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Abstract

Eye finding is the first step toward building a ma-
chine that can recognize social cues, like eye contact
and gaze direction, in a natural context. In this pa-
per, we present a real-time implementation of an eye
finding algorithm for a foveated active vision system.
The system uses a motion-based prefilter to identify
potential face locations. These locations are analyzed
for faces with a template-based algorithm developed by
Sinha (1996). Detected faces are tracked in real time,
and the active vision system saccades to the face us-
ing a learned sensorimotor mapping. Once gaze has
been centered on the face, a high-resolution image of
the eye can be captured from the foveal camera using
a self-calibrated peripheral-to-foveal mapping.

We also present a performance analysis of Sinha’s ra-
tio template algorithm on a standard set of static face
images. Although this algorithm performs relatively
poorly on static images, this result is a poor indica-
tor of real-time performance of the behaving system.
We find that our system finds eyes in 94% of a set of
behavioral trials. We suggest that alternate means of
evaluating behavioral systems are necessary.

Introduction
The ability to detect another creature looking at you
is critical for many species. Many vertebrates, from
snakes (Burghardt 1990), to chickens (Ristau 1991), to
primates (Povinelli & Preuss 1995), have been observed
to change their behavior based on whether or not eyes
are gazing at them. In humans, eye contact serves a
variety of social functions, from indicating interest to
displaying aggression (Nummenmaa 1964).
Eye direction can also be a critical element of so-

cial learning. Eye direction, like a pointing gesture,
serves to indicate what object an individual is currently
considering. While infants initially lack many social
conventions (understanding pointing gestures may not
occur until the end of the first year), recognition of
eye contact is present from as early as the first month
(Frith 1990; Thayer 1977). Detection of eye direc-
tion is believed to be a critical precursor of linguistic
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development (Scaife & Bruner 1975), theory of mind
(Baron-Cohen 1995), and social learning and scaffold-
ing (Wood, Bruner, & Ross 1976).
This paper presents the first steps on a developmen-

tal progression for building robotic systems that can
utilize eye direction as a social signal (Scassellati 1996).
The initial goal of our system is to obtain a high res-
olution image that contains an eye for further process-
ing. We present an algorithm for finding faces and eyes
in a cluttered environment. The algorithm that we
present has been implemented on a binocular, foveated
active vision system (Scassellati 1998), which is part
of a humanoid robot project (Brooks & Stein 1994;
Brooks et al. 1998).

Overview

The nature of the active vision system constrains our
implementation (Ballard 1989). Three copies of this
hardware system are currently in use, one on a hu-
manoid robot (see Figure 1) and two as desktop devel-
opment platforms (see Figure 2). Each has an identical
computational environment and very similar mechan-
ical and optical properties (Scassellati 1998). Similar
to other active vision systems (Sharkey et al. 1993;
Coombs 1992), there are three degrees of freedom; each
eye has an independent vertical axis of rotation (pan)
and the eyes share a joint horizontal axis of rotation
(tilt). We use a foveated vision system to gain both a
wide field of view while retaining a high acuity central
area, which is a rough approximation of the unequal dis-
tribution of photoreceptors on the human retina (Tsot-
sos 1988). Unlike other foveated systems (Kuniyoshi et
al. 1995; van der Spiegel et al. 1989), there are two
cameras per eye, one which captures a wide-angle view
of the periphery and one which captures a narrow-angle
view of the central (foveal) area.1
The active vision platform is attached to a parallel

network of digital signal processors (Texas Instruments
TMS320C40). Each node in the network contains one
processor with the option for more specialized hardware

1The peripheral camera has an approximate field of view
of 120◦, while the foveal camera has an approximate field of
view of 20◦.



Figure 1: At left, Cog, an upper-torso humanoid robot.
At right, a close-up of Cog’s active vision system.

