics. The task is illustrated in figure 4-17. The crank turning can be understood in the context
of the analysis of the previous chapter as a resonance of the springy arm around the constraint of the
crank. The “springs” between the joints in this case are highly non-linear, but can be approximated
by considering the solution of one mode of the system. This section compares data from the robot
crank turning to the simple model developed in the previous section.

The full dynamics of crank turning are complicated and non-linear, but have the same general
form as the full arm dynamics:

M(Θ)Θ̈ + C(Θ)Θ̇ + K(Θ)Θ = K ′Θv (4.14)
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When this system is undergoing steady state oscillation it can be approximated a linear system,
written as a set of eigenvalues and vectors. Transforming the variables Θ = Uq, where U is the
matrix of eigenmodes, and writing the effect of the oscillator as a diagonal matrix G exp(jΦ), this
equation can be written

UTMUq̈ + UTCUq̇ + UTKUq = UTK ′GejΦUq (4.15)

Which looking at one mode ui reduces to the single equation:

uTi Muiq̈i + uTi Cuiq̇i + uTi Kuiqi = uTi K ′GejΦuiqi (4.16)

or approximately

m̃q̈i + c̃q̇i + k̃qi = uTi K ′GejΦuiqi (4.17)

The accuracy of this as a model of the crank turning problem can then be assessed by comparing
real robot data to the predictions of the model.

The crank turning performance was measured for the robot in a configuration similar to that
shown in figure 4-17, using four oscillators to actuate both shoulder, and both elbow joints. The
oscillator time constants and the arm stiffness were varied to examine the behavior over a range
of conditions. The frequency of the motion was calculated using a zero-crossing detector, and the
amplitude and phase of the various joint motions and oscillator outputs was measured using a single
frequency Fourier transform. The mode of the system ui was directly calculated from the amplitudes
and phases of the joint motions, and the gain of the oscillator directly measured by comparing joint
motions and oscillator outputs. The stiffness and damping at each joint was also measured.
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Figure 4-18: real Plot of Im[uTi K ′GejΦui] against ω for the crank turning. The crank turning
involves four joints of the arm, for which the mode ui is calculated from measured amplitude and
phase data. The three lines correspond to different values of the arm stiffness (◦ low, 2 medium
and � high stiffness). The theory predicts that these points should lie on straight lines, the slopes
of which are detailed in table 4.1.
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The model of the crank turning predicts that the effect of the oscillator is to cancel out the
damping in the system, or

c̃ω ≈ Im[uTi K ′GejΦui] (4.18)

Figure 4-18 shows a plot of the imaginary part of the oscillator behavior versus ω. The data points
were taken by measuring the system behavior as the natural frequency of the oscillatory was altered
at three different values of arm stiffness (scaling the stiffness of all the arm joints in the ratio 1 : 2 : 3).
The real damping at each joint was kept constant.

The theory predicts that this should be a straight line with slope proportional to c̃. The lines
are straight, which is itself a good result given the simplicity of the model and the complexity of
the arm motion. The slopes of the lines (listed in table 4.1) increase with stiffness, indicating that
there is some coupling between the stiffness and damping through the arm dynamics. The abscissa
are roughly constant which is as predicted.
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Figure 4-19: real Plot of Re[uTi K ′GejΦui] against ω2. The theory predicts that these lines
should be straight, with approximately constant slope. The lines have gradients −0.28,−0.24,−0.35
for increasing stiffness which are indeed roughly constant. The line for high stiffness is the most
different from constant, and also the most noisy. The abscissa are at 9.08, 15.52, 28.64 so roughly
proportional to stiffness, as predicted by the model.

The theory also predicts that the real part of the oscillator should be inversely related to ω2:

k̃ − m̃ω2 ≈ Re[uTi K ′GejΦui] (4.19)

Figure 4-19 shows the plot for this situation. Again the straight lines are striking. The mass matrix
of the system m̃ should be independent of the stiffness. The data supports this, with slopes which
are roughly constant (see table 4.1). The abscissa reflect the effect of k̃ in the equation above, being
roughly proportional to the stiffness.

The accurate fit of the crank turning data with the model shows that the model is a good
description of the overall system. It also shows that the crank turning can be thought of as a
resonant mode of the arm-crank system, which the oscillators are tuning into and exciting. This
perhaps explains why the crank turning generalized so easily to multiple arms, the crank turning
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Im[uTi K ′GejΦui] Re[uTi K ′GejΦui]
Slope Abscissa Slope Abscissa

kay Value Norm Value Norm Value Norm Value Norm
1 -0.34 1 15.13 1 -0.28 1 9.08 1
2 0.56 -1.62 17.63 1.17 -0.24 0.86 15.52 1.71
3 1.66 -4.85 19.67 1.30 -0.35 1.22 28.64 3.15

Table 4.1: real Slopes and abscissa of the line fits in figures 4-18, 4-19. The raw values are shown
in normal type, the normalized values in bold.

being the resonant mode of a larger system. It also suggests that the coupling through the Slinky
toy also enforces a resonant mode of the two arm system.

The mode-finding property suggests that the oscillators would be suitable for other tasks where
the resonance of the mass-spring system corresponds with the task. For example, other constrained
tasks such as pumping a bicycle pump fall into this category. Methods to extend the oscillators to
cases where the resonant mode of the system is not aligned with the task are described in chapter 5.

The oscillator behavior is useful because they automatically find the mode of the system without
any extra computation, and they respond to the dynamics of the arm itself. The final solution is
robust, because the oscillators are augmenting a natural motion of the arm.

The oscillator control is in fact more robust at high speeds, and does not work well at low
speeds, which is the opposite of traditional robot control. For example, consider turning a crank
using a stiff arm, with hybrid force/position control (Raibert and Craig, 1981). The arm would
control force along the direction of the crank (and so exploit the physical crank to constrain the
motion), and control position around the crank to move it. As the crank is turned faster and
faster, the performance of both the position and force control will deteriorate as the dynamics of the
arm become significant, requiring extra dynamical models. While intersegmental dynamics might
change the exact structure of the crank-arm resonant mode, changing frequency will not change the
fundamental structure of the dynamics. There will still be a resonant mode that the oscillators can
find, and in any case the oscillators are responsive to the exact structure of the mode. By exploiting
rather than canceling the arm dynamics, the oscillator system works well as the frequency increases.

4.6 Self-organization to find resonant mode

The oscillator system was always observed to find a rhythmic solution in the crank turning case. This
corresponded to turning the crank all the way round over a wide set of parameters (see section 4.7),
or to turning the crank part of the way round if the parameters where not set correctly. The coupling
model predicts the existence of limit cycles and their local stability, but does not guarantee that the
oscillators will find the solution. Unfortunately it is difficult to prove that the system will converge
to the limit cycle (this is discussed further in chapter 6).

An intuitive explanation for the oscillator self-organizing behavior can be given in terms of the
entrained state of the system. The oscillators start with some random phasing between one another,
and by interacting with the crank settle on a solution where the phases differences between the
oscillators are correct for the crank to be turned. The phases between the joints are varied by the
oscillators falling in and out of entrainment with the arm.

At the steady state solution, all the joints need to move at the same frequency, with all the
oscillators entrained. For the oscillator to be entrained, there needs to be a steady input, which
would be given by the joint moving rhythmically. This means that there will only be a globally
stable solution when all the oscillators have phases relative to one another so that they all get steady
rhythmic signals from their joint angles. This situation corresponds to the crank being turned. If
one of the oscillators does not get a steady input, it will become unentrained and its frequency will
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Figure 4-20: real Transient of oscillator driven crank turning. The three plots show equilibrium
points, joint angles and a schematic of the crank motion plotted against time. The feedback to
the oscillators is controlled by the step trace, and the crank angle is indicated by the dashed line.
When the feedback is turned on the oscillators at the different joints entrain to different frequencies
causing the phases between the joints to change rapidly. When the stable turning phase is reached,
the oscillators lock onto that phase, all the oscillators oscillate at the same frequency and the crank
is turned stably.
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change. The different frequency has the effect of rapidly varying the phases between the joints.
When the phases between the joints becomes correct, the oscillators can stay entrained, and lock
onto the crank motion. The process of falling into and out of entrainment thus allows the oscillators
to change the phases between the joints, so finding the solution predicted by the describing function
analysis.

Figure 4-20 shows a particularly long transient for the crank turning. When the feedback is
switched on, the oscillators change their speed, which causes the phases between the different joints
to vary. The elbow (dashed line) speeds up and then slows down when the system converges on the
limit cycle motion.

4.7 Robustness

The oscillator solutions for crank turning are remarkably robust to choices of parameters. Crank
turning can be achieved for a wide variety of different parameters, and a single set of parameters
is appropriate for a wide range of system dynamic properties. The oscillator parameters can be
divided into those which are extremely robust (values can be varied by factors of 3 or so without
affecting performance), and those which are more sensitive (values can be varied by 15-20% without
affecting performance).

The most robust parameters are the arm stiffness and inertia, oscillator time constants and
oscillator feedback gains. Figure 4-21 shows the range of different arm stiffnesses and time constants
which were tested on the robot. Both stiffness and time constants can be changed by factors of 3
without affecting performance. The feedback gain could be varied from values of 80 to 250 about a
nominal value of 168. Figure 4-22 shows some results for two arm crank turning (the configuration
shown in figure 4-4). The data shows the average turning speed and was taken by varying each
parameter in turn while keeping the other parameters constant. The graphs show the robustness of
the crank turning to these changes. In yet another experiment, 1 Kg masses were attached to both
the upper and lower parts of the arm during crank turning, as shown in figure 4-23. These masses
effectively doubled the inertia of each link so changing the arm natural frequency by approximately√

2. Unfortunately no data was taken, but anecdotally the only effect was to reduce the speed of
the crank turning slightly and not effect the coordination of the task.

Intuitively, the reason for this robustness is the entrainment properties of the oscillator. The final
frequency of the crank depends on the arm stiffness and inertia as well as the oscillator frequency.
Because the oscillator can entrain over a range of frequencies, the final motion can occur over a
range of time constants and arm dynamic properties. The robustness to input gain is due to the
oscillator properties; the oscillator output size and phase is for the most part independent of input
size (see chapter 3).

The parameters which are more sensitive are the ones more tightly related to the resonant mode
shape. These are the posture of the arm (about which it oscillates) and the amplitude of the
joint motions (oscillator tonic parameter). These parameters have to be roughly correct: the crank
turning will not work if all the joint amplitudes are zero, and the Slinky will not work if the hands
are upside down. However, due to the compliance of the arm there is a significant range for these
parameters which will perform the task.

Figure 4-24 shows the range of postures which gave reasonable turning for a two degree of
freedom simulated arm (configuration similar to that shown in figure 4-2). The data was obtained
by exhaustively testing postures near to a tuned solution. The posture of the shoulder and elbow
joints can be independently varied by about 20% without affecting the crank turning. Figure 4-25
shows data from the real robot, again from the two arm crank configuration. The graphs plot the
average turning speed as a function of parameter setting, with all other parameters kept constant.
The posture of the shoulder has the most effect, as might be expected given its higher stiffness and
it being the most powerful joint. Figure 4-26 shows the effect of varying the amplitudes at the
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Figure 4-21: real Plot showing robustness of the oscillator driven crank turning to changes in
arm stiffness and oscillator time constants. The lines show the extent of crank turning solutions for
various experiments, and thus are samples of the underlying range of parameters possible. The ranges
of working parameters was found by altering both the arm stiffness (by changing each joints stiffness
by the ratio indicated from a nominal stiffness), and the oscillator natural frequency (changing τ1

for all the oscillators). All these lines were taken with the same input scale. The range of robustness
is clear, with both parameters changing by factors of 3, while still performing crank turning.
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Figure 4-22: real The graphs show the average crank turning speed (in revs per minute) over
four seconds starting from rest for two arm crank turning (the configuration shown in figure 4-4).
Each graph shows the effect of varying one parameter while keeping all the others at their default
values (indicated by vertical lines). The left hand column refers to changes in the left arm, and the
right hand column to right arm changes. The inputs gains (marked pos-scale on figure titles) can
be varied greatly without affecting performance. The time constants (marked tau1) also show some
variation, requiring a minimum value for crank turning to work. The data shows the effect of varying
the time constant at one oscillator while keeping all the other parameters constant, which is why
the data is less robust than that in figure 4-21 where all the time constants were varied together.
The ability of the oscillator to entrain over a range of frequencies is illustrated by insensitivity to
time constants especially at higher values. The data was taken over a short period of time so part of
the noise in the data is due to slow transients, rather than necessarily being a consequence of poor
turning solutions.
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Figure 4-23: real To demonstrate robustness of the oscillator system, it was used with two 1 Kg
masses attached to the upper and lower parts of the arm. These masses effectively double the inertia
of the arm links. Their effect on the oscillator control was to make the system turn the crank slower,
but did not disrupt the crank motion. In this picture all six degrees of freedom of the arm were used
to turn the crank.
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Figure 4-24: sim The graph shows the range of postures which give good crank turning for a two
degree of freedom simulated arm. The turning was measured by simulating the system and recording
those postures which gave 70% of the maximum average speed over a four second transient. The
plot gives a good indication of the variation in posture that can be tolerated while still giving good
turning. The solid line shows the posture with the highest speed.
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Figure 4-25: real The graphs show the average crank turning speed (in revs per minute) over
four seconds starting from rest for two arm crank turning (the configuration shown in figure 4-4).
Each graph shows the effect of varying the arm posture while keeping all the others at their default
values (indicated by vertical lines). The postures are expressed in degrees. The left hand graphs
are for changes to the left arm, and vice versa. The graphs indicate that the range of postures for
each joint for successful crank turning is about 10◦ − 20◦. The data was taken over a short period
of time so part of the noise in the data is due to slow transients, rather than necessarily being a
consequence of poor turning solutions.
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Figure 4-26: real The graphs show the average crank turning speed (in revs per minute) over
four seconds starting from rest for two arm crank turning (the configuration shown in figure 4-4).
Each graph shows the effect of varying the oscillator output amplitudes while keeping all the others
at their default values (indicated by vertical lines). The left graphs refer to changes in the left arm
and vice versa. The only parameter that appears to be sensitive is the shoulder-a amplitude (tonic)
of the left arm. Once this parameter is large enough, the crank turning is possible for a range of
parameters. The system works with large values of these parameters by turning the crank more
violently, the oscillators still finding the correct coordination.
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joints. The shoulder parameter is most dominant with a minimum value for crank turning. The
other amplitudes do not have a strong effect. The amplitudes can be increased without affecting
the crank turning because although the crank is turned more violently, the oscillators can still tune
into the correct coordination to produce the turning motion.

While these parameters are more sensitive than the other oscillator parameters, they are still
tolerant to significant changes. This makes tuning parameters simple. While the general form of
the arm posture and the joint amplitudes are important in defining the shape of the resonant mode
and thus the final driven behavior, certainly in the crank turning case their exact values are not
important. This is primarily because the compliance of the arm allows errors in position to be
absorbed without causing excessive internal forces or jamming.

4.8 Quality of crank turning solution

If the oscillators are finding the resonant mode of the underlying mechanical system, then that should
be reflected in the energy required to produce the motion. At resonance, the real work required to
move the mass should be minimized, with a considerable amount of energy stored in the springs of
the arm. To investigate this, the energy used by the oscillator solution was compared to a similar
solution using sine waves to actuate the joints, where the amplitudes and phases between the sine
waves were chosen to be similar to the oscillator solution.

The instantaneous work done P (t) by the oscillator is given by the product of the torque at the
joint τ(t) and the velocity of the set-point θ̇v(t).

P (t) = τ(t)θ̇v(t) (4.20)

or

P (jω) = τ(jω)θ̇∗v(jω) (4.21)

where ∗ is the complex conjugate. The work done P (jω) is a complex number whose real part refers
to the “active power” or work required to overcome dissipation in the system, and whose imaginary
part refers to the “reactive power” or work stored and released in the springs (Bird, 1997).

The power was calculated for the oscillator and sine wave solutions, as illustrated in figure 4-27.
The different graphs show the real and imaginary parts of the power for the different joints. The
real parts are roughly the same, with the oscillator having a slightly higher value. For three out of
the four joints, the oscillator solution has a higher reactive power. The only joint for which this is
not the case is the shoulder joint, which has a small contribution to the total energy.

The ratio between energy stored and energy required is illustrated in 4-28, which shows that for
three out of the four joints, the ratio is much higher for the oscillator driven system. This indicates
that the oscillator driven solution stores energy in the compliance of the arm, so exploiting the
dynamics of the arm to perform the task. The sine wave solution is close to the oscillator solution,
but since it does not drive the resonant mode of the system, it does not produce a motion which
exploits the natural dynamics of the arm as much as the oscillator solution.

4.9 Slinky toy

The second example of coordination through mechanical coupling is the task of passing a Slinky toy
from hand to hand. Pictures and data for this task were included at the beginning of this chapter.

Data was collected from the operation of the Slinky in much the same way as for the crank
turning. The results are included in appendix D. The main results are the same, with the data
revealing the nature of the mechanical coupling through the Slinky. At low frequencies the effect
of the Slinky mass provides coordination, while at high frequencies the spring-like properties of the
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Figure 4-27: real Plot showing the real and imaginary parts of the power plotted against frequency
for the different joints of the arm during crank turning. The imaginary part of the power (left hand
graphs) refers to energy stored in the system, which is generally higher for the oscillator (∗) than
for the sine wave solution (�). The only exception is for the shoulder-a joint, whose motion is very
small, and the energy difference insignificant. The real part (right hand graphs) correspond to work
done to move the arm, which is approximately the same for both control methods.
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Figure 4-28: real Plot showing the ratio between energy stored and energy used to turn the crank,
for the oscillator (∗), and the sine wave (�). The ratio is higher for the oscillator in all cases except
for the first shoulder joint. This shows that the oscillator solution is exploiting the springy dynamics
of the arm more than the sine wave solution.
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Slinky have more effect. In either case the resonant mode corresponds to anti-phase motion, which
is the desired motion for the Slinky.

The Slinky example is interesting because the forces on the hands due to the toy are much
smaller than the forces due to the crank constraint, but the oscillators can still use the coupling to
coordinate with one another.

4.10 Conclusion

This chapter has considered the behavior of the oscillators when driving multiple degrees of freedom
of the arm, where the coordination between the oscillators comes from natural mechanical coupling,
rather than explicit connections. The chapter presented an extension of the describing function
analysis results in chapter 3 to multiple degree of freedom systems, showing that the oscillator
driven limit cycles correspond to the resonant modes of the underlying mechanical system. The
automatic behavior of the oscillator to find and drive systems in their resonant modes was shown to
be useful in a variety of tasks, particularly for crank turning.

The oscillators are exploiting the natural dynamics of the arm in a number of ways to perform
the task simply and robustly. Firstly the oscillators use the natural dynamics to couple the various
joints, which removes the need for explicit connections. This makes the system more sensitive to the
arm dynamics, and also reduces the dimensionality of the system, since there are less parameters
to set. There is no need to specify the coordination between the links. The oscillators are also
driving the arm in a natural motion, the resonant mode, which makes the overall system robust. In
addition, the system exploits the constraints in the environment to constrain the movement of the
arm, and so generate the movement.

The oscillator properties, together with the compliance of the arm, make the solutions robust to
parameter and system changes (where parameters and stiffnesses can be multiplied by factors of 3
with no change to the system). This makes them appealing from a practical standpoint. The system
quickly entrains to the task, and reacts appropriately to perturbations and changes to the system
dynamics.

The oscillator solutions have also been shown to be versatile, since by actuating each joint
independently the system scales easily to multiple joints, and multiple arms. Since the oscillators
are simple and require virtually no tuning, scaling the system is easy. The number of tasks that
can be cast as resonances is also large, especially given the sensitivity of the oscillator to both large
and small coupling forces. Position constrained tasks, and ones were the manipulated object has
some coupling dynamics are thus possible using this approach, as well as any other task where the
resonant mode of the mechanical system is aligned with the desired motion. The method has also
been extended to deal with motions which are not exactly determined by the resonant mode, these
methods are considered in the following chapter.



Chapter 5

Coupling through explicit
connections

5.1 Introduction

This chapter addresses the problem of extending the behavior of the oscillators to tasks which
are not dictated by the natural dynamics. The problem here is constraining the oscillators in
such a way that their robustness and self-organizational properties are preserved. The chapter
highlights the difference between exploiting the self-organizational properties of the oscillators which
are coordinated with the arm motion, and specifying constraints and relationships between the
oscillators, which coordinate the oscillator outputs, not their inputs.

Three methods of constraining and modifying the oscillator behavior are considered in this chap-
ter, illustrated schematically in figure 5-1. The first consists of adding connections between the
oscillators, constraining the phase difference between the motion of the various joints. Adding
connections immediately creates a tension between the oscillator entrainment with the mechanical
system, and the oscillator entrainment within the network. The chapter will show that this tension
is difficult to resolve, making the overall system sensitive to parameter changes and requiring tuning.

