
Self-Taught Visually-Guided Pointing for a Humanoid Robot

Matthew Marjanovi�c, Brian Scassellati, Matthew Williamson�

545 Technology Square

Room NE43-920

Cambridge, MA 02139

maddog@ai.mit.edu, scaz@ai.mit.edu, matt@ai.mit.edu

Abstract

The authors implemented a system which

performs a fundamental visuomotor coordina-

tion task on the humanoid robot Cog. Cog's

task was to saccade its pair of two degree-of-

freedom eyes to foveate on a target, and then

to maneuver its six degree-of-freedom com-

pliant arm to point at that target. This task

requires systems for learning to saccade to vi-

sual targets, generating smooth arm trajec-

tories, locating the arm in the visual �eld,

and learning the map between gaze direc-

tion and correct pointing con�guration of the

arm. All learning was self-supervised solely

by visual feedback. The task was accom-

plished by many parallel processes running

on a seven processor, extensible architecture,

MIMD computer.

1 Introduction

This paper is one of a series of developmental snap-

shots from the Cog Project at the MIT Arti�cial

Intelligence Laboratory. Cog is a humanoid robot

designed to explore a wide variety of problems in ar-

ti�cial intelligence and cognitive science (Brooks &

Stein 1994). To date our hardware systems include

a ten degree-of-freedom upper-torso robot, a multi-

processor MIMD computer, a video capture/display

system, a six degree-of-freedom series-elastic actu-

ated arm, and a host of programming language and

�The authors receive support from a National Science

Foundation Graduate Fellowship, a National Defense Science

and Engineering Graduate Fellowship, and JPL Contract #

959333, respectively. Support for the Cog project is pro-

vided by an ONR/ARPA Vision MURI Grant (No. N00014-

95-1-0600), a National Science Foundation Young Investiga-

tor Award (No. IRI{9357761) to Professor Lynn Andrea Stein,

and by the J.H. and E.V. Wade Fund. Any opinions, �ndings,

conclusions or recommendations expressed in this material are

those of the authors and do not necessarily re
ect the views

of our sponsors.

support tools (Brooks 1996, Brooks, Bryson, Mar-

janovic, Stein, & Wessler 1996). This paper focuses

on a behavioral system that learns to coordinate vi-

sual information with motor commands in order to

learn to point the arm toward a visual target. Re-

lated work on Cog is also being presented at this

conference, see (Ferrell 1996, Williamson 1996). Ad-

ditional information on the project background can

be found in (Brooks & Stein 1994, Irie 1995, Mar-

janovic 1995, Matsuoka 1995, Pratt & Williamson

1995, Scassellati 1995).

Given the location of an interesting visual stimu-

lus in the image plane, the task is to move the eyes

to foveate on that stimulus and then move the arm

to point to that visual location. We chose this task

for four reasons: First, the task is a fundamental

component of more complex tasks, such as grasping

an object, shaking hands, or playing \hide-and-seek"

with small toys. Second, reaching to a visually stim-

ulating object is a skill that children develop at a

very early age (before the 5th month), and the devel-

opment of this skill is itself an active area of research

(Diamond 1990). Third, the task speci�cation can

be reformulated as a variety of behavioral responses.

The task can be viewed as a pointing behavior (to

show the location of a desired object), a reaching be-

havior (to move the arm to a position where the hand

can begin to grasp an object), a protective re
ex (to

move the arm to intercept a dangerous object), or

even as an occlusion task (to move the arm to block

out bright lights or to hide an object from sight like

the children's game \peek-a-boo"). Finally, the task

requires integration at multiple levels in our robotic

system.

To achieve visually-guided pointing, we construct

a system that �rst learns the mapping from camera

image coordinates ~x = (x; y) to the head-centered

coordinates of the eye motors ~e = (pan; tilt) and

then to the coordinates of the arm motors ~� =

(�0:::�5). An image correlation algorithm constructs

a saccade map ~S : ~x ! ~e, which relates positions in

the camera image with the motor commands nec-

essary to foveate the eye at that location. Our

task then becomes to learn the ballistic movement

mapping from head-centered coordinates ~e to arm-

centered coordinates ~�. To simplify the dimension-

ality problems involved in controlling a six degree-of-

freedom arm, arm positions are speci�ed as a linear

combination of basis posture primitives. The ballis-

tic mapping ~B : ~e ! ~� is constructed by an on-line

learning algorithm that compares motor command

signals with visual motion feedback clues to localize

the arm in visual space.