Figure 2: One of the desktop active vision development
platforms used in this work.

for capturing images, performing convolution quickly,
or displaying images to a VGA display. Nodes may be
connected with arbitrary bi-directional hardware con-
nections, and distant nodes may communicate through
virtual connections. Each camera is attached to its own
frame grabber, which can transmit captured images to
connected nodes.
The initial goal of our system is to obtain high res-

olution images of the eyes of a person anywhere in the
robot’s environment. Because the peripheral camera
has a very wide field of view (see Figure 5), we cannot
extract eye features from this image. Just as humans
must foveate an object to discriminate fine detail, our
foveal cameras must be pointed in the direction of a
given object in order to provide sufficient resolution.
Other research has focused on the tracking of eyes and
facial features for video conferencing (Graf et al. 1996;
Maurer & von der Malsburg 1996), as a user inter-
face (Baluja & Pomerleau 1994; Heinzmann & Zelinsky
1997), or in animation (Terzopoulous & Waters 1991),
however, these techniques generally begin with cali-
brated high resolution images where the face dominates
the visual field. Our behavioral goal also provides a con-
straint on the speed and accuracy of the processing; we

are not as concerned with missing a face in a single im-
age since we will have another opportunity to detect in
the next frame. Highly accurate (and computationally
expensive) techniques for face and eye detection (Row-
ley, Baluja, & Kanade 1995; Turk & Pentland 1991;
Sung & Poggio 1994) may not be necessary. Finally, to
better fit with the goals of building social skills devel-
opmentally (Scassellati 1996), we prefer an implemen-
tation that is biologically plausible.
Our strategy for finding eyes decomposes into the fol-

lowing five steps:
1. The incoming wide-field image is filtered using mo-

tion and past history to find potential face locations.
2. For each potential face location, a face detection algo-

rithm based on ratio templates (Sinha 1996) is used
to verify the presence of a face.

3. The face location with the highest score is selected
and the active vision system saccades to that face
using a learned sensorimotor mapping.

4. With the template estimate of the eye locations, and
a self-calibrated peripheral-to-foveal mapping, the lo-
cation of the eye in the foveal image is computed.

5. A high-resolution foveal image of the eye is captured
for further processing.

We begin with a detailed discussion of the ratio tem-
plate face detection algorithm, and then discuss the pre-
filtering technique that we use to enable the algorithm
to run in real time.

Finding Faces
Our choice of a face detection algorithm was based on
three criteria. First, it must be a relatively simple com-
putation that can be performed in real time. Second,
the technique must perform well under social condi-
tions, that is, in an unstructured environment where
people are most likely to be looking directly at the
robot. Third, it should be a biologically plausible tech-
nique. Based on these criteria, we selected the ratio
template approach described by Sinha (1994).
The ratio template algorithm was designed to detect

frontal views of faces under varying lighting conditions,
and is an extension of classical template approaches
(Sinha 1996). While other techniques handle rotational
invariants more accurately (Sung & Poggio 1994), the
simplicity of the ratio template algorithm allows us to
operate in real time while detecting faces that are most
likely to be engaged in social interactions. Ratio tem-
plates also offer multiple levels of biological plausibility;
templates can be either hand-coded or learned adap-
tively from qualitative image invariants (Sinha 1994).
A ratio template is composed of a number of regions

and a number of relations, as shown in Figure 3. For
each target location in the grayscale peripheral image,
a template comparison is performed using a special set
of comparison rules. Overlaying the template with a
14 pixel by 16 pixel grayscale image patch at a po-
tential face location, each region is convolved with the



grayscale image to give the average grayscale value for
that region. Relations are comparisons between region
values, for example, between the “left forehead” region
and the “left temple” region. The relation is satisfied
if the ratio of the first region to the second region ex-
ceeds a constant value (in our case, 1.1). This ratio
allows us to compare the intensities of regions without
relying on the absolute intensity of an area. In Figure
3, each arrow indicates a relation, with the head of the
arrow denoting the second region (the denominator of
the ratio). This template capitalizes on illumination-
invariant observations. For example, the eyes tend to
be darker than the surrounding face, and the nose is
generally brighter than its surround. We have adapted
the ratio template algorithm to process video streams.
In doing so, we require the absolute difference between
the regions to exceed a noise threshold, in order to elim-
inate false positive responses for small, noisy grayscale
values.

Figure 3: A 14 pixel by 16 pixel ratio template for
face detection. The template is composed of 16 regions
(the gray boxes) and 23 relations (shown by arrows).
Adapted from Sinha (1996).