The second method uses a single oscillator to drive multiple joints. This is a generalization of
the single degree of freedom systems (described in chapter 3) to multiple degrees of freedom. This
method avoids some of the problems of using connections, but is still limited in its applicability.
The method is illustrated by an implementation of robot sawing.

The third method relies on exploiting the resonant-mode finding behavior of the uncoupled oscil-
lators, as described in chapter 4. The method uses extra artificially generated forces to manipulate
the dynamics of the arm such that the final motion is a resonant mode of the system. The uncoupled
oscillators can then find and drive the system in that mode.

5.2 Case (a): Networks of oscillators

Connecting oscillators into networks gives more complex behavior than a single oscillator because
the phase relationships between the oscillators can be altered by changing the type and the strength
of connections between the oscillators. Most applications of oscillators (for example in undulatory
locomotion (Cohen et al., 1982), or legged locomotion (Taga et al., 1991, Kimura et al., 1998)) use
oscillators connected into networks. An investigation into the stability and outputs from a variety
of oscillator networks can be found in Matsuoka (1985).

Perhaps the simplest way to connect oscillators into a network is illustrated in figure 5-2, which
shows two oscillators with inhibitory external connections. The connections make the input to the
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Figure 5-1: Three methods for coupling oscillators. (a) shows connections between the oscillators
which enforce phase differences between the joints. (b) shows a method using a single oscillator to
drive a number of joints as a single unit. (c) shows the case where the natural dynamics of the arm
have been artificially altered by adding extra forces either from a potential field, or from virtual
springs as shown here. The extra forces modify the resonant mode of the system, and so modify the
final steady state solution of the oscillators. The oscillators use mechanical coupling through the
augmented dynamics of the arm to tune into the resonant mode, as described in chapter 4.
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Figure 5-2: Simple oscillator network. The figure shows two oscillators with the usual mutual
inhibition weights w and extra connections. The black circles on the end of the links correspond to
inhibitory connections. The weights between the a neurons have strength hcγ, and the cross coupled
weights have strength hc(1 − γ), where 0 ≤ γ ≤ 1. If γ = 1, neuron 2a will fire out of phase with
neuron 1a and so in phase with neuron 1b. The outputs of the neurons be thus be out of phase, i.e.
yout1 = −yout2. Setting γ = 0 will have the opposite effect, making the outputs oscillate in phase.
Setting γ to some intermediate value will result in some intermediate phase between the outputs.

neurons for oscillator 1 :

Input1a = Σjhj [gj]+ + hcγ[x2a]+ + hc(1− γ)[x2b]+ (5.1)
Input1b = Σjhj [gj]− + hcγ[x2b]+ + hc(1− γ)[x2a]+ (5.2)

where the first term is the usual input from external systems, [p]+ = max(p, 0), and the parameters
hc and γ (0 ≤ γ ≤ 1) control the effect of the oscillators on one another. The inputs for oscillator
2 are similar. Intuitively, these connections put the neurons in mutual inhibition, causing them to
oscillate out of phase. For example, if γ = 1, the connections force 1a to be in phase with 2b and 1b
in phase with 2a, making the outputs out of phase (see figures 5-2, 5-3).

For values of γ different from 0 or 1, the intuition is not so clear. If γ = 0.5, the input to each
neuron is the sum of the outputs from each neuron of the other oscillator. Since these are out of
phase due to the mutual inhibition connections internal to that oscillator (the connections marked
w in figure 5-2), the actual input will be rather complicated. This results in a final phase which is
dependent on initial conditions, as illustrated in figure 5-3.

Although it is straightforward to achieve phase differences of ±π, other phase differences are
difficult to achieve. The values of the gains hc and γ need to be tuned to provide the correct
behavior, and even then it is not robust to initial conditions. The behavior of this network when
connected to two different mechanical systems is considered in the next section.

5.2.1 Connections and feedback

When the network shown in figure 5-2 is connected to two different mass spring systems as shown
in figure 5-4, the behavior of the overall system is complicated. There is a tension between the
entrainment of the oscillators with the physical systems, and the entrainment within the network.
This tension makes the system sensitive to parameter changes such as the strength of the coupling
and the physical properties of the mass-spring systems, as well as sensitive to the initial state of the
system. The overall system is thus difficult to tune.
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Figure 5-3: sim Plot showing how the relative phase between the oscillator outputs varies as a
function of γ. The plot was produced by simulating the system from different initial conditions for
each value of γ and calculating the phase using a Fourier transform. The oscillator outputs are in
phase for small γ, and out of phase for high γ. For γ’s in the range 0.3 < γ < 0.7 there is significant
sensitivity to initial conditions, with the oscillator producing a variety of different phases.
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Figure 5-4: Figure showing two oscillators with external connections with parameters hc, γ, driving
two different mass-spring systems. Each oscillator is tightly coupled to a mass-spring system, with
output youti, and input gi. If the oscillators were not connected together, they would entrain
with the mass-spring dynamics to reach a steady-state frequency, which would not be the same for
each oscillator. If the oscillators were not connected to the mass-spring systems, then they form
a coupled oscillator system which would entrain to a third different frequency. When they are all
coupled together the system is forced to have one frequency, which means that some part of the
system is not fully entrained.
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Figure 5-5: sim Coupled system transients. The plots show the motion of the the set-points for
the two masses (solid lines) and the actual mass motion (dashed), for two values of input gain hc
and γ = 0. The thick lines refer to one mass-spring system, and the thin lines to the other. This
value of γ should result in the oscillators producing outputs in phase, but this is only realized for
high values of the coupling strength hc, as shown in the lower graph. The two solutions also have
different frequencies, being slower when hc = 1. The plot thus indicates the sensitivity of the system
behavior to the values of the parameters. In addition, since the two mass-spring systems have
different properties, even when the set-points are approximately in phase (lower graph), the mass
motions have a phase difference between them. This means that some tuning would be required to
make them move in phase.

Each part of the circuit shown in figure 5-4 would oscillate at a different frequency if isolated from
the rest of the circuit. The oscillators driving the mass-spring systems would entrain to different
frequencies (as described in chapter 3) and similarly the two oscillators entrain with one another
through the connections at a third frequency. When the system is coupled together, each part is
forced to oscillate at the same frequency, which implies that some part of the system is not fully
entrained. Either the connections between the oscillators are dominant, the phase between the
oscillators being set by the connection strengths and the effect of the masses largely ignored, or the
mass-spring systems dominate. The strengths of the various gains and connections determine which
signal dominates, which makes the overall system sensitive to parameter changes. This is in contrast
to the oscillator systems analyzed in chapters 3 and 4, where changes in parameters might alter the
speed of the motion, but do not radically alter the shape of it.

Figure 5-5 shows this effect. The figure shows two different responses from the coupled system
for two different values of the connection strength hc. When hc is low, the mass motion dominates
the system, and there is an appreciable phase difference between the oscillator outputs. On the
other hand if hc is large, the oscillator outputs are forced to be in phase.

The system behavior depends on the values of the gains in an inherently non-linear manner. This
can be seen in the graph for hc = 1 in figure 5-5. Although the oscillator outputs are in phase, the
actual signals are distorted and different from one another. The distortion arises from the effect of
the distorted input signals (shown in figure 5-6) on the oscillator dynamics. This behavior is more
complicated than the oscillator response to a sinusoidal input (used for analysis in the previous
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Figure 5-6: sim Oscillator inputs. The graphs show the inputs to the individual neurons during
the motion in the lower graph of figure 5-5. The top graph refers to oscillator 1, lower to oscillator
2. The inputs are not sine waves, particularly for oscillator 2 where the combination of inputs gives
a very distorted signal. The distortion is created by adding the mass motion signal and the output
from the other oscillator, and is one of the reasons for the sensitivity of oscillator systems coupled
in this way.

chapters), and is correspondingly more difficult to predict. The input signal is itself distorted
because it is a sum of approximately sinusoidal signals with different amplitudes and phases.

Even if the system could be tuned to produce outputs of a desired phase difference, that would
still not be a good solution. As shown in the lower graph of figure 5-5, if the two driven systems have
different dynamics, even driving them in phase will not result in in-phase motion. This is because the
connections coordinate the oscillator outputs, not the oscillator inputs. Careful parameter tuning
would be required to obtain the correct coordination between the masses. This contrasts with
the systems analyzed in chapters 3 and 4. In those systems, the natural dynamics was used to
coordinate the oscillator inputs, with the oscillator outputs driving relative to those inputs. This
not only immediately gave the correct coordination with the task, but also had greater robustness
to parameter and system changes than using explicit connections.

Some of these difficulties might be alleviated by ensuring that both systems have approximately
equal resonant properties, and only requiring phase differences which are multiples of π. This is the
case if oscillators are used for legged locomotion, since each leg has approximately equal properties,
and for successful walking they must move out of phase. Nearly all of the successful implementations
of oscillators with connections have been for legged locomotion (see chapter 2). For arm control,
where different limbs segments have different resonant properties, and where few tasks can be easily
specified in terms of phase differences between joints, connections in this way are not so appropriate.
Choosing a different way of combining the inputs might also help, but since the oscillator behavior
is so complicated, there is not an obvious combination method which does not introduce some
undesirable non-linear effects into the system.
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Figure 5-7: Master-slave network. A single oscillator is used to drive multiple joints of the arm using
slave oscillators at the joints with explicit but unidirectional connections. Input is applied to the
master, which specifies the sizes and phases for all the joints. For unidirectional connections, the
effect of γ is also unreliable, with a similar behavior to that shown in figure 5-3. To overcome this,
the slave oscillators can be conveniently replaced by constant gains as shown for the third joint in
this picture. The magnitude of ho3 sets the amplitude for the third joint, with the phase (in-phase
or anti-phase) set by the sign of ho3.

5.3 Case (b): Master-slave network

One alternative which uses oscillators to control multiple joints of the arm is shown in figure 5-7.
This uses a master oscillator to drive slave oscillators at the joints, where the connections from the
master to the slaves are unidirectional. This configuration effectively makes a number of degrees of
freedom operate together, under the control of one oscillator. Input to the master oscillator thus
effects the motion of all the joints as a unit.

Given the unreliability of the connection strength γ (see figure 5-3), the slave oscillators can be
replaced by simple gains. The magnitude of the gain determines the size of the joint motion, and
the sign gives the phasing with respect to the master oscillator. The set-point for the ith joint thus
becomes:

θvi = hoiyo + θpi (5.3)

where hoi is a gain multiplying the output of the reference oscillator yo. If this gain is positive θvi
oscillates in phase with yo, and vice versa. θpi is the posture about which the oscillation occurs.

The input to the master oscillator should reflect the overall motion of the arm, as activated by
the oscillator. Since the oscillator drives a number of joints as a unit, the input can be taken as a
weighted average of all the joint motions. A sensible weighting factor is the size of the command to
each joint, which is the gain hoi. This makes the input to the master oscillator:

g = hin
∑
i

θi
hoi

(5.4)

where hin is the normalization factor. Applying the input in this way gives a multiple degree of
freedom generalization of the single degree of freedom system analyzed in chapter 3. By analogy,
one would expect this system to have similar properties, giving a behavior similar to “resonance-
tuning” as well as robustness to system properties and parameter values. In particular, one would
expect this solutions to be more robust than the network considered in section 5.2.1. Although the
approach is the same in that the oscillator outputs are coupled, the oscillator control ensures that
these coupled outputs are synchronized relative to the input signal. They can thus respond as a
whole to the system dynamics.
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This configuration of oscillators was suggested by Schaal and Sternad (1998), although they
suggested using oscillators at the joints rather than fixed gains, did not comment on the difficulty
of producing phases, and also did not show how feedback could be applied to the master oscillator.

This configuration was implemented on the robot to perform a sawing task. A single oscillator
was used to drive the two shoulder joints and two elbow joints of the arm using fixed gains. The
gains were tuned to produce an approximately linear motion of the hand. A saw was attached and
used to cut a 2-by-4 beam of wood. Stills from a video of this motion are shown in figure 5-8. The
linear motion of the arm is not exact, however the inherent compliance of the arm allows the arm to
deflect without causing the saw to jam. Because the relative phasing of the arm joints is fixed at ±π
by the signs of the gains, the feedback to the master oscillator cannot change the relative phasing
between the joints as in chapter 4. It does however alter the speed of the motion, giving a behavior
similar to the resonance tuning described in chapter 3. The steady state motion thus exploits the
natural dynamics by storing and releasing energy in the springs of the arm.

Figure 5-8: real Eight stills from the robot sawing a block of wood. The picture sequence runs
from left to right. The pictures were taken at 0.1 second intervals and show the saw moving forward
and backward, cutting the wood.

Figure 5-9 shows the energy used during sawing, plotted as a function of the oscillator natural
frequency (∝ 1/τ1). The energy was calculated by integrating the instantaneous work done for all
the arm joints over one oscillator cycle. The instantaneous power is defined as

P (t) = τ(t)θ̇v(t)

where τ(t) is the torque at the joint, and θ̇v(t) is the rate of change of the oscillator outputs. The
top plot shows the real energy used in sawing, and the lower plot the “reactive” energy, the energy
that is stored and released in the arm springs during the sawing. When feedback to the oscillators
is used, more energy is stored in the springs of the arms over all frequencies. At low frequencies the
arm does more real work per cycle, and at high frequencies the work is about the same.

The energy required for sawing does vary with frequency, due both to the damping in the arm
(which is constant), and perhaps different resistances of the saw at different frequencies. The fre-
quency under feedback is higher than without feedback, as shown in figure 5-10. There is also more
variation, because the oscillator responds to the sawing resistance, cutting slower when the resistance
is high, and faster when it is easier.

The energy plot is replotted in figure 5-11 as a function of the measured sawing frequency. The
data is noisy, but suggests that under feedback more work is done, and more energy is stored in
the joints of the arm, even for the same frequency. However, this increase in energy does not result
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Figure 5-9: real Plot of energy expended in sawing versus oscillator natural frequency (∝ 1/τ1).
The top graph shows the real power, i.e. the energy to overcome dissipation in the arm, and actually
cut the wood, and the lower graph shows the imaginary power, which is stored and released in the
springs in the arm. The 2’s refer to oscillator feedback on, and the ∗’s to feedback off. When
the feedback is on, the imaginary power is larger, meaning more energy stored in the arm. The
real power is larger for lower frequencies, and about the same at higher frequencies. This plot is
misleading because the actual frequencies of the points are different, and the energy to move the
arm varies with frequency. Figure 5-11 shows the same data plotted against frequency.
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Figure 5-10: real Sawing frequency versus oscillator frequency for feedback on (2) and feedback
off (∗). With feedback, the sawing is faster, with a greater range of frequencies. This variation is
because the oscillators respond to the varying resistance of the sawing task. When the resistance is
high, the oscillators drive slower and vice versa.
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in a noticeable change in the sawing efficiency, as shown in figure 5-12. This data was collected by
measuring the number of strokes taken to saw though a 0.5” by 1.5” block of wood. The data is
noisy, but shows that the sawing efficiency is approximately the same with and without feedback.

In summary, using feedback the arm stores more energy in the springs of the arm, requires about
the same energy to move, and cuts wood at the same rate as without feedback. Since the oscillator
is only scaling frequency (the coordination between the joints is fixed), one might expect the energy
stored to be the same in both cases. The reasons for the discrepancy might be the slightly different
amplitudes of the sawing motion under feedback, or perhaps a second order effect due to the constant
phase between the drives to the joints and the weighted average of the the joint motions enforced
by the oscillators.

While the effect of the feedback on the sawing performance is not particularly clear, anecdotally
the feedback causes the arm to behave in a sensible manner. The arm slows when the resistance is
high, and increases in speed when the resistance is low. The oscillator ensures that the command
to the joints matches the joint motion, which acts to prevent jamming. In addition, if the robot
is aided by a human, the oscillators can respond and adjust to a new frequency, with cooperation
between the human and the robot.
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Figure 5-11: real Plot of energy expended in sawing versus sawing frequency. The top plot shows
the real energy required to perform the sawing. The real energy is slightly higher with feedback.
The lower plot shows the energy stored and released in the arm springs, which is greater for the
oscillator with feedback than without it.

A simple extension of this method which would combine using connections and using mechanical
coupling would be to drive different combinations of joints with separate oscillators. The coordina-
tion between these joint units or synergies could then be determined by the natural dynamics of the
arm. This would allow more control of the arm motion without losing the power of coupling though
the natural dynamics.

Although this method of connecting joints is more robust than the network described in sec-
tion 5.2.1, it is limited in that the only possible phases are ±π, and the overall motion is determined
by rhythmic commands at the joints.
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Figure 5-12: real Percentage of wood cut per stroke plotted against average sawing frequency.
The time and number of strokes to cut a 0.5”by 1.5” block of wood was measured, and the amount
of wood cut per stroke calculated as 1/number-of-strokes. The plot shows results using feedback
(∗), and without feedback (2). There is very little difference between the two methods, although
the data is extremely noisy.

5.4 Case (c): Modifying the natural dynamics

Chapter 4 showed that the periodic solutions found by sets of uncoupled oscillators corresponded
to the natural modes of the underlying dynamics. This section considers the design approach of
artificially altering the natural dynamics of the arm to manipulate the position of the resonant
mode. This method exploits the mode-finding properties of the oscillators, and so has greater
robustness to parameter changes than the previous two connection methods. On the other hand, it
requires the design and implementation of the extra forces.

The dynamics of the arm can be easily altered by applying extra forces to the joints of the arm,
perhaps computed from a defined potential field. If a potential field is defined as a function of joint
angles, e.g., V (Θ), the extra torques at the joint can be calculated from the relation:

τpotential = −∂V

∂θi
(5.5)

This can be easily added to the usual joint torque:

τi = ki(θvi − θi)− biθ̇i + τpotential (5.6)

The oscillator can then be used to drive the system, and the final motion is expected to be a
resonant mode of the natural dynamics of the system plus the extra potential field. Unlike cases (a)
and (b), this method exploits the oscillator properties to find the coordination between the joints and
so should have the same kind of robustness and self-organizing properties as in the tasks described
in chapter 4.

This method offers the promise of creating phase differences between the joints which are de-
pendent on the task, rather than being restricted to ±π. It also creates the possibility of producing
motions which are more complicated than that possible using connections. This is because the
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range of possible output motions is limited using connections alone by the fact that the oscillator
is restricted to producing rhythmic movements at the joints. The possible motions of the robot
arm are only those which can be created by sinusoidal-like commands at the joint level. If external
constraints exist, such as the crank in chapter 4, or the potential field in this section, the motion
of the arm is defined by the interaction of the oscillator outputs and the external constraints. The
compliance of the arm is thus exploited to produce motions which are more complicated than given
by rhythmic commands.

Since the oscillator behavior is insensitive to parameter values when coupled together using the
natural dynamics, one would expect that insensitivity to carry through to the augmented system.

In addition, since the oscillator output is bounded (see chapter 6), the oscillator driving the
augmented system is not expected to be unstable. If the potential field is passive, then adding it to
the normal dynamics of the arm which are also passive (Takegaki and Arimoto, 1981, Arimoto and
Miyazaki, 1985) will make the overall arm system passive. Driving this system with an oscillator
will result in oscillations which have a stable, fixed amplitude.

The main disadvantage of this approach is that the potential field can be difficult to design,
calculate and implement. Calculating a full potential field could also make the oscillators redundant,
since a more traditional controller could be used to move the arm through the field. Potential field
methods are well known in robotics and there is a considerable body of research on methods of
calculating, controlling and dealing with local minima in potential fields (Latombe, 1991) Once a
potential field has been calculated, it may not make sense to use an oscillator to negotiate it, unless
the other aspects of the oscillator behavior are important: working with external constraints, and
interaction with the properties of manipulated objects.

One advantage of the oscillator solution is that it is very sensitive to the shape of the resonant
mode, not requiring a very stiff field. The coupling can be very gentle as in the example of the
Slinky toy (chapter 4 and appendix D). This means that as long as the potential field cancels out
the undesirable natural dynamics, the actual stiffness of the field (∂V/∂θi) need not be very high.
This makes the potential field easier to implement, since the calculation can be made at a lower rate
without causing stability problems (Franklin et al., 1992).

One method which might be appropriate is to build up the potential field gradually. If the
natural coupling between the joints is almost correct for a task, then the potential field need only
correct the motion in a few locations. A natural way to locate where the field is needed is in the
context of an ongoing imitation task. Imitation could be used to correct the errors (i.e. stiffen the
field in certain places) and slowly build up a field which would achieve the required motion while
still relying on the underlying natural dynamics.

The following section gives a simple example of a potential field used to create a circular motion
of the arm.