The next section describes the hardware of Cog's

visual system, the physical design of the arm, and

the computational capabilities of Cog. Section 3

gives a functional overview of the parallel processes

that cooperate to achieve the pointing task. Sec-

tion 4 describes details of the visual system: how

the saccade map is learned and how the end of the

arm is located in the visual �eld. Section 5 details

the decomposition of arm movements into a set of

linearly separable basic postures, and the learning

algorithms for the ballistic map are explained in Sec-

tion 6. Preliminary results of this learning algorithm

and continuing research e�orts can be found in Sec-

tion 7.

2 Robot Platform

This section gives a brief speci�cation of the phys-

ical subsystems of Cog (see Figures 1 and 2) that

are directly relevant to our pointing task. We will

describe the visual inputs that are available, the de-

sign and physical characteristics of the arm, and the

processing capabilities of Cog's \brain". We have

compressed much detail on the Cog architecture into

this section for those readers interested in observing

the progress of the project as a whole. Readers inter-

ested only in the pointing task presented here may

omit many of these details.

2.1 Camera System

To approximate human eye movements, the camera

system has four degrees-of-freedom consisting of two

active \eyes" (Ballard 1989). Each eye can rotate

about a vertical axis (pan) and a horizontal axis

(tilt). Each eye consists of two black and white CCD

cameras, one with a wide peripheral �eld of view

(88:6�(V)�115:8�(H)) and the other with a narrow

foveal view (18:4�(V) � 24:4�(H)). Our initial ex-

periments with the pointing task have used only the

wide-angle cameras.

Figure 1: Cog, an upper-torso humanoid robot. Cog

has two degrees-of-freedom in the waist, one in the

shoulder, three in the neck, six on the arm, and two

for each eye.

The analog NTSC output from each camera is dig-

itized by a custom frame grabber designed by one of

the authors. The frame grabbers subsample and �l-

ter the camera signals to produce 120�120 images in

8-bit grayscale, which are written at a frame rate of

30 frames per second to up to six dual-ported RAM

(DPRAM) connections. Each DPRAM connection

can be linked to a processor node or to a custom

video display board. The video display board reads

images simultaneously from three DPRAM slots and

produces standard NTSC output, which can then be

routed to one of twenty video displays.

2.2 Arm Design

The arm is loosely based on the dimensions of a hu-

man arm, and is illustrated in Figure 1. It has 6

degrees-of-freedom, each powered by a DC electric

motor through a series spring (a series elastic actu-

ator, see (Pratt & Williamson 1995)). The spring

provides accurate torque feedback at each joint, and

protects the motor gearbox from shock loads. A low

gain position control loop is implemented so that

each joint acts as if it were a virtual spring with

variable sti�ness, damping and equilibrium position.

These spring parameters can be changed, both to

move the arm and to alter its dynamic behavior. Mo-

tion of the arm is achieved by changing the equilib-

rium positions of the joints, not by commanding the

Figure 2: Supporting structure for Cog. The \brain"

of the robot is a MIMD computer which occupies

the racks in the center of this image. Video from the

cameras or from the brain is displayed on a bank

of twenty displays shown on the left. User interface

and �le storage are provided by a Macintosh Quadra.

Cog itself is on the far right.

joint angles directly. There is considerable biological

evidence for this spring-like property of arms (Zajac

1989, Cannon & Zahalak 1982, MacKay, Crammond,

Kwan & Murphy 1986).

The spring-like property gives the arm a sensible

\natural" behavior: if it is disturbed, or hits an ob-

stacle, the arm simply de
ects out of the way. The

disturbance is absorbed by the compliant character-

istics of the system, and needs no explicit sensing or

computation. The system also has a low frequency

characteristic (large masses and soft springs) which

allows for smooth arm motion at a slower command

rate. This allows more time for computation, and

makes possible the use of control systems with sub-

stantial delay (a condition akin to biological sys-

tems). The spring-like behavior also guarantees a

stable system if the joint set-points are fed-forward

to the arm.

2.3 Computational System

The computational control for Cog is split into two

levels: an on-board local motor controller for each

motor, and a scalable MIMD computer that serves

as Cog's \brain." This division of labor allows for

an extensible and modular computer while still pro-

viding for rapid, local motor control.

Each motor has its own dedicated local motor con-

troller, a special purpose board with a Motorola

6811HC11E2 microcontroller, which reads the en-

coder, performs servo calculations, and drives the

motor with a 32KHz pulse-width modulated signal.

For the eyes, the microcontroller implements a PID

control law for position and velocity control, which is

optimized for saccadic movement. For the arms, the

microcontroller generates a virtual spring behavior

at 1kHz. Similar motor control boards, with device-

speci�c control programs, are used for body and neck

motors.