The ratio template algorithm can easily be modified
to detect faces at multiple scales. Multiple nodes of the
parallel network run the same algorithm on different
sized input images, but without changing the size of
the template. This allows the system to respond more
quickly to faces that are closer to the robot, since closer
faces are detected in smaller images which require less
computation. With this hardware platform, a 64 × 64
image and a 14×16 template can be used to detect faces
within approximately three to four feet of the robot.
The same size template can be used on a 128 × 128
image to find faces within approximately ten feet of the
robot.

Improving the Speed of Ratio Templates
To improve the speed of the ratio template algorithm,
we have implemented two optimizations: an early-abort
scheme and a motion-based prefilter.

At the suggestion of Sinha (1997), we further classi-
fied the relations of our ratio-template into two cate-
gories: eleven essential relations, shown as solid arrows
in Figure 3, and twelve confirming relations, shown as
dashed arrows. We performed a post-hoc analysis of
this division upon approximately ten minutes of video
feed in which one of three subjects was always in view.
For this post-hoc analysis, an arbitrary threshold of
eighteen of the twenty-three relations was required to be
classified as a face. This threshold eliminated virtually
all false positive detections while retaining at least one
detected face in each image. An analysis of the detected
faces indicated that at least ten of the eleven essential
relations were always satisfied. None of the confirm-
ing relations achieved that level of specificity. Based on
this analysis, we established a new set of thresholds for
face detection: ten of the eleven essential relations and
eight of the twelve confirming relations must be satis-
fied. As soon as two or more of the essential relations
have failed, we can reject the location as a face. This
increases the speed of our computation by a factor of 4,
as shown in Table 1, without any observable decrease
in performance.
To further increase the speed of our computation, we

use a pre-filtering technique based on motion. The pre-
filter allows us to search only locations that are likely
to contain a face. Consecutive images are differenced,
thresholded, and then convolved with a 14× 16 kernel
of unitary value (the same size as the ratio template) in
order to generate the average amount of super-threshold
movement for each potential face location. If that aver-
age motion value for a location exceeds threshold, then
that location is a candidate for face detection. For each
incoming frame, a location is a potential target for the
face detection routine if it has had motion within the
last five frames, if the ratio template routine verified a
face in that location within the last five frames, or if
that location had not been checked for faces within the
last three seconds. In this way, we capture faces that
have just entered the field of view (through the motion
clause) and faces that have stopped moving (through
the past history clause). The prefilter also resets every
three seconds, allowing the system to re-acquire faces
that have dropped below the noise threshold. The pre-
filter automatically resets any time the active system
moves, since this generates induced motion of the vi-
sual field. This filtering technique increased the speed
of the face detection routines by a factor of five for
64× 64 images and a factor of eight for 128× 128 im-
ages (see Table 1). The smaller image size appeared to
saturate at 20 Hz due to constant computational loads
in the rest of the system, primarily from drawing dis-
play images to a VGA display. The filtering technique
greatly reduced the number of background locations to
be searched without any observable loss of accuracy.

Static Evaluation of Ratio Templates
To evaluate the static performance of the ratio template
algorithm, we ran the algorithm on a test set of static



Image Detection Method
Size Template + Early- + Prefilter

Reject
64 × 64 1 Hz 4 Hz 20 Hz
128 × 128 .25 Hz 1 Hz 8 Hz

Table 1: Processing speed for two image sizes with var-
ious optimizations. The original ratio template method
is enhanced by a factor of four with the addition of the
early-reject optimization, and by an additional factor of
five to eight by the prefilter optimization. The system
saturated near 20 Hz due to constant computational
loads in other parts of the network. All statistics are
for a single TMS320C40 node with no other processes.

face images first used by Turk and Pentland (1991).
The database contains images for 16 subjects, each pho-
tographed under three different lighting conditions and
three different head rotations.
To test lighting invariance, we considered only the

images with an upright head position at a single scale,
giving a test set of 48 images under lighting conditions
with the primary light source at 90 degrees, 45 degrees,
and head-on. Figure 4 shows the images from two of
the subjects under each lighting condition. The ratio
template algorithm detected 34 of the 48 test faces. Of
the 14 faces that were missed, nine were the result of
three subjects that failed to be detected under any light-
ing conditions. One of these subjects had a full beard,
while another had very dark rimmed glasses, both of
which seem to be handled poorly by the static detec-
tion algorithm. Of the remaining five misses, two were
from the 90 degree lighting condition, two from the 45
degree lighting condition, and one from the head-on
condition. While this detection rate (71%) is consid-
erably lower than other face detection schemes (Row-
ley, Baluja, & Kanade 1995; Turk & Pentland 1991;
Sung & Poggio 1994), this result is a poor indicator of
the performance of the algorithm in a complete, behav-
ing system, as we will see below.
Using the real-time system, we determined approxi-