5.4.1 Example: Circular motion of two joints

This section describes the implementation of a potential field to force the end of the arm to move in
a circle, using two joints of the arm. The desired motion is shown in figure 5-13, where the desired
circle radius is r∗. The field to produce this motion must provide a force outwards when the radius
r is less than the desired radius r∗, and a force inwards when it is greater. The radius of the arm is
instantaneously:

r =
√

θ2
1 + θ2

2 (5.7)

The appropriate potential field is radially symmetric, and is given by the expression:

V (θ1, θ2) =
1
2
k(r∗ − r)2 (5.8)
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r

Figure 5-13: Application of potential field. The desired coordination between the two joints is that
they describe a circle. The potential field required to create this applies forces to push the arm
(represented by the black spot) out from the center, and in towards the dashed circle, with no forces
when the radius r = r∗.

where k is “stiffness” of the field. Differentiating this to calculate the torques gives

τi = k(r∗ − r)
∂
√

θ2
1 + θ2

2

∂θi

= −k(r∗ − r)
r

θi (5.9)

This potential field was implemented on the two elbow joints of the arm. It had the effect of
creating a circular motion of the joints. Figure 5-14 shows the effect of adding the field to the
natural dynamics of the arm. Two oscillators with position feedback were used to actuate the arm
joints, and the two graphs show the effect of turning on the potential field. Without the field there
is no coordination between the joints, but adding the field provides a strong resonant mode which
the oscillators find, resulting in the circular motion. The stiffness of the field k is low, in fact lower
than the stiffness of the individual joints, so the radius of the motion is not exactly correct, nor the
circle perfectly round. These could be made more precise by increasing the stiffness of the field.
The phase difference between the joints is approximately 90◦, a phase difference that is difficult to
achieve robustly using explicit connections.

Figure 5-15 shows that the feedback to the oscillators is necessary. When the field is on, and the
oscillators have no feedback, the arm is repelled from the center of the circle, but does not move
smoothly. When the feedback is switched on, the oscillator quickly finds the circular motion.

On Cog, the potential field is implemented digitally, calculating the extra torques and applying
them at the joints. The stiffness of the field is limited by the sampling rate of the joint angle
information (Franklin et al., 1992), which on Cog is only 50Hz. This limits the application of this
method. In theory, and in practice if the hardware on Cog is upgraded, more complex fields can be
computed and stably implemented. This should pave the way for more complex movements than
that demonstrated here.
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Figure 5-14: real Effect of potential field. The graphs show the arm position of the real robot
arm in terms of the two joint angles θ1 and θ2, with and without the potential field. When the field
is on, it makes a resonant mode of the system which the oscillators find. When the field is off, the
coupling between the oscillators is just through the natural dynamics, which are not enough in this
case to give a steady motion.
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Figure 5-15: real Effect of oscillator feedback. The graphs show transients of the robot arm motion
from a fixed position with the oscillator feedback on (left graph), and off (right graph). When the
feedback is on, the oscillators use the feedback to converge on the circular motion. Without feedback,
there is no coordination.
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5.5 Conclusion

This chapter has presented a number of methods for designing motions which are not completely
determined by the natural dynamics of the arm. The difficulty faced by all these methods is main-
taining the robustness and self-organizing properties of the naturally-coupled oscillators while having
control over the arm motion.

The first method involved using explicit connections between the oscillators. This was shown to
be difficult to analyze and tune due to the complex non-linear interactions between the oscillators
and the actuated systems. The fundamental difficulty is the tension between entrainment of the
oscillators with the actuated system, and entrainment within the oscillator network. In addition,
the overall range of motions possible with this technique is limited due to the sinusoidal joint level
commands

An alternative which generalizes the single degree of freedom motions analyzed in chapter 3 to
multiple degree of freedom motions was also presented. This is still limited in terms of the range
of possible motions, but has greater robustness than the first method, since the feedback is used
to coordinate the drive to the joints with their actual motion. This method was used for a sawing
task with the oscillators automatically responding to the resistance of the saw, producing an energy
efficient motion with energy stored and released in the joints of the arm.

The third method involved augmenting the natural dynamics of the arm with an artificial poten-
tial field. The field was designed to produce a resonant mode in a desirable configuration. Oscillators
driving the joints without any explicit connections could then find and drive this resonant mode.
Adding fields in this way is a potentially powerful way of retaining the oscillator properties, while
at the same time increasing the complexity of possible motions.

By using either of the last two methods, the oscillator control can be extended to more complex
tasks, and to tasks where the natural dynamics of the arm is not sufficient to fully constrain the
motion. The final motion using both of these methods is robust to parameter and system changes
as in the previous two chapters.
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Chapter 6

Oscillator analysis

6.1 Introduction

This chapter returns to the question of analysis for oscillator driven systems. It presents some
theoretically exact results concerning the oscillator behavior, both alone and coupled to various
systems. This complements the less rigorous but more practically useful analysis in chapters 3
and 4.

The chapter begins by considering bounds on the oscillator state. This result is important since
it shows that the oscillator is well-behaved when coupled to a broad class of stable linear systems.
The chapter then presents an analysis of the oscillator (and any linear system coupled to it) as
a piecewise-linear (PL) system. A PL system is a non-linear system comprising of a number of
different linear systems whose dynamics are switched dependent on the value of the state. Looking
at the oscillator in this way provides intuition about the the shape of the limit cycle, and makes
it easy to calculate the fixed points of the system. The fixed points can be used together with the
boundedness result to shed light on and sometimes predict the final system behavior.

The prediction is somewhat weak, predicting “oscillatory” motion rather than convergence to
a limit cycle. The chapter shows how the exact results can be combined with describing function
analysis to predict the existence of limit cycle solutions.

Once a limit cycle has been found, casting the system as a PL system makes it easy to test the
local stability of the cycle. A rigorous method to do this is presented at the end of the chapter,
together with some examples.

The tools and results presented in this chapter are useful for predicting the result of coupling
the oscillator to new systems and are thus invaluable for design.

6.2 Boundedness of oscillator

This section will demonstrate that the oscillator output is bounded with and without inputs, and
that the oscillator itself is bounded when driven by a bounded input. These two facts are important
when considering with what systems the oscillator is well behaved.

Matsuoka (1985) demonstrated that the oscillator states are bounded without any input. This
section describes how his analysis can be extended to include the effect of an input g weighted by

101
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an input gain h. The equations of the oscillators in this case are given by

τ1ẋ1 = c− x1 − βv1 − γ[x2]+ − h[g]+ (6.1)
τ2v̇1 = [x1]+ − v1 (6.2)
τ1ẋ2 = c− x2 − βv2 − γ[x1]+ − h[g]− (6.3)
τ2v̇2 = [x2]+ − v2 (6.4)
[u]+ = max(u, 0) (6.5)
[u]− = −min(u, 0) (6.6)
yout = [x1]+ − [x2]+ (6.7)

Proposition 6.1 Consider the oscillator described by equations (6.1)–(6.7), with an input g(t)
bounded by gmin ≤ g(t) ≤ gmax. Then

(a) The oscillator state is bounded

(b) The oscillator output yout is bounded independent of g(t).

Proof: This proof is based on the proof in (Matsuoka, 1985), which showed that the oscillator state
is bounded without inputs. The proof is extended here to include the effect of input g applied to
the oscillator.

The proof proceeds by integrating each of the oscillator equations in turn and determining
maximum and minimum values for the states given the oscillator parameters and a starting state
(x1(0), v1(0), x2(0), v2(0))′. Integrating (6.2) gives

v1(t) = v1(0)e−t/τ2 +
1
τ2

e−t/τ2
∫ t

0

[x1(u)]+eu/τ2du (6.8)

which since [x1(u)]+ > 0,

v1(t) ≥ −|v1(0)| (6.9)

The lower bound for v2(t) is similar

v2(t) ≥ −|v2(0)| (6.10)

Integrating (6.1) gives

x1(t) = x1(0)e−t/τ1 + c(1− e−t/τ1)− β

τ1
e−t/τ1

∫ t

0

v1(u)eu/τ1du

− γ

τ1
e−t/τ1

∫ t

0

[x2(u)]+eu/τ1du− h

τ1
e−t/τ1

∫ t

0

[g(u)]+eu/τ1du (6.11)

Since [x2(u)]+ > 0 and [g(u)]+ > 0 the maximum value of (6.11) is independent of those terms.

x1(t) ≤ |x1(0)|+ c +
β

τ1
e−t/τ1

∫ t

0

v1(u)eu/τ1du (6.12)

The maximum value of x1(t) can then be calculated by applying (6.9)

x1(t) ≤ |x1(0)|+ c +
β

τ1
e−t/τ1

∫ t

0

|v1(0)|eu/τ1du

= |x1(0)|+ c + βe−t/τ1 |v1(0)|(et/τ1 − 1)
≤ |x1(0)|+ c + β|v1(0)| (6.13)
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The maximum value of x2(t) is thus similar

x2(t) ≤ |x2(0)|+ c + β|v2(0)| (6.14)

The maximum value of v1(t) can be found by applying (6.13) to (6.8)

v1(t) ≤ |v1(0)|+ max
[

1
τ2

e−t/τ2
∫ t

0

[x1(u)]+eu/τ2du

]
= |v1(0)|+ 1

τ2
e−t/τ2

∫ t

0

(|x1(0)|+ c + β|v1(0)|)eu/τ2du

≤ (1 + β)|v1(0)|+ |x1(0)|+ c (6.15)

with again a similar bound for v2(t).

v2(t) ≤ (1 + β)|v2(0)|+ |x2(0)|+ c (6.16)

Looking at the minimum value of x1(t) from equation (6.11)

x1(t) ≥ −|x1(0)| −max
[

β

τ1
e−t/τ1

∫ t

0

v1(u)eu/τ1du

]
−max

[
γ

τ1
e−t/τ1

∫ t

0

[x2(u)]+eu/τ1du

]
−max

[
h

τ1
e−t/τ1

∫ t

0

[g(u)]+eu/τ1du

]
= −|x1(0)| − β

τ1
e−t/τ1

∫ t

0

((1 + β)|v1(0)|+ |x1(0)|+ c)eu/τ1du

− γ

τ1
e−t/τ1

∫ t

0

(|x2(0)|+ c + β|v2(0)|)eu/τ1du

− h

τ1
e−t/τ1

∫ t

0

gmaxe
u/τ1du

≥ −|x1(0)| − β((1 + β)|v1(0)|+ |x1(0)|+ c)
−γ(|x2(0)|+ c + β|v2(0)|)− hgmax (6.17)

or

x1(t) ≥ −(1 + β)|x1(0)| − β(1 + β)|v1(0)| − γ|x2(0)| − γβ|v2(0)| − (β + γ)c− hgmax (6.18)

with a similar expression for x2(t), where the input term is gmin.

x2(t) ≥ −γ|x1(0)| − γβ|v1(0)| − (1 + β)|x2(0)| − β(1 + β)|v2(0)| − (β + γ)c− hgmin (6.19)

(a) Since gmin ≤ g(t) ≤ gmax, equations (6.9), (6.10), (6.15), (6.16), (6.18), (6.19), (6.13), (6.14)
establish the bounds on the states of the oscillator.
(b) The oscillator output yout = [x1]+ − [x2]+, the maximum value of which is max(x1), and the
minimum −max(x2). By equations (6.13) and (6.14) neither of these terms depend on the value of
g(t).

This result leads to the more useful proposition

Proposition 6.2 Consider the oscillator connected to a linear system G(s), as shown in figure 6-1.
If G(s) is Linear Time Invariant and stable, then all the states of the coupled system are bounded.

Proof:
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Figure 6-1: Oscillator coupled to a linear system G(s).

1. The oscillator output yout is strictly bounded by equations (6.13) and (6.14). This implies that
the L∞ norm for the oscillator is bounded.

2. If G(s) is stable, then ||G||1 ≤ ∞. This means that the signal g in figure 6-1 cannot become
unbounded.

3. Since the input to the oscillator is bounded, all the states in the oscillator are bounded (by
Proposition 6.1).

These two propositions determine bounds on the oscillator and the driven system states. They
show that the coupled system will be bounded if the driven system is stable. If the driven system is
unstable, then the overall system is not guaranteed to be stable. The behavior of the coupled system
is not necessarily to converge to a limit cycle, or even have an oscillatory solution. To determine
what type of solution occurs, it is necessary to examine the fixed points of the coupled non-linear
system, as shown in the following sections.

6.3 Oscillator as piecewise-linear system

This section shows that the equations for the oscillator can be written as a piecewise-linear (PL)
system. This format is easier to analyze than considering the non-linear equations directly. It also
gives considerable intuition about the behavior of the system.

The origin of the piecewise-linearity is the max operator used in the oscillator equations. For
example, consider the term [g]+. When g > 0 this term is just g, and when g < 0 this term is zero. In
both regimes, the term is linear, with the system behavior switching when g = 0. The oscillator has
three variables (x1, x2, g) that appear in the equations with the max operator. This results in three
switching surfaces (x1 = 0, x2 = 0, g = 0), which divide the state space into 23 = 8 regions. Each
region has linear dynamics, which change whenever the state crosses a switching surface. Indexing
the regions by α = 1, 2, . . . , 8, the system can be written in the form:

ẋ = Aαx + b + Hαg (6.20)
yout = cαx (6.21)

where x = (x1, v1, x2, v2)′ is the vector of state variables, Aα is the state transition matrix, and cα
is the output matrix.
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(1)

c2 =
(

1 0 0 0
)

A2 =


−10 −20 0 0
5 −5 0 0
−20 0 −10 −20
0 0 0 −5


x1

c4 =
(

0 0 0 0
)

A1 =


−10 −20 −20 0
5 −5 0 0
−20 0 −10 −20
0 0 5 −5


c1 =

(
1 0 −1 0

)

c3 =
(

0 0 −1 0
)

A3 =


−10 −20 −20 0
0 −5 0 0
0 0 −10 −20
0 0 5 −5

A4 =


−10 −20 0 0
0 −5 0 0
0 0 −10 −20
0 0 0 −5



Figure 6-2: Figure showing the different values of Aα and cα is different regions of the state space.
The state space has been projected onto the x1, x2 plane. These matrices were calculated for
β = 2, γ = 2, τ1 = 0.1, τ2 = 0.2

Writing

{p}q>0 =
{

p if q > 0
0 otherwise

The values of these matrices are

Aα =


−1/τ1 −β/τ1 {−γ/τ1}x2>0 0

{1/τ2}x1>0 −1/τ2 0 0
{−γ/τ1}x1>0 0 −1/τ1 −β/τ1

0 0 {1/τ2}x2>0 −1/τ2

 ,

Hα =


{−hg/τ1}g>0

0
{hg/τ1}g<0

0

 ,

b =


c/τ1

0
c/τ2

0

 ,

cα =
(
{1}x1>0 0 {−1}x2>0 0

)
(6.22)

If the input is ignored, there are four linear systems, dependent only on (x1, x2). The values of
Aα, cα for these regions are shown in figure 6-2, for the case where β = 2, γ = 2, τ1 = 0.1, τ2 = 0.2.
Since it is impossible to plot the 4-dimensional state space, it is visualized by projecting the v1 and
v2 axes down on to the x1, x2 plane.

The behavior of the oscillator in the different parts of the state space can be determined by
looking at the eigenvalues, eigenvectors and fixed points of each linear subsystem. The fixed points
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Figure 6-3: sim Linear regions, fixed points and eigenvalues. Each sub-plot corresponds to one
of the four linear subregions of the oscillator. The titles of each sub-plot give the eigenvalues, the
∗’s mark the fixed points, and the patches indicate the regions for each subsystem. For regions (2),
(3), (4) the system is stable with all the eigenvalues having negative real parts. The fixed points
for these systems are all in region (1) and are thus not fixed points of the complete system. Region
(1) has two eigenvalues which are unstable and a fixed point at (0.2, 0.2, 0.2, 0.2)′. This is the fixed
point of the complete system.

are calculated from the point where ẋ = 0, by solving (6.20)

x = −A−1
α b (6.23)

Figure 6-3 shows the eigenvalues and fixed points for the four different systems, projected onto
the plane v1 = 0, v2 = 0. For regions (2), (3) and (4), the systems are stable, with either real
negative eigenvalues or complex eigenvalues with negative real parts. The fixed points for these
systems are all in region (1), so they are not fixed points of the complete system. Region (1) has two
eigenvalues which are real and negative, as well as two which are complex with positive real parts,
corresponding to a “saddle” fixed point. This fixed point is in region (1), and is thus a fixed point
of the complete non-linear system.

Examining the eigenvalues and vectors of the system can give valuable intuition as to the overall
system behavior, as shown in figure 6-4. In region (4), all the eigenvalues are negative and real, so
that the state should move directly towards the fixed point, i.e. move towards region (1). Regions
(2) and (3) are symmetrical, with fixed points in region (1), two real eigenvalues and two complex
eigenvalues. The system response is to converge towards the fixed point, although the complex
eigenvalues create a response which is a damped oscillation resulting in the “loops” in figure 6-4.
The unstable fixed point is in region (1). There are two stable real eigenvectors with eigenvectors
in the (1,−, 1,−)′ direction, ignoring the vi terms. The two unstable eigenvalues are complex with
eigenvectors in the (1,−,−1,−)′ direction. The combined effect of these modes is to move the state
towards the plane x1 = −x2 and force the state out of region (1) along that plane. The limit cycle
motion shown in the right hand graph of figure 6-4 shows this behavior. The trajectory converges
into region (1), where it is pushed out of the other side by the unstable fixed point, loops back and
across and so on.
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Figure 6-4: sim The left hand graph shows the approximate shape of trajectories projected onto
the x1 − x2 plane. The right hand graph shows two trajectories plotted on the same projection,
with the unstable fixed point marked with a •. If the trajectory starts in regions (2), (3), or (4)
it ends up in region (1). The unstable fixed point in region (1) makes the state converge to the
direction x1 = −x2, and is unstable in that direction, causing the trajectory to leave region (1),
entering either (2) or (3). The trajectories are unique and do not intersect one another, although
they appear to in this plot because the variation of the other two states (v1 and v2) is not shown.

The only starting state that is observed to not go to the limit cycle is one where the unstable
mode is not excited, i.e. with a starting state x1 = x2, v1 = v2. These trajectories converge to the
fixed point in region (1).

6.4 Oscillatory solution

Given the boundedness shown by Proposition 6.1, and the fixed points determined in the previous
section, we are now in a position to prove that the oscillator has an oscillatory solution. Unfor-
tunately the proof is not strong, in that the oscillator state can only be shown to not become
unbounded and not to stop (the only fixed points are unstable). The motion of the state is likely to
be oscillatory, i.e. continuously varying, while not necessarily converging to a limit cycle or periodic
solution. The term used to describe this solution is “oscillatory but not necessarily periodic” and is
taken from Matsuoka (1985).

Proposition 6.3 The oscillator described by equations (6.1)–(6.7), with no input (g(t) = 0) has
oscillatory but not necessarily periodic solution.
Proof: This proof is copied from Matsuoka (1985), the only difference being the technique used to
determine the fixed points, and more detail on uniqueness. To prove the proposition, we need to
show:

(a) That the oscillator is bounded, which is true by Theorem 6.1.

(b) That the oscillator has only unstable fixed points, which was demonstrated in the previous
section.
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g = csxs + ds

ẋs = Asxs + Bsyout

g

OSCILLATOR

SYSTEM

ẋ = Aαx + b + Hαg

yout

yout = gocαx

Figure 6-5: Oscillator coupled to a linear system. The individual state equations shown in this figure
can be combined to create a single piecewise-linear system as shown in equation (6.28).

(c) That the oscillator solutions are unique.

Uniqueness is demonstrated by checking the Lipschitz condition (Slotine and Li, 1991, p. 152),
which states that the dynamical system ẋ = f(x, t) has unique solutions if f(x, t) is continuous and
a strictly positive constant L exists such that

||f(x2, t)− f(x1, t)|| ≤ L||x2 − x1||

for all x1, x2 within a finite neighborhood of the origin and all t in the interval [t0, t0 + T ] (with T
also strictly positive).

Since the oscillator is piecewise-linear, it meets this criteria within each linear region, and is so
locally Lipschitz:

||ẋ2 − ẋ1|| = ||Aα(x2 − x1)||
≤ ||Aα|| ||x2 − x1||

where L = ||Aα|| which is strictly positive.

The result that the system is bounded, together with the ease of finding the type and position of
the fixed points of the system sheds light on the overall behavior of the system. This is illustrated
in the following section.

6.5 Connecting oscillators to systems

When the oscillator is connected to the linear system shown in figure 6-5, the coupled system remains
piecewise-linear. Because there are three variables whose values are important (x1, x2, g) there are
8 linear subsystems. The coupled equations of the system are

ẋ = Aαx + b + Hαg (6.24)
yout = hocαx (6.25)
ẋs = Asxs + Bsyout (6.26)
g = csxs + ds (6.27)
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where ho is an optional output gain on the oscillator. These be rearranged to form the augmented
system (

ẋ
ẋs

)
=
(

Aα Hαcs
hoBscα As

)(
x
xs

)
+
(

b + Hαds
0

)
(6.28)

where the switching surfaces are x1 = 0, x2 = 0 and g = csxs + ds = 0.
Examining the eigenvalues and fixed points of the system then allows the prediction of the final

system behavior. The fixed points are only fixed points of the whole system if they are inside the
region of state space where the linear model is defined.