Cog's \brain" is a scalable MIMD computer con-

sisting of up to 239 processor nodes (although only

eight are in use so far). During operation, the brain

is a �xed topology network. However, the topol-

ogy can be changed and scaled by adding additional

nodes and connections. All components of the pro-

cessing system communicate through 8K by 16 bit

DPRAM connections, so altering the topology is rel-

atively simple. Each node uses a standard Motorola

serial peripheral interface (SPI) to communicate sen-

sory information and control loop parameters with

up to eight motor control boards at 50Hz. Each pro-

cessor node contains its own 16MHz Motorola 68332

microprocessor mounted on a custom-built carrier

board that provides support for the SPI communi-

cations and eight DPRAM connections. A Macin-

tosh Quadra is used as the front-end processor for

the user interface and �le service (but not for any

computation). Communication between the Quadra

and the nodes of the MIMD computer is handled by

a custom-built packet multiplexer box.

Each processor runs its own image of L, a compact,

downwardly compatible version of Common Lisp

that supports multi-tasking and multi-processing

(Brooks 1996); and each uses IPS, a front end to L

that supports communication between multiple pro-

cesses (Brooks et al. 1996).

3 Task Overview

Figure 3 shows a schematic representation of the sys-

tem architecture, at the process and processor level.

The system can be decomposed into three major

pieces, each developed semi-independently: visual,

arm motor, and a ballistic map. The visual system

is responsible for moving the eyes, detecting motion,

and �nding the end of the arm. The arm motor sys-

tem maintains the variable-compliance arm and gen-

erates smooth trajectories between endpoints spec-

i�ed in a space of basis arm postures. The ballis-

tic mapping system learns a feed-forward map from

gaze position to arm position and generates reaching

commands. Each of these subsystems is described in

greater detail below.

Arm Motors

Eye Motors

 Reach
Generator

Ballistic
 Map

B.M. Trainer

 Saccade
Generator

ArmMaster Arm
Driver

Ballistic Mapping

Arm Control

 Motion
Segmentation

 Motion
Detection

 Frame
Grabbers

Saccade
 Map

S.M. Trainer

Visual

NeckMaster

Neck Motors

Neck Control

a t
arg

et

a

p
o
s
i
t
i
o
n

e
po
si
ti
on

x position

a target

(e,a) (e,de)

t
r
i
g
g
e
r
s

Attention
Gateway

Calibrator

 Motor
Handlers

e

t
a
r
g
e
t

Figure 3: Schematic representation of the system architecture. Solid boxes are processes, dashed boxes

indicate processor nodes. Messages pass between processors via dual-ported RAM connections. Image

coordinates are represented by ~x positions, head-centered coordinates are represented by pan and tilt encoder

readings ~e, and arm positions are represented as linear combinations of the basis postures ~�.

For this �rst large-scale integration task imple-

mented on Cog, we strove to meet a number of con-

straints, some self-imposed and some imposed by

the hardware capabilities. The software architecture

had to be distributed at both the processor and the

process level. No single processor node had enough

power to handle all the computation, nor enough

peripheral control ports to handle the eleven motors

involved. Within each processor, the system was im-

plemented as collections of functionally independent

but interacting processes. In the future we hope to

implement more re�ned and elaborate behaviors by

adding new processes to the existing network.

Although the basic activity for this particular task

is sequential | foveate, reach, train, repeat | there

is no centralized scheduler process. Rather, the ac-

tion is driven by a set of triggers passed from one

process to another. This is not a very important

design consideration with the single task in mind;

however as we add more processes, which act in par-

allel and compete for motor and sensor resources, a

distributed system of activation and arbitration will

become a necessity.

4 Visual System

The components of the visual system used in this

task can be grouped into four functional units: ba-

sic eye-motor control, a saccade map trainer, a mo-

tion detection module, and a motion segmentation

module. The eye-motor control processes maintain

communication with the local motor control boards,

initiate calibration routines, and arbitrate between

requests for eye movement. The saccade trainer in-

crementally learns the mapping between the location

of salient stimuli in the visual image with the eye mo-

tor commands necessary to foveate on that object.

The motion detection system uses local area di�er-

ences between successive camera images to identify

areas where motion has occured. The output from

the motion detection system is then grouped, seg-

mented, and rated to determine the largest contigu-

ous moving object. This segmented output is then

combined with arm motor feedback by the ballistic

map trainer (see Section 6) to locate the endpoint of

the moving arm.

4.1 Eye Motor Control

The basic eye-motor control software is organized

into a two-layer structure. In the lower layer, there is

one process, called a handler, which maintains a con-

tinuous communication between the processor node

and the local motor control board. In the upper layer

is a single attentional gateway process which ensures

that only one external process has control over the

eyes at any given time. Currently, as soon as cali-

bration has �nished, the attentional gateway cedes

control of the eye-motors to the ballistic map trainer.