mate rotational ranges of the ratio template algorithm.
Subjects began looking directly at the camera and then
rotated their head until the system failed to detect a
face. Across three subjects, the average ranges were
±30 degrees pitch, ±30 degrees yaw, and ±20 degrees
roll.

Finding Eyes
Once a face has been detected, the active vision sys-
tem must accurately saccade to that location, bring-
ing the foveal camera into position to capture a high-
resolution image of the eye. To solve this sensorimotor
problem, we could build an accurate kinematic and dy-
namic model of the robotic system and use that model
to compute saccade motions. However, the kinematic
solution is difficult to characterize accurately, taking
into account the misalignments of the cameras, the op-

Figure 4: Six of the static test images from Turk and
Pentland (1991) used to evaluate the ratio template
face detector. Each face appears in the test set with
three lighting conditions, head-on (top), from 45 de-
grees (middle), and from 90 degrees (bottom). The ra-
tio template correctly detected 71% of the faces in the
database, including each of these faces except for the
middle image from the first column.

tical imperfections, and the imperfect construction of
any real system (Ballard 1989). An accurate kine-
matic solution is also extremely hardware dependent;
the kinematic solution for one of the development plat-
forms would differ significantly from the solution for the
active vision system of the humanoid robot.
An alternative is to learn the functional mapping be-

tween the position of the target on the image plane and
the motor commands necessary to foveate that object.
A learned solution can be adapted not only for each in-
stance of a hardware platform, but also each time a spe-
cific hardware platform undergoes some kind of change.
We desire the system to be completely self-supervised
and on-line so that learning can proceed continuously
and without any human intervention.
Because the ratio template algorithm gives us an im-

plicit location for the eyes within a verified face, we
need to solve only two problems: how to learn to sac-
cade to the target face, and how to map the locations
in the peripheral image to locations in the foveal image.
We choose to saccade to the target face, and then to re-
locate the position of the face in the peripheral image,
not only to resist noise in the saccade mapping but also
to allow for slight movements of the subject during the
saccade.



Figure 6: Six detected faces and eyes. The lower image of each pair shows the post-saccade location of the detected
face. The upper image of each pair shows the section of the foveal image obtained from mapping the peripheral
template location to the foveal coordinates. Only faces of a single scale (roughly within four feet of the robot) are
shown here.

Figure 5: An example face in a cluttered environ-
ment. The 128x128 grayscale image was captured by
the active vision system, and then processed by the pre-
filtering and ratio template detection routines. One face
was found within the image, and is shown outlined.

Saccading to a Face
The problem of saccading to a visual target can be
viewed as a function approximation problem, where the

equation
�S(�e, �x) �→ ∆�e (1)

defines the saccade function �S which transforms the
current motor positions �e and the location of a target
stimulus in the image plane �x to the change in motor
position necessary to move that target to the center of
the visual field.
Marjanović, Scassellati, and Williamson (1996)

learned a saccade function for this hardware platform
using a 17 × 17 interpolated lookup table. The map
was initialized with a linear set of values obtained from
self-calibration. For each learning trial, a visual target
was randomly selected. The robot attempted to sac-
cade to that location using the current map estimates.
The target was located in the post-saccade image using
correlation, and the L2 offset of the target was used as
an error signal to train the map. The system learned to
center pixel patches in the peripheral field of view. The
system converged to an average of < 1 pixel of error
in a 128× 128 image per saccade after 2000 trials (1.5
hours). With this map implementation, a face could be
centered in the peripheral field of view. However, this
does not necessarily place the eye in a known location
in the foveal field of view. We must still convert an
image location in the peripheral image to a location in



the foveal image.