6.5.1 Example: No oscillation

For example, taking the system

G(s) =
s + 0.1
2s + 0.1

(6.29)

This system can be easily written in the state space formulation (Ogata, 1970) and the aug-
mented system in equation (6.28) constructed. The coupled system has two fixed points x1,x2 with
eigenvectors λ1, λ2:

x1 =


0
0

0.33
0.33
−6.67

 , λ1 =


−10
−0.05

−7.5 + 9.68j
−7.5− 9.68j

−5

 ; x2 =


+0
−0
0.33
0.33
−6.67

 , λ2 =


−25

2.5 + 6.63j
2.5− 6.63j
−10
−0.07

 (6.30)

The first fixed point is stable (all eigenvalues have negative real parts), and the second is unstable.
Since the overall system is bounded (equation (6.29) is stable), the states of the system cannot blow
up. Since the overall system is high dimensional, more work on the details of the piecewise-linear
systems would be needed to determine the final motion. The system might converge to the stable
fixed point, and might also have an oscillatory, not necessarily periodic solution from the unstable
fixed point. Some transients from the system are illustrated in figure 6-6 showing convergence to
the first fixed point x1.

As this example illustrates, calculating the fixed points does not always give enough informa-
tion to determine the system motion. They do however give some information about the system
properties.

6.5.2 Example: Constant input

If the oscillator is not connected to a system, but has a constant input g, then the fixed points are
given by the solution of the equation

x = −A−1
α (b + Hαg) (6.31)

If g = 1, and the other parameters of the oscillator are set as usual, there is only one fixed point
of the system:

x1 =


−0.67

0
0.33
0.33

 , λ1 =


−10

−7.5 + 9.68j
−7.5− 9.68j

−5

 (6.32)
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Figure 6-6: sim Two transients of the oscillator connected to the system in equation (6.29). The
plot shows the trajectories plotted on the x1−g plane, and illustrates convergence to the stable fixed
point at (0, 0, 0.33, 0.33,−6.67)′, marked with a 2. The other fixed point of the system is unstable
resulting in the oscillatory motion at the top of the graph. The eigenvalue for convergence to the
fixed point is very low (−0.05), so the system converges slowly.

This fixed point is stable. Unfortunately, even though this is the only fixed point of the system,
more work is needed to determine the system behavior. Since adding the input moves all the fixed
points in the system, but does not change any of the linear subsystems, one might expect the system
to converge to the fixed point. This is because in order to get an oscillatory solution, the trajectory
has to pass through region (3), and in the usual case, the fixed point for this region is in region (1).
Thus with all the other linear systems having a similar behavior, one should expect the trajectory
to enter region (3). Region (3) has some complex eigenvalues so the trajectory can leave (3), but
given the convergence behavior of the oscillator to its limit cycle, one would expect the system not
to get stuck somewhere on the boundary of region (3), but converge to the fixed point.

The transient of the system with and without constant input is shown in figure 6-7, showing the
convergence to the point (−0.67, 0, 0.33, 0.33)′.

Incidentally, this result gives theoretical backing to the use of a high pass filter to remove the
offset from any input signal (see chapter 3). The filter effectively removes constants inputs, allowing
the oscillator to oscillate. This greatly increases the robustness of the oscillator in practice.

6.5.3 Example: Mass-spring system

Consider the mass spring system

G(s) =
k

ms2 + bs + k
(6.33)

where for example m = 1, k = 50, b = 4.24, giving a system with natural frequency 7.07 rad/s, and
damping factor ζ = 0.3.

If this is connected to an oscillator, there are two unstable fixed points at (0.2, 0.2, 0.2, 0.2, 0, 0)′.
Since the overall system is bounded, this implies that the coupled system will have a oscillatory but
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Figure 6-7: sim Transients of the system with a constant input. The input changes the system so
there is no longer a unstable pole in region (1), but a stable fixed point at (−0, 67, 0, 0.33, 0.33), to
which the trajectory (dash-dot) converges. Without the input (solid line) the trajectory converges
to the usual limit cycle.

not necessarily periodic solution. In practice, the system appears to always converge to a limit cycle,
as shown in figure 6-8. The local stability of this cycle is analyzed in section 6.8.1.

6.6 Prediction of entrainment

If by examining the boundedness and fixed points an oscillatory but not necessarily periodic solution
is predicted, then describing function analysis can be used to further predict the existence of a limit
cycle. This is an approximate method, but is quick to apply and useful in practice.

Describing function analysis applied to the oscillators was presented in chapter 3. To recap, the
oscillator transfer function N(jω,A) is measured at a range of frequencies (ω) and input amplitudes
(A) and compared to the transfer function G(jω) of the driven system. Since the two systems are
connected in a loop (as shown in figure 6-9), the condition for oscillations is that the loop gain is
unity.

N(jω,A)G(jω) = 1 (6.34)

Solutions to this equation are calculated graphically, by plotting G(jω) and 1/N(jω,A) on the
complex plane, and finding intersections at the same frequency. At the solution frequency ωf and
amplitude Af , the magnitudes of the two transfer functions multiply to one, and the phases are
equal and opposite:

|N(jωf , Af )||G(jωf )| = 1 (6.35)
6 N(jωf , Af ) + 6 G(jωf ) = 0 (6.36)

A sensible heuristic to determine whether the oscillator and a system can have an entrained
solution is whether they produce compatible phases, such that equation (6.36) can be satisfied. This
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Figure 6-8: sim Two transients of the oscillator driving the mass spring system in equation (6.33).
The plot shows the 6-dimensional state space projected onto the x1 − x2 plane. Both transients
converge to the limit cycle.
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Figure 6-9: Figure showing the oscillator tightly coupled to a driven system. Describing function
analysis is used to compute the transfer function N(jω,A) for the oscillator as a function of frequency
ω and input amplitude A. The transfer function for the system G(jω) is easily calculated if the
system is linear. Since the two systems are connected in a loop, the condition for oscillations is that
the gain around the loop is unity, or N(jω,A)G(jω) = 1.
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is because the range of phases across the oscillator cannot be changed by varying parameters. The
range is approximately 180↔ 50 degrees, and so also the range −180↔ −50 if the output is simply
inverted (multiplied by a negative output gain ho, see equation (6.25)). Thus if the system is stable,
and has a frequency response with phases in this range it is possible for there to be a limit cycle
oscillation.

If the phases do match, there will probably not be a limit cycle for all values of the oscillator
parameters. It is possible for the system to not be entrained, with the oscillator oscillating at
its natural frequency, or partly entrained because the input amplitude to the oscillator is too low
to sustain entrainment. Both of these can be diagnosed using the describing function plot, by
determining whether the plots overlap.

If the plots do not overlap, but the phases are in the correct range, then the oscillator the
parameters can be easily tuned (as described in chapter 3) to move the N(jω,A) plot so that an
intersection and limit cycle is possible.

Using the eigenvalue/fixed point analysis described above together with the describing function
analysis gives a powerful set of tools to determine the final motion. The eigenvalue analysis shows
the overall quality of the solution (oscillatory or not), and the describing function analysis predicts
whether there is an entrained limit cycle solution. This is illustrated in the following example.

6.6.1 Example: Non-minimum phase system

If the non-minimum phase system (a system with zeros in the right half plane)

G(s) =
8(s− 1)

s2 + 6s + 18
(6.37)

is connected to the oscillator, the overall system is bounded because G(s) is stable, with poles at
s = −3 ± 3j. Examining the fixed points shows that there are two unstable fixed points. This
suggests that the final solution will be oscillatory, but not necessarily periodic.

Plotting the describing function for the oscillator will predict whether a limit cycle oscillation
will occur. The phase of G(jω) is in the range 30↔ −60 degrees, which overlaps with the oscillator
phase, so a limit cycle is expected to be possible.

Figure 6-10 shows the describing function plotted together with the Nyquist plot of G(s). The
plot shows 1/N(jω,A) and G(jω) plotted on the complex plane, and also −1/N(jω,A), which is
the frequency response of the oscillator when the output is reversed (output gain ho = −1). The
graph shows two possible solutions, one for each value of output gain. The prediction in this case
was correct, with limit cycles for each solution as shown in Figure 6-11.

6.7 Local stability of the limit cycle

This section examines the local stability of the oscillator limit cycle. The previous sections have
covered the general characteristic of the motion, determining whether the motion is oscillatory, and
giving some heuristics to determine if the two systems will entrain with one another. Proving that
a limit cycle exists in a given system is hard if the system has more than two dimensions. However,
testing the local stability of a candidate limit cycle is relatively easy. The local stability can be
predicted using the describing function analysis (chapters 3 and 4), and although it is possible in
some cases to extend this work (Bergen et al., 1982), the result remains a prediction. This section
shows how the local stability can be determined in a more rigorous fashion. The main reference used
for this work was Gonçalves (1999).

To analyze the local stability of a limit cycle for a multi-dimensional system, the most suitable
technique is to analyze the properties of a Poincaré map. The general idea is illustrated in Figure 6-
12, see also Strogatz (1994), Khalil (1996). The n dimensional state space of the dynamical system
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Figure 6-10: sim Plot of 1/N(jω,A),−1/N(jω,A) and G(jω on the complex plane. G(jω) is the
frequency response of the non-minimum phase system in equation (6.37), and is indicated with the
thick line. The plot predicts limit cycle motions at two different frequencies. When ho = 1, the
solution is at the lower dot, at ωf = 11.85, Af = 0.31. When the gain is negative (go = −1) there is
a different solution at the upper dot with ωf = 4.67, Af = 0.67.
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Figure 6-11: sim Two transients of the non-minimum phase system, with different values of
oscillator output gain ho. When the gain is positive (top graph), the oscillation is fast, with
ωf = 11.4, Af = 0.32, compared to the prediction (figure 6-10) of ωf = 11.8, Af = 0.31. With
a negative gain (lower graph), there is a slower oscillation, ωf = 4.5, Af = 0.7, compared to
ωf = 4.67, Af = 0.67.
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Figure 6-12: Poincaré map. The map turns the n dimensional dynamics ẋ = f(x) into the n − 1
discrete system yk+1 = g(yk) by cutting the dynamics with a n− 1 dimensional hyper plane P . The
limit cycle γ in the full dynamics appears as a fixed point of g, i.e. x∗. The local stability of the
limit cycle can be determined by linearizing the Poincaré map around x∗, as shown in this section.

ẋ = f(x) is cut by a n − 1 dimensional hyper plane P . This converts the system to a n − 1
dimensional discrete system yk+1 = g(yk). A limit cycle in the original system will then appear as a
fixed equilibrium point of the reduced system. By examining the local stability of this equilibrium
point, the local stability of the limit cycle is determined. The proof of this can be found in Khalil
(1996).

For a PL system, the Poincaré section is naturally taken to be one of the switching surfaces, and
the map can be calculated by following a trajectory through the limit cycle.

Considering the trajectory γ in figure 6-13 which starts on the switching surface S0, at state x∗0
and at time t = 0. The trajectory intersects the next switching surface S1 at time t = t∗1, and state
x∗1. The trajectory between these two surfaces is given by integrating (6.20):

x(t) = eA1t(x∗0 + A−1
1 B1)−A−1

1 B1 (6.38)

and so

x(t∗1) = x∗1 = eA1t
∗
1 (x∗0 + A−1

1 B1)−A−1
1 B1 (6.39)

The trajectory continues through a number of switches, eventually returning to the point x∗0
after say k switches. The switching surfaces can be written as

Si ≡ cix + di = 0 (6.40)

Given this notation, a necessary and sufficient condition for the local stability of the limit cycle
can be determined as shown below. This result was taken from Gonçalves (1999), where it is
presented in more detail.

Proposition 6.4 Consider the piecewise-linear system described above. Assume there exists a pe-
riodic solution γ with period t∗. Let x∗0 ∈ S0 be the initial state that generates the periodic motion.
The Jacobian of the Poincaré map is given by W = WkWk−1 . . .W2W1 where

Wi =
(

I − vici
civi

)
eAit

∗
i

with vi = Aix
∗
i + Bi. The limit cycle of γ is locally stable if and only if W has all its eigenvalues

inside the unit disk.
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Figure 6-13: The limit cycle trajectory γ starts in state x∗0, and travels through the first linear
system (ẋ = A1x + B1) until it crosses the first switching surface S1 at time t∗1. It continues into
region 2, 3, etc. The limit cycle is complete after k switches, so that the state on the kth switch x∗k
is the same as the starting state i.e. x∗k = x∗0.

Proof: This proof is taken verbatim from Gonçalves (1999).
The proposition is proved by perturbing the initial state by a small amount, and measuring

the size of that perturbation on the trajectory when it reaches the next switching surface. The
perturbation is expressed as a linear function of the initial perturbation and higher order terms are
ignored. The perturbation is followed around the limit cycle back to the starting surface in order to
compute the linear part of the map.

If the starting point is x∗0, then the point on the next switching surface S1 is given by equation
(6.39). The starting point is perturbed along the switching surface, i.e. x(0) = x∗0 + δ1x

∗
0, so that

c1(x∗0 + δ1x
∗
0) + d1 = 0. The trajectory starting from this new position will intersect S1 at time

t∗1 + δ1t
∗
1 :

x(t∗1 + δ1t
∗
1) = eA1(t∗1+δ1t

∗
1)(x∗0 + δ1x

∗
0 + A−1

1 B1)−A−1
1 B1

Taking the series expansion in δ1x
∗
0 and δ1t

∗
1 gives

x(t∗1 + δ1t
∗
1) = x∗1 + eA1t

∗
1δ1x

∗
0 + eA1t

∗
1 (A1x

∗
0 + B1)δ1t

∗
1 + O(δ2

1)
= x∗1 + eA1t

∗
1δ1x

∗
0 + v1δ1t

∗
1 (6.41)

where eA1t
∗
1 (A1x

∗
0 + B1) = A1x

∗
1 + B1 = v1. Since x(t∗1 + δ1t

∗
1) is on the switching surface S1,

c1x(t∗1 + δ1t
∗
1) + d1 = 0. Ignoring higher order terms this gives

c1x
∗
1 + c1e

A1t
∗
1δ1x

∗
0 + c1v1δ1t

∗
1 + d1 = 0

which since c1x
∗
i + d1 = 0,

c1v1δ1t
∗
1 = −c1e

A1t
∗
1δ1x

∗
0

Assuming that the Poincaré map is continuous in the region of the solution implies that c1v1 6= 0,
so that the previous equation can be written

δ1t
∗
1 = −c1e

A1t
∗
1

c1v1
δ1x
∗
0
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This can now be replaced in equation (6.41), giving

x(t∗1 + δ1t
∗
1) = x∗1 +

(
I − v1c1

c1v1

)
eA1t

∗
1δ1x

∗
0 + O(δ2

1)

= x∗1 + W1δ1x
∗
0 + O(δ2

1)

Similarly, for the next switching surface

x(t∗2 + δ2t
∗
2) = x∗2 + W2δ2x

∗
1 + O(δ2

2)
= x∗2 + W2W1δ1x

∗
0 + O(δ2

2)

Repeating this until the trajectory arrives back at the original switching surface Sk = S0, where
x∗k = x∗0, gives

x(t∗k + δkt
∗
k) = x∗k + Wkδkx

∗
k−1 + O(δ2

k)
= x∗0 + WkWk−1 . . .W2W1δ1x

∗
0 + O(δ2

2)

This is an expression for the linear part of the Poincaré map, so looking at the eigenvalues
of W = WkWk−1 . . .W2W1 will determine the local stability. Since the system is discrete, this
corresponds to the eigenvalues lying within the unit disk.

6.8 Local stability for the oscillator

To show local stability for the oscillator limit cycle, the values of Wi in Proposition 6.4 can be
calculated. The limit cycle was simulated to recover the values of the states at each switching
surface (x∗i ) and the times between switches (t∗i ), as shown in figure 6-14.

The states are

x∗0 =


0.3991
0.1415
−0.0000
0.2587

 , x∗1 =


0.3414
0.3535
0.0000
0.0612

 , x∗2 =


−0.0000
0.2587
0.3991
0.1415

 , x∗3 =


0.0000
0.0612
0.3413
0.3535

 (6.42)

with times

t∗0 = 0.2884, t∗1 = 0.1604, t∗2 = 0.2884, t∗3 = 0.1604 (6.43)

These values result in the eigenvalues of W :
0.1265

−0.1196 + 0.0412j
−0.1196− 0.0412j

0

 . 10−3 (6.44)

which are all well within the unit disk, proving that the limit cycle is locally stable. For different
oscillator parameters this process would have to be repeated, but one would expect similar results.
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Figure 6-14: sim Oscillator limit cycle plotted in the x1 − x2 plane. The points where the cycle
crosses the switching surfaces x1 = 0 (horizontal line), and x2 = 0 (vertical line) are marked with
•’s. Using these points, and the times for the trajectory to go between them, the local stability of
the limit cycle can be determined.

6.8.1 Example: Mass-spring system

A similar procedure can be followed when the oscillator is driving a system, using the 8 different
linear systems described in section 6.5. For example, taking the mass-spring system analyzed in
section 6.5.3, and plotting the limit cycle in x1, x2, g space gives figure 6-15. Calculating Wi as
before, and calculating the eigenvalues gives

0.1049
0.0028− 0.0015i
0.0028 + 0.0015i
−0.0036− 0.0024i
−0.0036 + 0.0024i

0

 (6.45)

which are all inside the unit disk, so that the limit cycle is proved to be locally stable.

6.9 Global stability

The previous sections in this chapter have described anecdotally the convergence of the oscillator to
a limit cycle, have shown some qualitative results for the oscillator behavior (oscillatory or not), and
have shown the local stability of the limit cycle. The part that remains is to show that the system
does in fact converge to a limit cycle, or alternatively to quantify the range of states over which this
contraction occurs.

If the oscillator system had only two states, then it would be possible to take the quantitative
results and go directly to a limit cycle using the Poincaré-Bendixson theorem (Strogatz, 1994, p.
203). However, since the oscillator alone has four state variables, and when coupled to systems
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Figure 6-15: sim Plot of limit cycle for mass spring system and oscillator. The cycle is plotted in
the three switching parameters x1, x2, g, with the switching states marked.

the number of states increases further, this approach will not work. Unfortunately there is no
generalization of this theorem to higher dimensions, with proof of convergence being difficult.

There are a number of avenues which are worth pursuing. The most promising is to establish a
contraction region for the limit cycle by quantifying the size of the non-linear part of the Poincaré
map (Gonçalves et al., 1998). By writing the Poincaré map as a linear part and a non-linear part
(instead of ignoring the higher order terms as in section 6.7), and finding the size of the non-linear
part in terms of the size of the perturbation, the contraction region can be determined. There are
some technical difficulties associated with systems with many switching surfaces, although these are
not thought to be insurmountable (Gonçalves, 1999).

Other approaches include contraction analysis (Lohmiller and Slotine, 1998) although that method
has difficulties with systems with complex eigenvalues (such as the oscillator), or the graphical tech-
nique presented by Pettit (1995). This method converts the piecewise-linear system into a graph
where the nodes on the graph are the regions on the switching surfaces where the flow is going in
the same direction, and the links of the graph show where that flow goes. It thus gives a graphical
representation of the structure of the system. This does not show convergence but might give a way
to determine global entrainment to a bound calculated perhaps as above.

Proving convergence to a particular limit cycle is difficult, as is finding out more precisely what
systems will and will not have limit cycle solutions, Methods based on the small gain theorem seem
appropriate here, although are also difficult to apply in this case (Megretski, 1997).

6.10 Conclusion

This chapter has addressed some theoretical questions about the oscillator, and its behavior coupled
to systems. The first part of the chapter considered the general behavior of the system, showing
that the oscillator state is bounded when connected to a bounded system, implying that the system
state will not become unbounded if the driven system is stable.

By looking at the system as a piecewise-linear system it is easy to calculate the fixed points
for the non-linear system, which can be used together with the bounded result to predict the final
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behavior. This prediction is somewhat weak: the final motion can be predicted to be oscillatory, but
the existence of a limit cycle cannot be shown. Combining this information with describing function
analysis allows prediction of the limit cycles. This is useful and easy to apply in practice.

The last part of the chapter addressed the specific behavior of the limit cycle, giving a method
to determine local stability. The local stability of a number of examples was determined.

The difficult part that remains is to bridge the gap between the specific local results and the
imprecise global results with a proof that the system converges to the limit cycle. This was shown
to be difficult due to the high dimensionality of the system, and possible methods to determine this
were presented. Anecdotally the system is well behaved converging very quickly to the limit cycle,
although this is not proven.

In all, the results presented in this chapter are useful for design, determining what systems
will produce oscillatory behavior. They extend the analysis in previous chapters with a rigorous
determination of whether oscillations are possible, and if they occur, whether they are locally stable.



Chapter 7

Examples

This chapter describes a number of example applications using oscillators which further demonstrate
their versatility. The tasks differ from the ones described in previous chapters by consisting of a
single motion, rather than continuous motions. The oscillator dynamics are used to produce these
motions, with feedback being used to modify the oscillator outputs in the usual way.

The first half of the chapter describes using the oscillators for a task which is partly rhythmic
and partly discrete: the task of drumming. The “beat” is a continuous signal, while the individual
drum beats are discrete. The oscillator system uses auditory feedback of the sound of the drumming
to create and maintain a steady beating rhythm. The chapter shows how the oscillator properties
make it easy to beat in time with another drummer, and construct a variety of different rhythms,
using both one and two arms.

The second half of the chapter describes the tasks of throwing, hitting and hammering. The
oscillators are used to drive the arm back and forward in a single motion to achieve a good throw or
a powerful hit. These motions exploit the natural dynamics by storing and releasing energy in the
joints of the arm, and also exploit the oscillator properties, the oscillators responding to the system
dynamics. The effect of feedback in these discrete tasks is less clear than in the continuous case,
although it appears to have approximately the correct effect: making the arm move faster.

7.1 Drumming

The first example in this chapter is drumming. This task combines elements of the rhythmic motions
described in previous chapters with discrete motions. The overall rhythm or beat is a continuous
signal, while the individual hits on the drum are discrete. The example also shows how other sensory
modalities can be used as feedback to the oscillators. In this case auditory feedback (the sound of
the drum) is used to modify the oscillator behavior. This has interesting and useful properties as
described in this section.

The overall setup is illustrated in figure 7-1, and a picture of the robot drumming is included in
figure 7-2. An oscillator is used to drive either the wrist or the elbow of the robot to hit the drum.
The master-slave oscillator system described in section 5.3 was also used to drive the elbow and
wrist joints as a single unit. The sound of the drumming was recorded by a microphone, processed
and applied as an input to the oscillators. The auditory processing is simple, with the raw auditory
signal sampled at 8kHz, and thresholded to find the sound of the drum. This is then low-pass filtered
and subsampled to reduce the sampling rate to around 50Hz, an appropriate rate for the oscillators.

The drumming action of the robot is accomplished by moving the arm up and down, with the
drum being hit on the down stroke. When the arm is still, the drum stick is held slightly above the
drum, so it actually hits the drum on the follow through. This is similar to the hitting and throwing
examples in the previous sections. Human drummers grip the drumstick lightly and exploit the
dynamics of the stick on the drum to achieve high frequency rolls. The light grip has the added
advantage of reducing the inertia of the stick so it can bounce on the drum and make a good note.
To achieve this on the robot, a simple passive hand was built to hold the drumstick, as shown in

121
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AUDITORY
PROCESSING

MICROPHONE

Figure 7-1: Schematic of drumming. The system is set up so that the drumming task is a auditory-
motor loop, where the action of the oscillators is to drive the arm to hit the drum, and the sound of
the drum is recorded and used as an input to the oscillator. Details of the auditory processing are
included in the text.

Figure 7-2: Picture of Cog hitting a drum. The robot uses its elbow and wrist joints to move the
arm up and down, so hitting the drum.
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Figure 7-3: Drumstick holder. This special purpose hand was made for the robot to hold the
drumstick. The stick swings freely on a pivot, rotating between two pads made of either rubber or
felt. The whole hand is rotated by the wrist joint of the robot. When the hand is moved up and
down, the stick swings on the pivot, and bounces on the drum. The interaction of the drum, stick
and pads can be used to get single or multiple hits on the drum, exploiting the bounce of the drum
head.

figure 7-3. The stick is pivoted so it can swing freely, its motion damped by two felt or rubber pads.
By using a piece of tape to modulate the free motion of the stick, the number of bounces of the
stick on the drum could be controlled. This passive system worked well. Other researchers have
considered active low impedance holders for drumsticks with similar results (Hajian et al., 1997).

The overall system (shown in figure 7-1) forms a closed auditory-motor loop. There are consider-
able delays in the system, mostly in transferring the auditory signals to the oscillators, and from the
command to move the arm to the actual hit on the drum.1 These delays combine with the oscillator
dynamics to create a limit cycle drumming solution with a steady beat, as shown in figure 7-4. The
main effect of the feedback is to make the drumming faster, and because the stick is moving faster
the sound is slightly louder. The auditory signal is a series of spikes, but is strong enough to cause
entrainment of the oscillators.

By entraining the oscillators to the sound of drumming, the oscillator system produces a steady
beat without requiring a timer. This is important for the particular implementation of the robot
arm, because there is no global clock. The system does not require any model of the delays in the
system, and in fact requires the delays in order to work. The tuning of the system is also simple,
because of the robustness to the value of the input gain (see chapter 3). As long as the gain is large
enough to cause entrainment, its exact value is not important.

Since the oscillators use the raw auditory signal as an input it can respond to other noises, such
as an additional drum beat. The oscillator adjusts its phase and frequency to beat in phase with the
extra beat. This effect is shown in figure 7-5. One arm of the robot was used to produce a constant
beat, and the other arm was controlled with an oscillator. The effect of the feedback is make the
oscillator driven arm hit in phase with the extra beat.

Hitting in phase is the only possible solution because the robot “hears” both beats. The stable
limit cycle without the extra noise has the arm hitting just before the noise, so the stable entrained
cycle with the extra beat must have the same characteristic. Thus the only stable cycle is one where
the oscillator hits in phase with the extra beat. Because the speed of the limit cycle is determined
by the delays in the system, the range of frequencies with exact synchronization is quite small (in
the range 9.3 to 10.3 rad/s about a “natural” frequency of 9.8 rad/s). If the oscillator only responds
to the extra beat and ignores the sound that it makes then it can entrain over a wider range of
frequencies, although the hits are not exactly in phase. Changing time constants and delays in the

1The architecture for the system is described in Appendix A.
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Figure 7-4: real Plot showing the effect of feedback on the drumming system. The plots show the
auditory signal (top trace in both plots), the command to the joints (solid line) and the actual joint
motion (dashed). The drum is hit when the arm is moving down. The main effect of the feedback
is to speed up the drumming, which has the consequence of making more noise. The final speed of
the drumming is determined by the delays in the system, which are dominated here by the delay
from the command to the arm to the arm actually moving. The shape of the auditory signal is quite
different from a sine wave, yet the oscillators can still entrain to it.
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Figure 7-5: real Two time plots for the oscillator entraining with an external beat. One arm of
the robot was used to create a constant beat (dash-dot line), while the other arm used the auditory
signal (top trace) to control the arm motion (solid line). The feedback gain is indicated by the
dashed line. When the feedback is on, the oscillator drives the arm in phase with the external beat,
and when it is off there is no coordination.
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Figure 7-6: real Plot showing examples of different rhythms possible using counting. The top
plot shows the auditory signal (top trace), the motion of the dominant arm (middle trace), and the
motion of the second arm which is hitting every second beat. The lower plot shows the same, but
the second arm is hitting every fourth beat. Since the underlying oscillator for the second arm is
entrained to the auditory signal, the two arms hit in phase. The up and down motion of the arm is
visible in the lower traces, the drum being hit on the follow through, after the arm has been lifted
up and down.

system, either by introducing new delays, or changing the stiffness of the arm can change the limit
cycle frequency.

This example illustrates the power of coupling systems using feedback from the environment. It
is only because the sound of the two drums is combined by being detected with a single microphone
that the oscillator beats in phase.

7.1.1 Counting

This section describes how the drumming can be extended to using two arms, and how the auditory-
motor loop can be used to synchronize the arms with one another, even when the arms are beating
at different rates.

Synchronizing two arms using the oscillators is easy, by using an oscillator for each arm and
feeding both oscillators the same auditory signal. Since the coordination of the system is determined
by how the oscillators entrain with the auditory signal, both arms will make the same motion, and so
hit the drum in phase. The architecture of the system (see Appendix A) has the controllers for each
arm in separate processors, with low bandwidth communication between the processors. Applying
the feedback separately allows both arms to be coordinated with one another using a distributed
control system.

Getting the arms to hit at different rates can be achieved by using something analogous to
counting. Say for example one arm is hitting every cycle, and we want the other arm to hit on every
other cycle. A simple way to achieve this is to keep the oscillator for the second arm synchronized to
the auditory signal (so oscillating in phase with the first arm), but only use its output to drive the
arm every other cycle. The counting is easily implemented by counting the cycles of the oscillator
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Figure 7-7: real Plot showing two stable limit cycles when the arms both hit on every other beat.
The top graph shows the slow cycle, the arms hitting together, and the lower graph shows the arm
hitting alternately. The speed of the faster cycle is the same as if it were made by one arm drumming
on every beat.

since the last hit. The robotic performance of this rhythm is shown in figure 7-6.
An interesting limit cycle is created when both arms hit on alternate cycles. This results in two

auditory-motor limit cycles, one slow cycle where the arms beat in phase, and one faster one where
the arms beat alternately. These are shown in figure 7-7. Both cycles appear to be stable, and can
be switched from one to another by disturbing the system with an extra auditory signal as shown in
figure 7-8. The oscillators for the two arms are completely independent, but are coordinated with
one another using the common auditory signal.

7.1.2 Hitting on the offbeat

Another extension of the system allows the arms to hit between the beats. This is easily achieved by
inverting the sign of the feedback signal to one of the arms. This will cause that arm’s oscillator to
entrain out of phase with the other arm, and so hit the drum halfway between the other arm’s beats.
Unfortunately, hitting in this way creates a more complex auditory signal, to which the oscillators
cannot easily entrain. The system needs to ignore the extra beats, and only pay attention to the
dominant beat.

One solution to this problem is to improve the auditory processing to ignore the extra beat. There
is a considerable literature on beat tracking (e.g. Scheirer (1998)), and the task here is simplified by
the clean sound of the drum.

An alternative and simpler solution is to inhibit the auditory feedback except when a sound
is expected, i.e. only listen for a short period after the motion of the dominant arm. This was
implemented on the arm, and was successful at producing a range of rhythms, with the entrainment
of the system undisturbed by the offbeats. Rhythms hitting every fourth, second and alternate beats
are shown in figure 7-9. It is also easy to change the rhythm produced by the arms, by altering
the number of beats “counted”, as shown in figure 7-10. Since the system only listens for a short
period after the motion of the dominant arm, changing the second arm does not disturb the steady
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Figure 7-8: real Plot showing how an auditory disturbance can alter the limit cycle found by
the oscillator when each arm hits on alternate beats. The disturbance was from a third drumstick
banging the drum, which caused the system to switch from fast to slow (top graph) or slow to fast
(lower graph).

entrained beating pattern.

7.1.3 Hitting more than one drum

It is also possible to use an extra oscillator to enable the system to hit more than one drum. As
described in chapter 3, the setpoint for the whole arm is generated by adding the normal oscillator
output yout to a fixed posture θp:

θv = θp + yout (7.1)

The posture does not need to be fixed, and can be generated by the output of another oscillator.
If that oscillator provides a series of steps, then the arm will move backwards and forwards between
two locations. If this movement is superimposed on the drumming, the arm will hit two different
drums. The synchronization between the drumming and the posture change is obtained by using
the auditory signal to entrain the posture oscillator.

This method was used to hit a drum and a cymbal as shown in figure 7-11. Unfortunately, the
auditory feedback was not clean enough in this case to get the oscillators to entrain. A fake sine
wave signal was used instead, which was easier to entrain with.

The oscillator system was used for a variety of percussion instruments, including tambourines,
maracas, cow bells etc. For some of these (e.g. the maracas), the auditory signal was sufficiently
complex for the simple auditory processing to not be able to extract a signal which the oscillators
could entrain with. In those cases a sine wave was used to produce the rhythms.

7.2 Discrete from rhythmic

The discrete motions which are considered in the rest of this chapter are single, dynamic motions
which contrast with the continuous dynamic tasks in the previous chapters. For example, a golf
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Figure 7-9: real Three different rhythms which use the motion of the dominant arm to inhibit
the auditory processing. The plots show the raw auditory signal (dashed), together with the signal
applied to the oscillators (top solid trace), and the two arm motions. Since the oscillator only
“listens” for a short period (approx 0.25s) following the motion of the arm, the sound of the second
arm drumming on the offbeat is ignored. This allows the system to remain entrained.
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Figure 7-10: real Switching between different rhythms. By changing the number of beats which
are “counted” by the oscillator, the system can change the rhythm produced. The top plot shows
the second arm changing from hitting every other beat, to hitting every second, and the lower plot
shows the change from every fourth, to alternate beats. The auditory signals are shown as described
in figure 7-9.

swing is a discrete dynamical motion, while the actions during eating are also discrete but less
obviously dynamic! The commands required for this kind of motion are pulses and steps, which can
be obtained by starting and stopping the oscillator at peaks in its output, as shown in figure 7-12.
Pulses are created by stopping at peaks of the same sign, while steps by stopping at peaks of opposite
sign.2

Feedback can be applied to this discrete oscillator system exactly as in the rhythmic case. The
effect of feedback is more complex because the final motion is not a converged limit cycle, but the
transient trajectory towards that limit cycle. The oscillator entrains quickly, which implies that the
feedback will have an effect. Because the oscillator tends to find resonant-like motions when run
continuously, one would expect the transient to have the quality of “moving towards resonant-like
motions”, or injecting energy into the system. Like the continuous case, the feedback should make
the oscillators sensitive to the arm dynamics, and create movement where an appreciable amount of
energy is stored and released in the arm springs.

Schöner (1990) also suggested using a rhythmic system to produce discrete motions. His system
was perhaps more mathematically elegant than the solution presented here, although it was sensitive
to parameter values and not used for any practical purpose.

7.3 Throwing

The throwing task was implemented by using the oscillators in discrete mode to drive the joints of
the arm. There was no connection between the joints except through mechanical coupling, and the
feedback to the oscillators was from the joint angles of the arm.

Figure 7-13 shows a sequence through an underarm throwing action implemented on the robot.

2The peaks can be easily detected by checking the zero crossings of the rate of change of oscillator output ẏout.
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Figure 7-11: real Four stills from a video of the robot drumming. The pictures are in no particular
order. The robot uses its right arm to hit the drum, and its left arm alternates between the drum
and the cymbal.

 (a)

 (b)

Figure 7-12: Schematic of discrete motion. A single cycle of the oscillator can be used to create
single motions by detecting peaks in the oscillator output and stopping and starting the integration.
The thin line shows the usual oscillator output, and the thick line shows how this can generate (a)
a pulse and (b) a step.
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Figure 7-13: real Series of stills from sequence of the arm throwing a ball. The picture sequence
is left to right and then top to bottom. The overall time of the throw is about 1.2 s, although these
pictures are not equally spaced over that time. The arm holds the ball up, swings the elbow and
shoulder back, and then swings the straight arm forward and releases the ball.



132 CHAPTER 7. EXAMPLES

0 0.5 1 1.5 2 2.5 3 3.5 4
−60

−40

−20

0

20

40

60

S
ho

ul
de

r

Time, seconds

0 0.5 1 1.5 2 2.5 3 3.5 4
−150

−100

−50

0

50

E
lb

ow

Time, seconds

θ v feedback on
θ feedback on
θ v feedback off
θ feedback off

Figure 7-14: real Plot of joint angles (θ) and setpoints (θv) during throwing. Two cases are
plotted, using thick lines indicate when feedback is on, and thin when it is off. The plots show the
shoulder moving back and forward and the elbow moving straight back. Some photographs of this
motion are shown in figure 7-13. The ball is released at the end of the shoulder motion, as indicated
by the vertical lines, although the ball does not actually leave the hand until about 0.5 seconds later.
The most obvious effect of the feedback is to increase the speed of the setpoints to the joints (solid
lines), and thus change the speed of the arm. The feedback also makes the hand release earlier in
the motion, which throws the ball forward rather than up.

The postures of the arm were chosen to be similar to a human action. The arm starts holding the
object up, then the elbow is driven back using a step command, and the shoulder back and forward
using a pulse. This has the effect of swinging the arm back firmly, so hyperextending the shoulder
joint, and storing energy in the shoulder spring. The arm comes forward straight and releases the
object. Since the robot has no hand, the object is gripped between the wrist and a sheet of metal
attached to the forearm. The wrist releases grip when the shoulder oscillator has finished its pulse.

The effect of the feedback on the throwing action is not very great, at least for the example throw
shown in figure 7-14. The feedback makes the arm move faster, and also releases the object earlier
in the throw. When using feedback, the wrist starts to release the ball when the arm is extended all
the way back, but the ball is carried by the hand and not actually thrown until some time later (see
photographs in figure 7-13). Without feedback, the ball is released much later. Releasing earlier
may give a better follow through on the throw, and contributes to throwing forward rather than up.

In any case, the effect of the feedback is not large. One might expect it to be greater, and this
is an area for further work. The oscillator’s ability to quickly adapt to the dynamics of the arm
might make it particularly appropriate for throwing tasks, by adjusting automatically to the mass
of the object. Work by Bingham et al. (1989) suggests that humans heft objects to determine their
properties before tuning the stiffnesses of their arms to achieve a powerful throw.

Throwing objects is sensitive to the release of the object, which was somewhat arbitrary in this
implementation. Even a good swing can produce a poor throw if the release is fumbled. An overarm
throw was also implemented, using four joints of the arm, with a sequence shown in figure 7-15. For
this case, the shape of the hand was redesigned to give a better throw.
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Figure 7-15: real Overarm throw sequence, with pictures taken every 0.2 seconds. The sequence
goes from left to right and top to bottom. Two shoulder joints and two elbow joints are used to
produce this motion, all activated with pulses except for one elbow joint which was driven using a
step. Throwing is sensitive to the release of the object, and in this case a redesigned hand was used
to improve the throw.

7.4 Hitting

The task of hitting or hammering requires a similar motion to throwing but avoids the difficulty of
releasing the object. Two applications are described here, with the robot hitting a “punchbag” and
hammering a nail. These motions exploit the natural dynamics of the arm, using energy stored in
the arm springs and gravity to produce effective hitting. They also exploit the ability of the arm
design to withstand considerable shock loads.

The punchbag was constructed to measure the energy transfered from the arm to the target for
tuning purposes. It consists of a rubber ball on a sprung boom. When the arm hits the ball, it
causes the boom to rotate against the spring. By measuring the maximum deflection of the boom,
the energy of the impact can be determined.

Figure 7-16 shows a sequence from the oscillator hitting the punch bag. The elbow and shoulder
are activated by oscillators with the wrist having a low stiffness. The energy stored in the wrist is
visible in the lower left frame, it being swung back by the action of lifting the arm, before rebounding
onto the punchbag. The hitting action is much stronger when the arm is lifted up and then down,
rather than just going down, due to this extra stored energy. The hit is also more powerful when
the wrist stiffness is low, the mass of the hand acting like a hammer.

Figure 7-17 shows the shape of the hitting motion in the vertical plane, computed by using the
joint angles and an approximation to the forward kinematics of the arm. When the feedback is
on, the arm is moved up and then directly down to hit the punchbag (represented by the black
rectangle). Without feedback the motion is more curved and much slower (the arm is drawn at
0.02 second intervals). This is shown more clearly in figure 7-18 which plots the height of the hand
against time. The position of the punchbag is shown with the horizontal line, and the increased
speed at impact is apparent.

The same configuration was used to hammer nails into wood, as shown in figure 7-19. Unfortu-
nately no visual guidance was used so careful alignment of the nail with the hammer was required!
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Figure 7-16: real Four stills from a video of the robot hitting the punchbag. The sequence goes
from left to right and top to bottom. The arm starts resting on the punchbag, and is raised up as
shown at the top. The arm whips down, overextending the wrist joint (bottom left) and hitting the
target powerfully. The shock tolerance of the arm is exploited to produce this movement without
damage.
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Figure 7-17: real Motion of the arm in the vertical plane during hitting. The target is the
punchbag which is indicated by the rectangle. The trajectory of the hand is marked, together with
the position of the arm at 0.02 second intervals on the downward stroke. In the left hand graph,
feedback is used and the arm moves faster and more directly to the target, as opposed to the non-
feedback case in the right hand graph. The hyperextension of the wrist and its contribution to the
hitting is also apparent when feedback is used.
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Figure 7-18: real Graph of the height of the hand plotted against time for hitting the punchbag.
The full trajectory is shown in figure 7-17. The hand moves up at about the same speed regardless
of the feedback, but with feedback it accelerates down rapidly, with a much higher speed at impact
(where the lines cross the starting height, marked by the horizontal line). The impact does not affect
the arm motion a great deal because the inertia of the punchbag is small, and because it is sprung
and so presents a small resisting force.
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Figure 7-19: real Four stills from a video of the robot hammering a nail. The sequence goes from
left to right and top to bottom. The elbow and shoulder joints drive up and down to give a powerful
hit with the hammer. The motion causes the hammer to be swung fairly high, and extend the wrist
joint (lower left picture). This stored energy is then released into the nail (lower right).
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The arm swings the hammer up, storing gravitational potential energy in the hammer, and storing
energy in the springs of the arm. These are both released into the nail.