Mapping Peripheral to Foveal Images
After the active vision system has saccaded to a face,
the face and eye locations from the template in the pe-
ripheral camera are mapped into the foveal camera us-
ing a second mapping. This mapping matches a rect-
angular region of pixels in the peripheral image with
a (larger) rectangular region of pixels in the foveal im-
age. To estimate this function, four parameters must
be determined: the scale factor in each dimension be-
tween the peripheral and foveal images (to determine
the size of the foveal rectangle), and the offset between
the peripheral rectangle and the foveal rectangle in each
dimension.
To estimate the difference in scale between the two

cameras, we exploit the active nature of the system. We
can estimate the difference in scale factors by moving
the eyes at a constant velocity and observing the rates
of optical flow of a background patch. The ratio of the
flow rates is the ratio of the scale between the cameras.
To accomplish this, the system first verifies that there
is no motion within the field of view, using the motion
detection routines established for the prefilter. The sys-
tem then selects a patch of background pixels from the
center of the field of view. Once the eye begins moving,
a simple correlation-based tracking algorithm monitors
the rate that the peripheral and foveal patches move.
While it is possible to estimate both the horizontal and
vertical scale factors in one movement, the initial imple-
mentation of this system used separate horizontal and
vertical motions to estimate the scale parameters. For
both the development platform and the active vision
head of the humanoid robot, the scale factors in both
the horizontal and vertical dimensions was 4.0. The
scale factor is a function of the differences in the cam-
eras and lenses, not in the alignment of the cameras.
This value is thus stable between the eyes and through-
out the lifetime of the system.
Once we have an estimation of the scale factors, we

can find the differences in offset position using image
correlation. The foveal image is scaled down by the
computed ratios. The scaled-down image can then be
correlated with the peripheral image to find the best
match location. Because the foveal and peripheral cam-
eras are aligned vertically, the depth of the patch being
considered can affect the row position of the best match.
For our initial estimates of this function, we record the
correlation when the ratio template algorithm, running
at a specific scale, has detected a face. This gives us an
estimate of where the face occurs in the foveal image
for faces of this size. This method is imprecise, but ob-
tains results that are sufficient for the overall behavior
of the complete system. For one ratio template scale
running on the development platform, the best match
for the left eye was located at an offset of 168 rows
and 248 columns, and at an offset of 184 rows and 250
columns for the right eye (based on 512× 512 images).
We expect slightly different values for each eye, since

the offset values are affected by misalignments in the
individual camera mountings.
Once this mapping has been obtained, whenever a

face is foveated we can extract the image of the eye from
the foveal image. This extracted image is then ready
for further processing. Figure 5 shows the result of the
face detection routines on a typical grayscale image be-
fore the saccade. After the face was detected, the sys-
tem saccaded to that position, converted the template-
specified eye location in the peripheral image to a foveal
bounding box, and extracted the portion of the foveal
image. Examples of this process are shown in Figure
6. While the peripheral image has barely enough infor-
mation to detect the face, the foveal image contains a
great deal of detail.

Evaluation
The evaluation of this system must be based on the
behavior that it produces, which can often be difficult
to quantify. The system succeeds when it eventually
finds a face and is able to extract a high resolution im-
age of an eye. However, to compare the performance
of the entire system with the performance of the ratio
template algorithm on static images, a strawman quan-
titative analysis of a single behavior was studied. To
simplify the analysis, we considered only a single scale
of face detection, requiring the subjects to sit within 4
feet of one of the active vision platforms. The subject
was to remain stationary during each trial, but was en-
couraged to move to different locations between trials.
These tests were conducted in the complex, cluttered
background of our laboratory workspace (identical to
Figure 5).
For each behavioral trial, the system began with the

eyes in a fixed position, roughly centered in the visual
field. The system was allowed one saccade to foveate the
subject’s right eye (an arbitrary choice). The system
used the prefiltering and ratio template face detection
routines to generate a stream of potential face locations.
Once a face was detected, and remained stable (within
an error threshold) for six cycles (indicating the per-
son had remained stationary), the system attempted
to saccade to that location. In a total of 140 trials
distributed between 7 subjects, the system extracted a
foveal image that contained an eye on 131 trials (94%
accuracy). Of the missed trials, two resulted from an
incorrect face identification (a face was falsely detected
in the background clutter), and seven resulted from ei-
ther an inaccurate saccade or motion of the subject.
This quantitative analysis of the system is extremely