As with throwing, the effect of the feedback is predominately that of changing the speed of
the motion, which could easily be achieved by using a pulse with no feedback. The oscillator does
make the motion faster, which is the correct action for both tasks. Anecdotally the feedback was
useful from a safety point of view. If the arm was restrained, the oscillator was affected by the
feedback from the slowly moving arm, causing it to drive the arm in a less violent manner. As with
the throwing task, more research is needed to elucidate the effect of the feedback, and determine
whether it is useful.

7.5 Conclusion

This chapter has shown that the oscillators are versatile, and can be used for a wide range of tasks,
both rhythmic and discrete, and use other sensory modalities to provide feedback and entrainment.

The oscillator solutions in these examples are all adaptive, altering the drive to the arm depending
on the motion of the arm, or in the case of the drumming, the sound created by the arm. For the
discrete tasks the nature of adaptation is not very clear, although it appears to have roughly the
right effect. The feedback causes the arm to move out and back faster, so creating a more powerful
throw or a more powerful hit. The effect of the feedback is more clear for the drumming, allowing
the arm to synchronize with an external beat, and create a stable drumming rhythm.

The drumming example shows the simplicity of exploiting the natural dynamics of the system for
a complex task. The arm synchronizes with an external beat because the sound of that beat and the
arms own drumming are combined by being heard by the same microphone. The synchronization
occurs even though the overall system is not calibrated, has unknown delays and uses a low gain
controller to move the arm. It is synchronized because hitting in phase is the limit cycle solution of
the auditory-motor loop set up by the oscillators. The system requires the delays and low stiffness
in order to work, which reduces the pressure on making efficient auditory processing or having high
bandwidth connections between the system processors.

The examples also illustrate the ease of implementation of the oscillators for these tasks. The
oscillators can entrain with a range of input signals, and are robust to changes in the parameters.
Once the input gain is large enough that the system is entrained, changing it has little effect on
the overall system. The method of inhibiting the auditory signal when it is not expected is another
simple and robust method to obtain complex behavior.

The particular implementation of the arms uses a number of processors with low bandwidth
communication between them. The entrainment properties of the oscillators make them appropriate
for this distributed system, and more robust than attempting to create a synchronized global clock.

Finally, it is interesting in the drumming example that the two phases that were easy to create
were in phase and out of phase. These were made by simply flipping the sign of a feedback signal,
and modifying the auditory input. Humans also appear to find these phases easy to produce, and
others more difficult. There is considerable literature (e.g. Haken et al. (1985), Kay et al. (1987))
which shows that humans have a preference for these phases. The preference varies with frequency,
with out of phase motions being only possible at low frequencies, and in phase motions possible at
all frequencies. It would be interesting to explore the frequency dependence of the oscillator system
from this respect.
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Chapter 8

Conclusion

8.1 Further work

There are many topics arising from the thesis which deserve further study. These include:

• Complex timing constraints. There exist tasks which fit into the general framework ex-
ploited by the oscillators but which have complex timing constraints. For example, consider
the cases of a Yoyo and a Slinky toy. Both exert forces on the arm, and in both cases the steady
state motion requires coordination between these forces and the arm motion. This suggests
that the oscillator solution should work well. While the oscillators work well with the Slinky,
they do not appear to work with the Yoyo. This is because the coordination required of the
arm is more complex and dependent on timing for the Yoyo case. This is true both in steady
state, and particularly in the startup transient. Extending or manipulating the timing of the
oscillator system would allow it to perform tasks with complex timing constraints.

• Potential fields. The idea of applying potential fields to the arm was mentioned in chapter 5
and deserves further study because the work was restricted to a simple example due to hardware
and time limitations. One interesting aspect of the potential field is that it need only be strong
enough to cancel the undesirable natural dynamics of the arm. This means that it need not be
stiff (which facilitates implementation) and need only be specified where necessary. This makes
it particularly appropriate for incremental learning through imitation. One might envisage a
system where a human guides the arm through a desired motion, and then corrects the motion
as the robot repeats it. The correction would be implemented by increasing the strength of the
field locally, so constraining the arm motion at that point. Learning by imitation has recently
become an intensive field of study because it promises to provide simple and flexible ways
to control robots. Recent examples include Miyamoto et al. (1996), Miyamoto and Kawato
(1998), Brooks et al. (1999) and Schaal (1999). The robustness and ease of implementation
of the oscillator systems should make them appropriate for imitating rhythmic and dynamic
discrete tasks.

• Sequences and compound motions. One problem not addressed in the thesis is how to
switch among a number of oscillators to produce compound motions or sequences. This is
another possible method to increase the complexity of tasks that are possible using oscillator
control. Switching between controllers raises a number of interesting questions:

– How should the oscillators be synchronized across the switch? and is that necessary?

– When should the switch be made? (after a certain amount of time, or dependent on the
state)

– How should the subcontrollers be designed?

– Will the final system be stable?

139
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There is theoretical work on hybrid systems (e.g. Branicky (1994)) which is relevant here. One
robotic example which combines switching and exploiting the natural dynamics is the work of
Kuniyoshi and Nagakubo (1997) where a simulated humanoid was controlled to stand up from
a supine position using a sequence of simple controllers.

• Discrete motions. The oscillator behavior for single motions was described in chapter 7.
An analysis method analogous to the describing function analysis developed for the rhythmic
case is required to gain improved insight into the discrete behavior. This would hopefully shed
light on the exact role of the feedback in these motions. One idea for an evaluation criterion is
to determine the energy imparted to a robot link by a single cycle of the oscillator. This could
then be compared to the optimal pulse, given the system stiffness and inertial properties.

• Theoretical questions. The theoretical results in chapter 6 indicate that many questions
concerning the oscillators remain unanswered. These include results on the classes of systems
that have limit cycle solutions when driven by oscillators and the global or semi-global stability
of these limit cycles. The oscillators are a compelling system for further study in this respect.
They exhibit a range of interesting behaviors, their piecewise-linear dynamics open them to
a range of techniques, and any new theoretical results will have an impact on the practical
design of systems.

8.2 Vision

This thesis has demonstrated an exciting range of tasks with a simple control system. While it has
demonstrated the power both of exploiting natural dynamics and using oscillators to control arms,
the method has a long way to go to reach the kind of versatility and flexibility of actions that humans
routinely demonstrate. This section considers how to create that kind of performance, considering
other ways to exploit the arm dynamics, exploiting the arm statics, tidying up details, and looking
at the problem of learning.

• Generalization. This thesis has argued strongly for exploiting natural dynamics using the
Matsuoka oscillator. This approach, while perhaps surprisingly versatile, is limited due to the
dynamics of the oscillator. To achieve anything like human versatility other controllers and
control methods need to be explored. Investigating other controllers which exploit natural dy-
namics should open up a variety of different tasks, for example discrete motions, slow motions,
compound rhythmic motions, or asymmetric motions.

This thesis has concentrated on exploiting the resonant properties of the arm, when there
are other aspects of natural dynamics which can be exploited to give wider ranges of tasks.
These include the use of the skeleton for load carrying, and also the use of internal inertia for
explosive tasks (as in the work of Brown (1994)).

Generalizing the ideas in this thesis to other controller types which can exploit the natural
dynamics, as well as generalizing to other aspects of the robot dynamics should give greater
versatility.

• Exploiting task statics. All the applications in this thesis are dynamic tasks, where precise
motion is not required. Humans are generally skilled both at dynamic motions and precise
manipulation tasks, such as threading a needle, sewing, writing, or peeling potatoes.

For these tasks the static behavior of the arm is more important than its dynamical behavior.
The static properties of the arm such as its stiffness, whether it is braced to remove excess
degrees of freedom, and whether the active degrees of freedom are aligned with the task can
all be exploited to simplify the control required. The sensory modalities for these tasks are
also different from the dynamic case, relying more on touch, force and vision sensing. These
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different sensory modalities might have to be applied in different ways to modify the arm
behavior.

The questions of how arm properties can be exploited for precise tasks, and how the sensory
feedback should be used are challenging. Any progress towards performing these tasks with the
same robustness and computational simplicity as the work in this thesis would be an exciting
step forward. It would also greatly increase the versatility of robots.

• Details. Most of the work in this thesis ignores the details of arm control which would be
needed for a flexible working system. A good example of this is starting and stopping the
oscillators cleanly. This was not considered during the thesis but could be important for some
tasks. A complete system would need details of this kind to be worked out more carefully.

• Programming/learning. The combination of arm and task dynamics is complicated, partic-
ularly if a wide range of tasks are considered. For the final system to be versatile and flexible
it is inevitable that some learning will be required. This raises the questions of what should
be learned and how should it be learned. While these specifics remained to be worked out,
the type of tuning used in this thesis is a good model. Static parameters were tuned which
determined a complete dynamic behavior, with the oscillator behavior reducing the complexity
of the learning problem (by automatically being coordinated with the task). In addition the
parameters themselves were easy to set, with good performance for a wide variety of parameter
settings. While not all learning problems will be so straightforward these characteristics make
the learning easy and so are worthwhile to bear in mind.

One of the major issues will be learning and scaling the complexity while retaining the useful
properties of exploiting natural dynamics. This issue was touched on in chapter 5 where two
different methods of connecting oscillators had rather different robustness properties.

Attacking the learning issue should shed light on how to increase the complexity of the robot
behavior. Questions which are relevant here are the role of imitation in teaching the robot
new tasks, and perhaps the role of memory and internal models in remembering and apply-
ing previously learnt behaviors to new situations. The transfer of skills to different parts of
the workspace, to different arms and to different tasks is also important. Thinking of these
questions in the context of exploiting natural dynamics may facilitate finding answers. For
example, transfer of skills may only be useful if the underlying dynamics are similar.

8.3 Summary

This thesis has presented an approach to robot arm control which exploits natural dynamics. The
approach uses a a set of simple non-linear oscillators to drive the joints of a compliant arm. The
oscillators use feedback to adjust their commands relative to the actual joint motion, and so tune
into the arm’s natural dynamics.

Chapter 3 introduced the oscillator and described its behavior when coupled to single degree
of freedom systems. This behavior is generally coordinated with the motion of the system and
robust to system and oscillator parameter changes. An analysis method using describing functions
was described which is accurate and powerful; it enables detailed design of oscillator systems by
predicting their behavior. It can also be used to explain the inherent robustness of the oscillators.
The design tool is simple and easy to apply. It enables other researchers to understand, design and
compare oscillator solutions to other approaches.

The oscillator robustness properties carry over to the multiple degree of freedom tasks which
were considered in chapter 4. Using mechanical coupling between the oscillators as opposed to any
explicit connections, the oscillators find and drive the system in its resonant mode, automatically
adjusting themselves relative to the task. This is both remarkable and useful. It is remarkable that
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independent control at the joints can give such complex coordinated behavior of the whole arm. It
is also remarkable that this works when the arm is redundant, with more than one arm, and when
the coupling is fairly weak, as in the Slinky toy example. This property is useful because a variety
of tasks are defined as resonant modes of the arm system.

The robustness of this system is also compelling. Most of the parameters can be changed by
factors of three without changing the overall performance. This makes tuning parameters trivial.
The oscillator natural behavior removes the need to specify coordination between the joints, which
makes tuning easier still, because there are less parameters to tune.

Not all tasks are conveniently specified by the resonant mode of the mechanical system and
chapter 5 considered methods to extend the oscillator system to some of those cases. The main
difficulty is retaining the robustness and self-organizing properties of the oscillators while influencing
their final behavior. The chapter showed that coupling the oscillators through the natural dynamics
was more robust and more powerful than connecting the oscillators into networks. This result is a
compelling argument for exploiting natural dynamics.

Chapter 6 returned to the issue of analysis first raised in chapters 3 and 4. It presented a variety
of theoretically exact results and tools for predicting the final behavior of oscillator driven systems.
These methods together with the earlier results provide a powerful set of tools for understanding
the behavior of oscillator driven systems.

Chapter 7 discussed various applications of the oscillator system. The chapter showed that the
oscillators can produce both discrete and rhythmic motions. The oscillator system is generally easy
to use. The parameters are easy to set and the feedback gives powerful and sensible behavior. It
is indicative of the merits of the oscillators that all the tasks in the thesis were accomplished with
the same oscillator architecture. The only changes were adjustments to the posture of the arm, the
sizes of the joint commands, and the object attached to the robot’s hand.

To conclude; the approach taken in this thesis of exploiting the natural dynamics of the arm using
non-linear oscillators has been shown to work well in a number of respects. The approach can be
applied over a wide range of discrete and rhythmic tasks, is robust and is easy to implement. These
results suggests that the general approach of exploiting natural dynamics is a powerful method for
obtaining coordinated dynamic behavior for robots.
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Appendix A

Experimental Apparatus

This chapter described the design of the arms used throughout this thesis. It details the design of
the actuators, the mechanical design of the various joints, the sensors used at each joint, the wiring
of the robot, the control architecture and control algorithms.

A.1 Overall arm design

The two arms used both have six degrees of freedom, and are mounted on the humanoid robot Cog
(Brooks and Stein, 1994, Brooks et al., 1998). The arms are mirror images of one another and are
otherwise identical. The two arms are illustrated in figure A-1. The kinematics of the arms are
designed to be similar to a human arm, and are shown in figure A-2. There are two joints each
at the shoulder, elbow and wrist, although the axis of the first elbow joint (elbow-a in figure A-2)
is coincident with the axes of the shoulder joints. The arm is approximately the same length as a
human arm.

Figure A-1: Picture of the two robot arms. Each arm has 6 degrees of freedom, arranged in a similar
manner to a human arm. The arms are approximately the same length as a human arm
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Shoulder-a
Shoulder-b

Elbow-a Elbow-b

Wrist-a Wrist-b

Figure A-2: Arm kinematics. The thick lines indicate the structure of the arm, and the thin lines
the axes of joints which do not line up with the arm structure. There are two joints for each of
the shoulder, elbow and wrist, making six degrees of freedom in total. The axes of the shoulder-a,
shoulder-b, and elbow-a are coincident at the shoulder, and the axes at the wrist also intersect. The
elbow-b joint is offset to allow the arm to curl up so that the hand can touch the shoulder.

Each joint of the arm is actuated by a series elastic actuator (Williamson, 1995, Pratt and
Williamson, 1995), which consists of an ordinary electric motor and gearbox with a spring in series
with the motor output. These actuators give good quality force control, shock tolerance, and stable
behavior of the whole arm. They thus allow the whole arm to be robust and compliant.

The following sections describe in more detail the actuator and arm design, and the design of
the controllers.

A.2 Actuators

The motivation for the use of series elastic actuators comes from the consideration that electric
motors, which are a commonly available actuator for robotics, are most efficient when spinning at
high speed with low torque, while most robotic applications require motors which operate at low
speed and high torque. The planetary gearheads which are commonly used as a compact method
for converting the speeds and torque unfortunately suffer from a number of disadvantages. The gear
teeth introduce friction and backlash into the motor drive, and the teeth are weak and often break
under shock loads (Hunter et al., 1991). Alternatives such as stictionless cable drives are bulky (as
used in the WAM robot (Salisbury et al., 1988)), as are direct drive motors (An et al., 1988). The
characteristics of gearboxes make them most suitable for position controlled tasks, rather than for
force control. However, for the kind of robust interaction desired for the arms used in this thesis,
force control at the joints is necessary.

Another consideration comes from robot force control. Early researchers found that controlling
stiff robot arms to contact hard surfaces was difficult, but that by covering the robot is some
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compliant material (foam rubber), the task was made somewhat easier (Whitney, 1977).

These two considerations come together in the series elastic actuator, shown schematically in
figure A-3. The actuator consists of an ordinary electric motor and gearbox with a spring connected
between the motor output and the actuator output. The spring is thus in series with the load. The
actuator controls the force output by controlling the deflection of the spring. The spring thus turns
the force control problem into a position control problem, which is better suited to the motor type.
It can also be thought of as moving the compliance from the end of the arm into each joint.

Motor and
Gearbox

Encoder

Spring

Bearing

Actuator
output

Figure A-3: Schematic of actuator design. The series elastic actuator consists of an ordinary electrical
motor and gearbox, with a spring connected between the motor output and the actuator output.
By controlling the deflection of the spring, the output force of the actuator can be controlled. The
spring naturally filters out the friction and backlash introduced by the gearbox, contributing to the
quality of the force control. It also absorbs shock loads, protecting the gearbox teeth from damage.

Adding the spring has some advantages. The spring acts as a low pass filter, naturally filtering
out the friction and backlash introduced by the gearbox. It also absorbs any shock loads, storing
the energy of impact in the spring so protecting the gearbox teeth from damage. Finally the spring
makes it easy for the overall actuator to be passive, which guarantees its stability when contacting
any passive environment (Colgate and Hogan, 1988). Intuitively this is because at low frequencies
the control law will work well so the actuator will be stable, while at high frequencies above the
bandwidth of the controller, the actuator behavior will be dominated by the physical spring. The
spring is a passive element which ensures that the actuator will be passive at all frequencies.

The main disadvantage of adding the spring is that the bandwidth of the actuator is limited for
some motions. For an electric motor, the force is proportional to the current through the motor
windings which can be changed quickly, without the motor actually moving. For the series elastic
actuator, one end of the spring has to be moved in order to generate the force. The current through
the motor has to move the mass of the motor to generate this deflection, which results in a loss
in bandwidth. The other disadvantage is the extra design complexity introduced by incorporating
the spring. Even a compact spring involves extra coupling components and bearings, and thus
complicates the mechanical design.

Series elastic actuators are increasing in popularity, having also been used in the Leg Lab at MIT
e.g. Pratt et al. (1996, 1997).
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A.3 Spring design

The major difficulty in implementing a series elastic actuator is the design of the spring, particularly
if a torsional spring is required. This is because the spring carries the whole load of the actuator
but must also be compliant enough to get the benefits of the series elasticity. This combination of
properties makes the spring design difficult. See Williamson (1995) for exhaustive details.

The design chosen consists of a steel bar with a cross shaped cross-section, as shown in figure A-4.
This section can be designed to be strong yet not particularly stiff because the thin sections of the
cross shape allow large deflections without yielding. The deflection of the spring is measured using
strain gauges mounted on the flats of the spring, as shown in figure A-5.

Figure A-4: Spring design. The figure shows a torsional spring with a cross-shaped cross-section.
This shape gives a spring which is strong while still being flexible.

The model of the spring developed in (Williamson, 1995) compared the cross shaped spring to
an equivalent flat plate spring as shown in figure A-6. The parameters which determine the spring
behavior are the length l, web thickness t and the combined breadth and height of the cross shape
b + h. The behavior of a flat plate under torsion is governed by the following equations

θmax =
lτmax
tG

(A.1)

kspring =
(b + h)t3G

3l
(A.2)

Tmax = kspringθmax =
(b + h)t2τmax

3
(A.3)

where θmax is the maximum deflection of the spring, τmax is the yield shear stress (half the yield stress
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Spring

Strain
gauge

Front View Side View

Figure A-5: The deflection of the spring is measured using strain gauges mounted on the flats of the
spring, as shown here. Four gauges are used in a Wheatstone Bridge configuration to measure the
strain in the spring, and so the deflection. The deflection is proportional to the torque transmitted
through the spring.

Axis of Twist

b

l

t h

l

b + h

Axis of Twist

(a) Cross Spring (b) Equivalent flat plate

t

Figure A-6: Figure comparing the cross-shaped spring with a flat plate in torsion. Since the cross-
shaped spring is composed of flat plates in torsion, its behavior is related to the behavior of a flat
plate. The equivalent flat plate spring has the same length (l), web thickness (t) with a width the
same as the sum of the width and height of the cross spring (b + h).
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σyield), G the shear modulus, kspring the spring stiffness and Tmax the maximum load sustainable
by the spring.

The cross shaped spring behavior is similar to that of a flat plate, with some linear factor
differences as shown in figure A-7 and figure A-8. These plots show the comparison between the
actual stiffness and maximum load for various springs and the stiffness and loads calculated for an
equivalent flat plate spring. The relationship in both cases is linear, with the cross spring having
approximately the same stiffness as the flat plate, but being 1.6 times as strong. The cross section
is also more compact, which is important for design purposes.

The linear relationships in figures A-7 and A-8 allow the design of new springs, since new values
of t, l and b + h can be chosen using a design specification and the following equations:

θmax = = 1.65
lτmax
tG

(A.4)

kspring = 0.98
(b + h)t3G

3l
(A.5)

Tmax = 1.63
(b + h)t2τmax

3
(A.6)
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Figure A-7: real Comparison of cross-spring stiffness and flat plate stiffness. The figure shows
the measured stiffness of a number of springs plotted against the stiffness of an equivalent flat plate
of similar dimensions and material. The points lie on a straight line, with gradient 0.98. This
suggests that the stiffness of a cross-shaped spring is almost the same as for a flat plate of the same
dimensions.

A.4 Actuator control law

The control law for the actuator is shown in figure A-9. The input to the control loop is the desired
deflection of the spring, which is proportional to the desired torque. A conventional PID controller
is used to control the spring deflection, with the integral term being rolled off at low frequencies
to preserve passivity (see Williamson (1995) for more details). A feedforward term of the desired
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Figure A-8: real Comparison of maximum torque before yielding for a cross-shaped spring and
the calculated value for an equivalent flat plate. The points lie on a straight line, indicating that
the flat plate is a good model of the cross-shaped spring’s behavior. The gradient of the line is 1.62,
showing the higher load-bearing capacity of the cross-shaped cross-section.

deflection/force is used to increase the speed of the system. The output of the control law is the
desired force or current in the motor. A simple motor model is used to convert this to the voltage
to be applied to the motor windings. The motor model compensates for the back e.m.f. generated
by the motor motion, using the encoder sensor to determine the motor velocity. The physical
implementation of this control law is described later in this Appendix.

K(1 + 1/(s + t)Ti + sTd)
Actuator

Desired
Spring
Deflection

Actual 
DeflectionMotor

Model
+

+
+

-

PID CONTROLLER

FEEDFORWARD PATH

Volts

Figure A-9: Figure showing the control law for the actuator. The desired force of spring deflection is
the input, and a PID controller is used to control the actual deflection to track the desired deflection.
The integral term is rolled off at low frequencies to preserve passivity (see Williamson (1995) for
more details). A feedforward term is used to speed up the system. The output from the PID is the
desired motor current, which is transformed using a motor model to a voltage which is applied to
the actuator. The motor model removes the effect of back e.m.f. caused by the motor motion.

The series elastic actuators provide force control, giving a force output at the joint which is close
to the desired force. To control the position of the joint, a low gain proportional-derivative (PD)
controller is used, whose output is the desired torque or force at the joints, as shown in figure A-10.
The stiffness and damping at the joints can be varied by changing stiffness K or damping B, and
the arm moved around by changing the setpoint θv of the controller. The PD control makes the arm
behave as if its links are connected by springs and dampers, but because the forces in the joints are
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accurately controlled by the series elastic actuators, the overall motion is smooth and compliant.
The force control bandwidth of the actuators is fairly low, which forces the stiffness of the arm to
be low. This gives robustness when interacting with objects.

��
��

- -

6

- -
-

- Arm
Dynamics

-

θ, θ̇
θv

K(θv − θ)−Bθ̇ Actuator
Series Elastic

θ, θ̇

+

ud u

Figure A-10: The joint level control consists of a position control loop, with stiffness K, damping
B, and setpoint θv organized around an inner torque control loop provided by the series elastic
actuators. The inner loop controls the force output of the joint u to accurately track the desired
force ud. Organizing the control in this fashion results in smooth, compliant motion of the arm,
where the overall stiffness and damping can be altered by changing the values of K and B.

A.5 Arm design

A.5.1 General

As described previously, each arm has six degrees of freedom, as shown in figure A-2. As far as
possible the arm was designed to be lightweight distributing the weight as far up the arm as possible
to minimize loads at the joints due to the arm itself. It was also designed to be modular, each arm
being easily split into three parts, with a minimum of mechanical or electrical disassembly.

A.5.2 Joint configurations

A major part of the design concerned mounting and positioning the springs in the series elastic
actuators. The spring, as described in section A.3, is approximately as long as a motor, and generally
has an outside diameter of 1”. For the series elastic actuators to work well, the spring needs to be
between any transmission and the actuator output, which implies that the spring has to lie on the
axis of each joint. To give added flexibility in the positioning of motors, cable drives were used as
an extra reduction after the motor gearbox. This allowed the choice of smaller gearboxes for the
motors. The cable reduction stage adds complexity, requiring extra bearings, pulleys, cables and
cable tensioners, but mechanically the reduction is preferable to using a larger gearbox. This is
because the cables introduce no backlash, have no stiction (static friction), and are stronger and
more resilient to shock loads than gearbox teeth. Unfortunately they are bulky, which is why a
combination of gearboxes and cables were used.

The arm joints were designed to have one of two similar configurations, the first of which is shown
in figure A-11. The motor (gearbox - 1, motor - 2, encoder - 3) is placed parallel to the spring (8),
which lies inside a tube (7) along the axis of the joint. The motor is connected to a motor pulley
(11), which is connected through a cable drive to the large pulley (9). The pulley floats on the tube
supported by a bearing, and the tube itself is supported on two bearings (6) by supports (5), which
also clamp the motor. One end of the spring is rigidly connected to the pulley through a connecting
piece (10), and the other end is rigidly connected to the tube (12). If the right hand end of the
tube is grounded, and the motor turned on, the whole motor-support-cover piece will walk round
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the outside of the tube. The output of the actuator is the whole arm structure, with the spring
placed between the output and the tube which is grounded. The elbow-a and wrist-a joints use this
configuration.

Reversing inputs and outputs gives the configuration in figure A-12. This has the motor and
supports grounded, with the actuator output either being the end of the tube (7), or from a clamp
attached to the tube (27). The shoulder-a, shoulder-b, elbow-b and wrist-b joints all use this second
configuration.

These configurations are compact, since the length of the spring is folded beside the length of the
motor, strong because the load is transfered from the tube to the arm structure using two bearings
which are widely separated, and easy to align because all the bearings are on the same shaft. Because
the tube is hollow, it is also possible to run electrical cables through the joint to minimize bending
and twisting.

A schematic of the bearing design used for all the joints is shown in figure A-13. The tube
(7) is supported on two supports (5), through angular contact bearings (15). These bearings can
withstand radial loads, but only axial loads in one direction. They are normally used in pairs which
“push” against one another. The further apart the bearings are, the stiffer the connection between
the supports and tube, and the stronger the arm. The bearings are preloaded using a shoulder on
the tube (7a), shoulders on the supports (5a), a spacer (13), and a tightening ring (14). Tightening
up the ring (normally with screws into the tube itself) tightens up the bearing surfaces against one
another. The pulley (9) is attached to the spring and rotates relative to the tube when the spring
deflects. It is mounted on a single radial bearing (16).

A schematic of the cable mechanism used for all the joints is shown in figure A-14. As mentioned
above, the cables are used to give flexibility in the positioning of the motor, as well as provide extra
reduction. Each joint has a cable, with an associated cable mechanism. One end of the cable (21) is
terminated (22) in a slot in the large pulley (9a), from which it wraps around the large pulley (9),
around the motor pulley (11), then terminates in the termination block (23). The tension in the
cable is created by using the tensioner screw (24) to pull the block (23) backwards and forwards.
The tensioning mechanism is part of a metal component (25), which also doubles as a spring holder,
rigidly attaching the spring (8) to the large pulley (9). Four of the joints in the arm have the
motor pulley close to the large pulley, however for the elbow-b and wrist-b joints extra pulleys were
used to position the motor away from the joints. The cable routes in those cases are illustrated in
figure A-15.

The shoulder and upper arm of the robot is shown in figure A-16, which shows clearly the
shoulder-a and shoulder-b joints. Each of these have the motor grounded, with the tube providing
the actuator output. The upper arm is clamped to the tube of the shoulder-b joint. The clamp is
used to allow simple assembly and disassembly of the arm. The pulley for the shoulder-b joint is
not completely circular to save space.

Both elbow joints are shown in figure A-17. The tube and pulley for the elbow-a joint are visible,
connecting to the shoulder-b joint. The elbow-a motor is connected to a support and the two plates
which form the structure of the upper arm. When the motor turns the upper arm rotates around
the pulley. The motor for the elbow-b joint is mounted high up the arm, and uses extra pulleys to
drive the elbow-b joint. The lightweight construction of the arm is also visible, with the side plates
hollowed out to save weight, and most of the arm volume being air. The elbow joint is offset in
order to allow the arm to curl up, as shown in figure A-18.

The similar configuration for the wrist joints is shown in figure A-19. The upper motor drives
wrist-a, and the lower motor drives wrist-b through some extra pulleys. The lower arm attaches to
the upper arm using a clamp, and the hand attaches to the arm also using a clamp. These clamps
allow the arm to be easily dismantled and assembled.
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Figure A-11: Arm joint configuration I. The figure shows schematically the layout of the series
elastic actuator at the elbow-a and wrist-a joints. The motor (gearbox - 1, motor -2, encoder -3), is
arranged to be parallel to the spring (8). The motor drives a small pulley (11), which is connected
with a cable drive to the large pulley (9). One end of the spring is connected to the pulley with the
piece (10), and the other end is rigidly connected to the tube (7), (12). The pulley supported on the
tube with a bearing (6), and so is free to move relative to the tube. The tube is itself held with two
bearings (6), between two supports (7), with side plates (4) holding the whole thing together. If the
right hand end of the tube is grounded, the action of the motor is to walk round the pulley, moving
the whole motor-support-side-plates block around the tube. The spring is between the motion of
this block, and the fixed tube.
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Figure A-12: Arm joint configuration II. This configuration is used for the shoulder-a, shoulder-
b, elbow-b and wrist-b joints. The configuration is largely the same as in figure A-11, with the
difference that the inputs and outputs to the actuator have been swopped. The motor and supports
(1,2,3,5) is fixed, and the tube (7) moves. The output of the actuator can either be the right hand
end of the tube (used in shoulder-a), or through the clamp (27) (used in the other joints). The
advantage of using a clamp is that it can be easily removed.
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Figure A-13: The same bearing configuration was used for all the joints of the arm, the only difference
being the sizes of the various tubes. The tube is supported on two angular contact bearings (15).
These are preloaded by shoulders on the tube (7a), shoulders on the supports (5a), a spacer (13) and
a lock ring (14). The bearings are far apart, and can withstand axial and radial loads between the
tube and the supporting structure. The pulley (9) needs to move relative to the tube to accommodate
deflections in the spring. It does not have large axial or radial loads, so it is supported on a radial
bearing.
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Figure A-14: Cable tensioning mechanism. The same tensioning mechanism was used for all the
cables in the arm. One end of the cable (21) is terminated in a slot in the large pulley (9a). It wraps
around the large pulley (9), around the motor pulley (11), and terminates in the tensioning block
(23). The block can be moved by the tensioning screw (24), so adjusting the cable tension. The
screw is part of a metal piece (25), which doubles as a connection between the end of the spring (8),
and the large pulley.
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Figure A-15: The left hand figure shows the cable configuration used for the elbow-b joint. An
extra pulley (26) is used to transfer the cable drive from the motor pulley (11) to the large pulley
(9). This allows the motor shaft to be perpendicular to the axis of the joint, freeing up the motor
position. A similar organization is used for the wrist-b joint, shown in the right hand figure. Here
two pulleys are used to achieve the same effect.

A.6 Arm technical data

The performance of the various joints is illustrated in table A.1.

Joint Power Volts Max torque Max speed Range of motion
(W) (Nm) (rpm) (degrees)

shoulder-a 70 48 20 30 230
shoulder-b 70 48 20 30 180
elbow-a 35 48 13 40 180
elbow-b 35 48 13 40 180
wrist-a 6 12 4 30 180
wrist-b 6 12 4 30 160

Table A.1: real Table showing technical data for the individual arm joints

A.7 Sensors

Each joint of the arm has a strain gauge mounted on the spring which measures the deflection of
the spring, and so the torque transmitted by the motor, as well as a potentiometer to measure the
joint position. These sensors are shown in figure A-20. Hollow shaft potentiometers are used with
a plastic conductive resistive element (18) attached to the supports (5). The tube of each joint (7)
has a plastic ring attached (20), which supports the potentiometer wiper (19). As the joint turns,
the wiper moves on the potentiometer and records the joint position. Mounting the potentiometer
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Figure A-16: Robot shoulder joint. The photograph shows the shoulder joint and the upper arm.
The shoulder-b joint is shown most clearly with the motor, pulley, tensioning mechanism tube and
clamp all in the middle of the picture. The upper arm is clamped onto the shoulder-b tube in order
to allow quick assembly.
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Figure A-17: Photograph of the upper arm of the robot. Both motors are placed high up on the
arm, so reducing the inertia of the link. The elbow-a motor is arranged as described in figure A-11
walking around the tube, and driving the whole upper arm around. The elbow-b motor drives the
joint through a cable mechanism with an extra pulley. The lightweight construction of the arm is
visible, with the side plates hollowed out, and most of the volume of the link being air.

Figure A-18: Figure showing the arm curled up. The elbow-b joint is offset from the axis of the arm
to allow the arm to curl up into this position.
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Figure A-19: Lower arm design. The upper motor drives the wrist-a joint, moving the whole lower
arm section around its longitudinal axis. The lower motor drives the wrist-b joint using two extra
pulleys. The lower arm is attached to the elbow-b joint using a clamp to facilitate assembly.
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in this way is neat; the sensor is tucked behind the motor pulley. Each motor also has an encoder
measuring the position of the motor shaft. This is only used by the control law as part of the motor
model (see figure A-9).

Each of these sensors requires wiring for both power and the signal. A complete actuator needs
four separate cables for the strain gauge, encoder, potentiometer and motor power. With six degrees
of freedom, and the need to pass these cables through or around the moving joints of the arm,
electrical cabling is a fundamental design challenge.

To reduce the number of duplicated power cables for the different sensors, and in order to perform
some sensor processing locally on the arm, a sensor board was constructed. This board is shown in
figure A-21, and serviced the sensors for two joints on the arm. The board was mounted between
the two side plates of the lower and upper arms, and between the plates on the shoulder. The
connections to the board are shown in figure A-22 and the schematic for the board is included in
figure A-23. The board fulfilled the following functions:

• Strain gauge processing. The integrated circuit which provided a stable voltage for the strain
gauges, and processed the strain gauge output was included. Tuning potentiometers were
included to alter the gain of the amplifier, as well as its offset. The Analog-to-Digital (A/D)
converter used on the motor controller boards has a voltage range of 0− 5 Volts. This means
that input signals must have a zero reading of 2.5v and swing by ±2.5 v around that zero.
The sensor board also included a buffer on the strain gauge chip output in order to drive the
signal along the wire to the motor controller.

• Strain velocity. The force control loop requires signals recording the strain as well as the rate
of change of strain in order to control the force accurately. The rate of change of strain (Strain
velocity) could be calculated digitally, but with only an 8 bit A/D on the motor controller, the
errors would be large. The sensor board thus included an analog differentiation circuit and
buffer to produce this signal directly.

• Joint angle. The board included an amplifier and level shifter so that the maximum, minimum
and zero voltage for the joint angle motion could be set. It also included a differentiating
circuit to calculate joint velocity. Setting the joint angle on the board sets the calibration
for all the joints. This means that the robot can be powered on and off without having to
recalibrate the joint limits. This means that the calibration is relative to the voltage in the
system, so a well regulated power supply is required.

• Encoders. The board provided power distribution for the motor encoders.

• Spare channels. The board provided two extra connectors, connected back to A/D channels
on the motor controller boards. The connectors for these have power and ground also, which
makes adding extra potentiometers, touch sensors etc. easy.

A.8 Electrical wiring

Even with the sensor board, there are still a large number of cables required for each set of joints.
The sensor board reduces the number of cables to a bundle of 25 wires for the sensors, and two
2 wire cables carrying the motor power. The wiring diagram is shown in figure A-24. The 25 pin
sensor cables are connected to a expansion board which fans out the various signal wires to the
motor controller boards. The modularity of the system is preserved by using connectors between
the joints. This means that disassembling and arm consists of removing the clamps connecting the
link to the other link, and disconnecting a few cables.

In addition to the sensor board, a debugging board was fabricated which could be inserted
anywhere along the chain of sensor cables. This board had LED’s and test points which could be
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Figure A-20: In addition to the encoders on the backs of all the motors, each joint has a strain gauge
(17) mounted on the spring (8) which measures the torque at the joint, as well as a potentiometer.
The potentiometer is of a hollow shaft construction, with the resistive element (18) forming a ring
mounted on the support (5). A plastic ring (20) clamped to the tube (7) holds a wiper (19), which
completes the potentiometer. The measurement is of the angle between the tube and supports, so
measuring the angle of the joints.
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Figure A-21: Photograph of the sensor board. The large chips process the strain gauges, and the
tuning potentiometers are used to adjust gains and offsets for all the signals. The power to the
board and the outgoing signals are carried by the large connector.

used to test all the signals coming from the sensor board. This board together with the modularity
of the whole system proved invaluable for debugging.

Physically routing the cables through the robot is somewhat of an art form. The arm was designed
so that the majority of cables could pass through the axes of the joints as shown in figure A-25.
This reduces the strain on the cables, and makes them less likely to break. The wires were passed
through the joints for the wrist and elbow units, but at the shoulder there were too many wires, so
they were passed around the joints.

A.9 Control hardware

The control for the arm joints was implemented using a home made motor board, illustrated in
figure A-26. This board contains all that is necessary to control two joints. The heart of the board
is a Motorola 6811 microcontroller which runs the control program. This is written in assembly
language and runs with a loop sampling rate of 2kHz. The 6811 has A/D converters which are used
to sample the analog inputs (joint angle, velocity, strain, rate of change of strain). Extra circuitry
processes the signals from the motor encoders. The board uses a PIC to generate the Pulse Width
Modulated (PWM) signal which is used to command power to the motors. An H-bridge motor
amplifier is also included on board which provides power to the motors.

The board communicates with a network of Motorola 68332 processors which perform all the
higher level processing for the arm, as shown in figure A-27. The communication is low bandwidth,
with the 68332’s and 6811’s exchanging 13 byte packets at around 50Hz. This motivated coding the
control law for force as well as the spring-like joint behavior in the 6811’s. The 68332’s thus send
commands such as the setpoint of the joint as well as the stiffness and damping at 50Hz. Data from
the robot, joint position, torque, etc. is thus also read at 50Hz.

The 68332 processors run a version of Common Lisp called L (Brooks, 1995). L is a multi-
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Figure A-22: Each joint has a strain gauge, which requires 6 wires, an encoder (4 four wires) and
a potentiometer (3 wires). These all require shields indicated by the + 1. Rather than pass these
cables all the way up the arm, a sensor board was used to process the signals and package the signals
into a fewer number of wires and cables. Each board manages two joints worth of electrical signals.
Although only 20 wires are required to carry all the signals, the connector had 25 pins, so the extra
wires were used to carry power and ground to the board.
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Figure A-23: Schematic of sensor board. The connectors for potentiometer, strain gauges, encoders
and spare channels are shown at the bottom, and the output connector at the top. This schematic
shows the circuit for one joint. The circuit for the second is identical.
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Figure A-24: Wiring diagram. The top half of the figure shows how the sensor cables from each set
of joints are passed back along the arm to connect with expansion boards, and then to the motor
controller boards (marked “6811”). Each sensor board handles the signals from two joints, and each
expansion board handles two sensor boards. Each motor controller can drive two motors. The lower
half of the figure shows the cables for the motor power. The dashed lines indicate where the arm
can be easily split apart, with the boxes aligned with the lines indicating connectors. Thus the wrist
joint can be removed by disconnecting only two connectors.
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Figure A-25: Figure showing how the sensor board (30) is mounted between the supports. The
cables from the sensor board (29), and those carrying power to the motor (28) are passed through
the tube and so up the arm. Arranging the cables in this way reduces strain on the wires, and
reduces the likelihood of cable breakages.
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processing LISP environment, which was convenient as a language to control the arms. The controller
for the arms was partitioned into different processes which communicated using shared variables.
The L Listener provided a simple way to connect, examine, spawn and kill processes. The 68332’s
are organized in a network as shown in figure A-27. The connection is also low bandwidth, using
dual-ported RAMs (DPRAMs) to share information.

For example, in the configuration shown in figure A-27, the 68332 labeled ‘POSTURE’ commu-
nicates the posture of the arm to the two processors which run the oscillators (‘LEFT OSC’ and
‘RIGHT OSC’). The ‘LEFT OSC’ and ‘RIGHT OSC‘ processors can communicate to implement
connections between the oscillators (as described in chapter 5). The command to the motors is
passed to the ‘LEFT ARM’ and ‘RIGHT ARM’ processors. Sensory signals from the arms are
passed through the ‘ARM’ processors to the ‘OSC’ processors.