promising. However, the true test of the behavioral
system is in eventually obtaining the goal. Even in this
simple analysis, we can begin to see that the total be-
havior of the system may be able to correct for errors
in individual components of the system. For example,
one incorrect face identification was a temporary effect
between part of the subject’s clothing and the back-
ground. Once the system had shifted its gaze to the
(false) face location, the location no longer appeared



face-like. Without the arbitrary imposition of behav-
ioral trials, the natural behavior of the system would
then have been to saccade to what it did consider a
face, achieving the original goal. Also, in some failures
that resulted from incorrect saccades, the system cor-
rectly identified a face location but failed to center that
location due to an incompletely trained saccade map.
The system extracted only a portion of the eye in these
cases. The saccade map is extremely non-linear in the
far reaches of the visual field due to the extremely wide
field of view of the peripheral cameras (as described in
Scassellati (1998)). If the system had been allowed to
continue behaving, rather than being forced into the
next trial, it would again have detected a face, this
time very close to the center of the field of view and
within the well-trained region of the saccade map, and
corrected for its slight error.
If our behavioral test had allowed for a second chance

to obtain the goal, the failure rate can be estimated as
the product of the failure rates for each individual trial.
If we assume that these are independent saccades, the
probability of failure for a two-attempt behavior be-
comes 0.06 × 0.06 = .0036. As we allow for more and
more corrective behavior, the stability of the system in-
creases. While individual trials are probably not com-
pletely statistically independent, we can see from this
example how the behavior of the system can be self-
stabilizing without requiring extremely accurate per-
ceptual tools.
Issues like these make quantitative analysis of be-

having systems difficult, and often misleading (Brooks
1991). Our system does not require a completely
general-purpose face recognition engine. In a real-world
environment, the humans to whom the robot must at-
tend in order to gain the benefits of social interaction
are generally cooperative. They are attempting to be
seen by the robot, keeping their own attention focused
on the robot, facing toward it, and often unconsciously
moving to try to attract its attention. Further, the sys-
tem need not be completely accurate on every timestep;
its behavior need only converge to the correct solution.
If the system can adequately recognize these situations,
then it has fulfilled its purpose.

Future Work

The eye detection system presented here performs the
localization task reasonably well. However, there are
still many open research questions, and many imple-
mentation details that require additional support, in-
cluding:

• A better arbitration scheme for multiple faces at mul-
tiple scales.

• Additional tolerance to face rotation.

• Depth-based prefiltering.

• A richer characterization of the peripheral to foveal
map to include depth discrepancies.

• Continuous smooth-pursuit tracking for acquired
faces.

These additions will enhance the richness of the overall
behavior of the system.
This paper has presented the first step toward build-

ing social skills for a humanoid robot. With the ability
to obtain high resolution images of eyes, it is possible for
the system to detect eye contact and to identify where
a person is looking. Building a general system that can
recognize direction of gaze requires the following addi-
tional competencies:

• The ability to detect head and eye orientation.

• The ability to integrate head and eye orientation to
produce a visual gaze angle.

• The ability to extrapolate a gaze angle toward an
object in the world (perhaps utilizing a rough depth
map).

These research areas in turn lead to more interesting
social behaviors, allowing a human-like robot to interact
with humans in a natural, social context and providing
a mechanism for social learning.

Conclusions
This paper has presented an eye and face finding sys-
tem for a foveated active vision system. The basic
face detection algorithm was based on the ratio tem-
plate design developed by Sinha (1996) and adapted
for the recognition of frontal views of faces under vary-
ing lighting conditions. We have further developed this
algorithm to increase the processing speed by a factor
of twenty by using a combination of early-abort detec-
tion and a motion-based prefilter. While this algorithm
performed relatively poorly on a standard test set of
static face images, this measurement was a poor indi-
cator of how the algorithm would perform on live video
streams. By utilizing a pair of learned sensorimotor
mappings, our system was capable of saccading to faces
and extracting high resolution images of the eye on 94%
of trials. However, even this statistic was misleading,
since the behavior of the overall system eventually cor-
rected for trials where the first saccade missed the tar-
get. To further evaluate behaving systems in complex
environments, more refined observation techniques are
necessary.
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