The network of processors is distributed with low bandwidth communication both within the
network, and also with the arm joint controllers. This arrangement motivated some of the solutions
found in this thesis. The example has no global clock, or global synchronization. There is also no
direct communication between the joints.

Figure A-26: Photograph of motor controller board. Each board contains all the circuitry to drive
two series elastic actuators. Two Motorola 6811 microcontrollers implement the control law for the
actuators, with extra circuitry to process the signals from the motor encoders, and generate PWM
signals for the motor drives. A power amplifier is also included on board (at right hand end in this
picture. The 6811’s communicate with the higher level processors using a differentially driven serial
line, which connects to the large connector at the left hand end.

The code for the 68332’s is written and compiled on a Macintosh PowerPC. This computer acts
as a Front End Processor (FEP) for the network. The serial line is used to communicate with the
network, the serial communication being mediated by another 68332, dubbed the ‘InterFEP’. This
configuration is illustrated in figure A-28.

The DPRAM interface is used to connect to other parts of the robot. This is also shown in
figure A-28. For example, for the drumming in chapter 7, the auditory signal was detected using
a sound card in a PC running QNX, a real time UNIX. The auditory signal was communicated
through the DPRAM to the 68332 network. Referring to figure A-27, the auditory signal entered
the network through the ‘POSTURE’ processor, then was passed to the ‘OSC’ processors.
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Figure A-27: The figure shows the network of Motorola 68332 processors used for higher level control,
connected to the 6811 joint controllers. The connection between the ‘—ARM’ processors and the
6811s is low bandwidth, with 13 byte packages exchanged at around 50Hz. The communication in
the network is also slow, with dual ported RAMs (marked DP) used to share information between
the processors. The ‘POSTURE’ processor was used to generate the desired posture of the arm, the
‘—OSC’ processors integrated the oscillator equations, and the ‘—ARM’ processors communicated
with the joint level controllers.
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Figure A-28: The code for the 68332 network is written and compiled on the Front End Processor
(FEP), which is a Macintosh PowerPC computer. The FEP communicates with the network using
its serial port, the communication mediated by another 68332, the ‘InterFEP’. The 68332 network
can also receive input from other computers associated the robot. The robot vision system uses
a network of C40 Digital Signal Processors (Scassellati, 1998), which are attached to a network of
PC’s running QNX, a real time UNIX operating system. These are patched into the 68332 network
using the dual ported RAM interface.
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A.10 Hand design

The arm design does not include a design for the hand. In practice it was found to be relatively
easy to modify a simple paddle into a special purpose hand to grip cranks, hammers etc. without
requiring the extra design, control and weight of a dextrous hand. Velcro was used extensively as a
quick and surprisingly strong method of attaching objects to the hand of the robot.

A.11 Conclusion

This appendix has described the design of the arms used in this thesis. They are robust due to
their mechanical design and to the choice of actuators. The control system is somewhat slow and
low bandwidth, but given the stiffness of the arm this is not a difficulty. The low bandwidth and
slow communication forces the control system implemented to be robust, which is what has been
demonstrated in this thesis.
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Appendix B

Arm and oscillator parameter
tuning

This appendix covers some aspects of tuning of the oscillator parameters. Its describes the parame-
ters which need to be set, the automatic tuning methods which were used, and a sample procedure
for implementing a new rhythmic task using oscillators.

B.1 Parameters

For two arms with six degrees of freedom there are inevitably a large number of parameters that
need to be set. However, most of them can be fixed and not altered in normal operation. The
parameters are described below.

• Force control gains. These parameters control the performance of the force control in the
series elastic actuators, described in detail in appendix A. The parameters can be calibrated
once and then fixed. The calibration procedure involves tuning the PD control of force, usually
by commanding a square wave of force, and observing the closed loop behavior. The calibration
of the joint angles and velocities (described in appendix A) does not need to be particularly
accurate, mostly because the control implemented on top (the oscillator system) does not
require the arm to be accurately calibrated.

• Arm stiffness/damping. These parameters control the arm dynamic properties. There is
an upper limit on the arm stiffness due to noise in the sensors, as well as bandwidth limitations
of the force control. There is also an upper limit on damping, due to noise in the joint angle
sensors. The stiffness and damping for each joint of the arm can be set to reasonable values
and effectively fixed. Occasionally it is useful to alter the stiffness and damping of individual
joints, in order to reduce or accentuate their motion.

• Arm posture. The arm posture is important for the overall system behavior, and can be
easily set with one parameter per joint.

• High pass filters. There is a high pass filter on each oscillator input which removes the dc

component from the signal. In fact a low pass filter is used to calculate the offset and this is
subtracted from the input signal. A simple single pole digital filter was used with a cut-off
frequency of 0.2 Hz. This was fixed for all the oscillator experiments.

• Choice of oscillator input. In the work for this thesis there are two possible choices of input
parameter to the oscillators. The two signals used are joint angle θi and joint torque ui. There
is no reason to restrict the input signal to these parameters (for the jugging task in chapter 3
the ball trajectory was used, and auditory feedback was used for drumming in chapter 7. For
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any input signal, the describing function analysis described in chapter 3 is useful to determine
the approximate effect of the feedback.

The describing function analysis can also be used to help choose between joint angle and joint
torque. Williamson (1998b) and Williamson (1998a) describe the difference in some detail.
Appendix D describes the effect of torque feedback on oscillators coupled through the natural
dynamics (compared to the model in chapter 4).

The only major difference between the feedback types is that if torque feedback is used, it is
possible to get a solution where the arm is not moving, but the oscillators are entrained. The
oscillator outputs are entrained with internal forces. When the joint angle is used as input
this obviously cannot occur. This means that although the torque feedback could be used for
crank turning with one arm, it did not work with two arms. The torque feedback also appears
to be more sensitive to mechanical coupling, being appropriate for the Slinky toy described in
chapter 4 and appendix D.

• Oscillator parameters. The main parameters that need to be set are the tonic c in equation
(3.1) which determines the amplitude of the joint level oscillation, and τ1 which determines
the oscillator frequency. The third parameter is the input gain which as discussed in chapter 3
is rather robust. As long as this gain is large enough to cause entrainment, its particular value
does not appear to be important.

B.2 Automatic tuning

Since for most of the tasks described in this thesis, the system was set up to drive the resonant mode
of the arm-task system, the posture of the arm and the amplitudes of the oscillator motions were
the most important parameters to set. These have to be roughly correct to get the required motion,
but their exact values are not important. The other oscillator parameters are easy to set, with their
values being relatively unimportant.

The initial values of posture and amplitude can be set by hand to match a particular task, say for
example a new crank turning configuration. These values can then be modified using an automatic
tuning scheme, measuring the performance in the task, and adjusting the parameters accordingly.

The tightly coupled nature of the system makes most supervised learning techniques difficult to
apply. It would be difficult to calculate an “error” and then relate that error to the parameters
involved, especially given the different time-scales involved. The timing issue, as well as the rather
large state space makes reinforcement learning techniques also not appropriate. The best learning
techniques for this problem appear to be genetic algorithms, evolutionary strategies (Bäck and
Schwefel, 1993) and hill climbing (e.g. Rich and Knight (1991)). Initial experiments on a two degree
of freedom simulated arm suggested that the most effective strategy was hill climbing, and this was
implemented to tune the parameters of the real arms.

The learning algorithm was then

1. Make a small random change to the parameter vector.

• A number of strategies were tried here. The most successful was a technique called “run-
and-twiddle”. In this method the parameter vector is changed, and if the change causes
an increase in performance, then further changes to the parameter vector are made in
the same direction. This is continued until changing in that direction no longer gives an
increase in performance, at which point a new direction is tested.

2. Apply these parameters and test the performance.

• The performance evaluation generally included terms directly related to the task, as well
as terms related to the energy required to produce the motion. This then optimized for
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efficient motion. When using two arms the evaluation balanced the work between the two
arms by including terms for the total energy, and the difference in energy between the two
arms. The performance evaluation was sometimes noisy making the learning less robust.
The noise can be reduced by measuring performance a number of times and averaging
the results.

3. If the performance is better than ever before, keep the new parameter set and go to step 1. If
not, revert to old parameter vector and go to step 1.

• To prevent the learning being stuck in local minima, the new parameter setting was
accepted if the performance was within some small percentage of the maximum perfor-
mance. Simulated annealing could be used to apply this idea more rigorously, although
the simpler technique appeared to work well.

It is indicative of the robustness of the oscillator parameters that a simple learning algorithm like
this was successful for tuning. This was even the case when 10 or 12 parameters were tuned si-
multaneously. In the crank turning case (chapter 4), and also the hitting application (chapter 7)
there appeared to be a variety of parameter setting that gave efficient performance, which the hill
climbing algorithm was fairly quick to find.

B.3 Procedure for new task

The procedure of tuning the arm for a new task is described below, taking as an example the task
of pumping a bicycle pump.

1. Connect pump to arm, either with hand or special attachment.

2. Manouever arm to approximately correct posture for the pumping motion.

3. Adjust oscillator time constants for approximately the correct frequency.

4. Adjust oscillator amplitudes to create motion.

5. Adjust feedback gains to cause entrainment of the system. At this point it is easy to determine
which feedback type (angle or torque) works better.

6. If the system does not operate as intended: adjust posture, oscillator amplitudes, maybe stiffen
unused joints, adjust arm stiffness and damping.

If the automatic tuning is then required to further optimize the system performance, then

1. Find way to measure performance of the task. In the bicycle pump example this might be a
measure of the linear motion of the pump, or the airflow out the pump, as well as an estimate
of the energy expended by the arm to perform the task.

2. Select the parameters which should be tuned. The most important parameters are probably the
posture and the tonics (controlling the oscillator amplitudes), not only because these dictate
whether motion will occur, but also the quality of the final motion (matched to task, too
violent etc.).

3. Run hill climbing on the most important parameters.
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Appendix C

Oscillator Inputs

This appendix considers the effect of using linear inputs to the oscillator instead of the usual non-
linear inputs. Using linear inputs is not a good idea because they reduce the robustness of the
system.

The oscillator used throughout this thesis is governed by the following equations:

τ1ẋ1 = c− x1 − βv1 − γ[x2]+ − Σjhj[gj ]+ (C.1)
τ2v̇1 = [x1]+ − v1 (C.2)
τ1ẋ2 = c− x2 − βv2 − γ[x1]+ − Σjhj[gj ]− (C.3)
τ2v̇2 = [x2]+ − v2 (C.4)

yi = [xi]
+ = max(xi, 0) (C.5)

yout = [x1]+ − [x2]+ = y1 − y2 (C.6)

The input is applied through a max operator, so that the input inhibits the equation. For
example, when the input gj is positive, its only effect is in the x1 equation, making ẋ1 more negative.
The input can be applied without this non-linearity, replacing Σjhj [gj]+ by Σjhjgj and Σjhj [gj ]−

by −Σjhjgj.
The major effect of not using the non-linearity on the oscillator input is that the oscillator output

amplitude becomes dependent on the size of the input. This is illustrated in figure C-1, showing the
output amplitude of the oscillator with and without non-linear inputs. This affects the Bode plot
for the oscillator (shown in figure C-2), making the gains higher, and with a smaller range in gains
than for the non-linear input case. The phases for the two cases are approximately the same.

By reducing the variety of gains possible from the oscillator, using linear inputs reduces the
robustness of the system. In addition, it couples together the parameters which control input gain
(hj) with those controlling output amplitude (c), so making the tuning more complicated. Since
the output is not dependent on the input, the stability results discussed in chapter 6 do not hold
in their present form. A more rigorous determination of the H∞ norm of the oscillator is required
before the behaviors of systems coupled to an oscillator using linear inputs can be predicted.
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Figure C-1: sim Plot showing effect of using non-linearity on oscillator input on the oscillator output
amplitude. When the non-linearity is used, the oscillator output is approximately constant (solid
lines, where the multiple lines correspond to different frequencies). When the inputs are applied in a
linear fashion, the output amplitude is approximately proportional to the input amplitude (dash-dot
lines).
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Figure C-2: sim Describing function of oscillator with and without linear inputs. The top plots
show the Bode plot of the oscillator with linear inputs, and the lower plots with non-linear inputs.
When linear inputs are used, the gain of the oscillator is higher, and covers a lower range of gains
than with the non-linearity. This reduces the robustness of the oscillator to changing gains and
system parameters. The phases in both cases are similar.
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Appendix D

Oscillators and torque feedback

This appendix describes how the simple model of coupling introduced in chapter 4 is modified
when the joint torque, rather than the joint angle is used as the feedback signal to the oscillators.
The results are the same with the different feedback, the oscillators finding the resonant mode
of the underlying mechanical system. The use of this feedback is illustrated with the example of
coordinating two arms of the robot to pass a Slinky toy from hand to hand.

D.1 Torque feedback

1u u 2

m m1

k 1 k 2k T

θv1 θ1 θ2 θv2

c 1 c 2,,

2

Figure D-1: A simple model of coupling through the natural dynamics. The model consists of two
masses driven by oscillators, connected by a coupling spring kT .

The model of coupling when force or torque feedback is as shown in figure D-1. The only difference
is that instead of using the joint angle θ, the oscillator uses the joint torque u = k(θv − θ) − bθ̇ as
the feedback signal. Since each joint is effectively a mass-spring system, the joint torque is related
to the joint angle:

u = k(θv − θ)− bθ̇ = mθ̈

Using the describing function analysis, the effect of the oscillator can be written:

θv = gejφu = gejφ(−mω2)θ (D.1)

where m is the mass of the system. This alters the equation of the example coupled system to:(
k1 + kT + jωc1 −m1ω

2 −kT
−kT k2 + kT + jωc2 −m1ω

2

)(
Θ1

Θ2

)
=
(
−m1ω

2k1g1e
jφ1Θ1

−m2ω
2k2g2e

jφ2Θ2

)
(D.2)

For steady state solutions, the damping terms must be zero:

ωc1 + m1ω
2k1Im[g1e

jφ1 ] = ωc2 + m2ω
2k2Im[g2e

jφ2 ] = 0 (D.3)
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which implies that the imaginary parts of gie
jφi must be negative, and vary with 1/ω. Removing

the damping terms results in the eigenvalue problem:(
k1+kT

m1(1−Re[g1ejφ1 ])
−kT

m1(1−Re[g1ejφ1 ])
−kT

m2(1−Re[g2ejφ2 ])
k2+kT

m2(1−Re[g2ejφ2 ])

)(
Θ1

Θ2

)
= ω2

(
Θ1

Θ2

)
(D.4)

The torque feedback makes the effect of the oscillator on the coupled system dynamics more apparent
than in the angle feedback case. The effect of the oscillator is to alter the apparent inertia in
the system, changing the effect of mass m1 to m1(1 − Re[g1e

jφ1 ]), and similarly for mass m2.
Because of the oscillator properties, the values of phase for both oscillators will be similar, so
(1−Re[g1e

jφ1 ]) ≈ (1−Re[g2e
jφ2 ]). This results in the effect of the oscillator being a common factor

in (D.4), so only effecting the eigenvalues (the final frequency), not the eigenvectors (the mode
shape). The solutions to the damping constraint (D.3) have imaginary parts which are negative,
which due to the oscillator properties implies that the real parts will also be negative. This means
that the oscillator increases the apparent inertia of the system i.e. (1−Re[gejφ]) > 1.

The oscillator solutions are also locally stable using this feedback method, which is seen by
looking at the effect of amplitude changes on the damping in the system (see figure D-2).
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ω = 7.8

Figure D-2: sim Local stability under torque feedback. The plot shows N(jω,A) and the line
j2ζ/(ωωn) = jc1/(m1k1ω) plotted on the complex plane, with a sample limit cycle marked with a
2. The limit cycle can be shown to be locally stable by examining changes in the system damping
as the amplitude of oscillation A is varied. An increase in amplitude (in the direction of the arrow)
results in N(jω,A) > 2ζ/(ωωn), which is equivalent to an increase in damping by (D.3), and so a
reduction in the amplitude. A reduction in amplitude has the opposite effect, showing that the limit
cycle is locally stable.

D.2 Slinky example

The task chosen is the coordination of two arms of the robot using a Slinky toy. This is a good
example because it illustrates that the oscillators are sensitive to weak coupling as opposed to the
strong coupling in the crank turning case. As the Slinky is passed from hand to hand the weight
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on the hand varies, with the difference in weight being greatest when the hands are furthest apart.
This behavior could be approximated by a coupling spring which is weak and has a negative spring
constant, giving a larger force away from the central position. This can then be approximated by
the coupling model.

When the Slinky is placed between the two arms of the robot as shown in figure D-3, and the
joint torque is used as the feedback signal to the oscillators, the oscillators quickly find the anti-phase
motion. An in-phase motion is sometimes observed, but it does not appear to be a stable solution,
as small perturbations result in the out of phase motion. A sample time trace for the motion of the
two arms is illustrated in figure D-4, showing the effect of the torque feedback in coordinating the
two arms.

Figure D-3: Picture of Cog passing the Slinky toy from hand to hand. The two elbow joints are
used to move the hands up and down, where the coordination between the hands is given by the
interaction between the oscillator dynamics and the coupled arm-slinky system.

Data from the Slinky was taken, recording the frequencies, amplitudes and phases of the joint
motions as the natural frequency of the oscillator was varied. This data could then be used to
directly calculate the gain of the oscillators, and the mode of the Slinky. The process followed is
similar to that for the crank turning example described in chapter 4.

The damping constraint in the coupling model predicts that the imaginary part of the oscillator
action Im[g exp jφ] ∝ 1/ω, which is plotted in figure D-5. The constant of proportionality should be
−c/(km), making the slope negative. The data lies approximately on a straight line, with data at
very slow speeds not fitting on the line. The slope is negative as predicted by the theory.

A plot of the real parts of the oscillator actions is included in figure D-6. The model predicts that
the real parts should be proportional to m− kT /ω2. The graph shows the real part of the oscillator
action plotted against 1/ω2. The data falls on a positive slope line at high speeds, indicating that
the coupling stiffness kT is negative. At low frequencies the points do not lie on the line but appear
to fan out. This may be due to a change in the coupling type of the Slinky. At high speeds the
spring-like properties of the Slinky complement the transfer of mass from arm to arm, while at low
frequencies the coupling will only come from the mass. This may reduce the strength of the coupling,
giving rise to the points not lying on the same line.

These results show that the Slinky operation is a resonant mode. The oscillator quickly responds
to the resonant properties of the system and tunes automatically into the mode shape, which is
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Figure D-4: real Two examples of Slinky operation. Both plots show the outputs from the
oscillators as the torque feedback (dash-dot) is turned on and off. When the traces are in phase,
the Slinky is moving in anti-phase. When the feedback is on, the two arms are coordinated and
the outputs are synchronized, but when off, the oscillators are no longer synchronized. The only
connection between the oscillators is through the physical structure of the Slinky.

passing the Slinky from hand to hand. The behavior is also robust as shown in figure D-7, the
oscillators finding the correct coordination even when the oscillator time constant is doubled.

D.3 Conclusion

This appendix has shown that the effect of torque feedback on the oscillators is somewhat similar
to joint angle feedback in multi-joint motions. In both cases, the oscillator finds the resonant mode
of the system. The effect of the torque feedback is to increase the inertia of the system, as opposed
to alter the stiffness in the angle case. This means that the overall motion is often slower, and the
mode found by the oscillators is often the slower one in these cases. In addition, because the input
to the oscillator is the joint torque, it is possible to have a solution where the arm is completely still,
and the oscillators are pushing against one another, entrained with the internal forces.

The example with the Slinky toy showed that small forces can be used to entrain the oscillators,
and that the analysis from the model is useful in understanding the nature of the coupling. The
robustness of the system to parameter changes was also shown. The sensitivity of the oscillators to
the resonant mode makes them useful for tasks where the mechanical coupling is weak as well as
strong.
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Figure D-5: real Plot of Im[uTi K ′GejΦui] against 1/ω for the Slinky. The model predicts this to
be a linear relation with slope −c/(km). The data confirms this prediction, lying approximately on
a line of negative slope. At low frequencies (high values of 1/ω), the data does not lie on the same
line.
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Figure D-6: real Plot of Re[uTi K ′GejΦui] against 1/ω2 for the Slinky. The model predicts that
this relation should have a slope −kT . If the coupling from the Slinky is equivalent to a negative
spring, then the slopes of the data should be positive. This is shown in the plot. At low frequencies
the data does not lie on the same line, perhaps indicating that the type of coupling is changing to
one dominated by the transfer of the mass of the Slinky from arm to arm.
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Figure D-7: real Mode of Slinky operation. The top plot shows the amplitude θ1/θ2 of the Slinky
motion versus frequency as the natural frequency of the oscillator is changed. The lower plot shows
the phase between the two hands. Even though the frequency of the system approximately doubles
over this plot, the mode remains approximately constant. This indicates not only the robustness
of the oscillator solution, but also its ability to find the mode of the system as its final periodic
solution.