As more procedures begin to rely on eye movement,

the attentional gateway will arbitrate between re-

quests. Similar structures are used for the neck and

arm motors, but do not appear in the Figure 3.

4.2 Learning the Saccade Map

In order to use visual information as an error sig-

nal for arm movements, it is necessary to learn the

mapping between coordinates in the image plane and

coordinates based on the body position of the robot.

With the neck in a �xed position, this task simpli�es

to learning the mapping between image coordinates

and the pan/tilt encoder coordinates of the eye mo-

tors. The behavioral correlate of this simpli�ed task

is to learn the pan and tilt positions necessary to

saccade to a visual target. Initial experimentation

revealed that for the wide-angle cameras, this sac-

cade map is linear near the image center but rapidly

diverged near the edges. An on-line learning algo-

rithm was implemented to incrementally update an

initial estimate of the saccade map by comparing im-

age correlations in a local �eld. This learning pro-

cess, the saccade map trainer, optimized a look-up

table that contained the pan and tilt encoder o�sets

needed to saccade to a given image coordinate.

Saccade map training began with a linear estimate

based on the range of the encoder limits (determined

during calibration). For each learning trial, the sac-

cade map trainer generated a random visual target

location (xt; yt) and recorded the normalized image

intensities �It in a 16 � 16 patch around that point.

The process then issued a saccade motor command

using the current map entries. After the saccade, a

new image �In is acquired. The normalized 16 � 16

center of the new image is then correlated against the

target image. Thus, for o�sets x0 and y0, we sought

to maximize the dot-product of the image vectors:

max
x0;y0

0
@X

i

X
j

�It(i; j) � �In(x0 + i; y0 + j)

1
A (1)

−6000−4000−20000200040006000
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Pan Encoder Values

T
ilt

 E
nc

od
er

 V
al

ue
s

Saccade Map

Figure 4: Saccade Map after 0 (dashed lines) and

2000 (solid lines) learning trials. The �gure shows

the pan and tilt encoder values for every tenth posi-

tion in the image array within the ranges x=[10,110]

(pan) and y=[20,100] (tilt).

Since each image was normalized, maximizing the

dot product of the image vectors is identical to min-

imizing the angle between the two vectors. This

normalization also gives the algorithm a better re-

sistance to changes in background luminance as the

camera moves. In our experiments, the o�sets x0
and y0 had a range of [�2; 2]. The o�set pair that

maximized the expression in Equation 1, scaled by

a constant factor, was used as the error vector for

training the saccade map.

Note that a single learning step of this hill-

climbing algorithm does not �nd the optimal cor-

relations across the entire image. The limited search

radius vastly increases the speed of each learning

trial at the expense of producing di�culties with

local maxima. However, in the laboratory space

that makes up Cog's visual world, there are many

large objects that are constant over relatively large

pixel areas. The hill-climbing algorithm e�ectively

exploited this property of the environment to avoid

local maxima.

To simplify the learning process, we initially

trained the map with random visual positions (xt; yt)

that were multiples of ten in the ranges [10; 110] for

xt (the pan dimension) and [20; 100] for yt (tilt).

By examining only a subset of the image points,

we could quickly train a limited set of points which

would bootstrap additional points. Examining im-

age points closer to the periphery was also unneces-

sary since the �eld of view of the camera was greater

Post-Saccade Pre-Saccade Post-Saccade
 no Learning Target Image 2000 Learning Trials

Figure 6: Expanded example of the visual learning of the saccade map. The center collage is the pre-saccade

target images �It for a subset of the entire saccade map. The left collage shows the post-saccade image centers

with no learning. The right collage shows the post-saccade image centers after 2000 learning trials. The

post-learning collage shows a much better match to the target than the pre-learning collage.

Post-Saccade Pre-Saccade Post-Saccade
No Learning Target Image 2000 Learning Trials

Position
(30, 70)

Position
(90, 110)

Figure 5: Two examples of the e�ects of the saccade

map learning. The center set of images is the pre-

saccade target image �It. The left image is the post-

saccade image centers with no learning. The right

image is the post-saccade image centers after 2000

learning trials. The post-learning images match the

target more closely than the pre-learning images.

than the range of the motors; thus there were points

on the edges of the image that could be seen but

could not be foveated regardless of the current eye

position. Figure 4 shows the data points in their

initial linear approximation (dashed lines) and the

resulting map after 2000 learning trials (solid lines).

The saccade map after 2000 trials clearly indicates

a slight counter-clockwise rotation of the mounting

of the camera, which was veri�ed by examination of

the hardware. The training quickly reached a level of

1 pixel-error or less per trial within 2000 trials (ap-

proximately 20 trials per image location). Perhaps

as a result of lens distortion e�ects, this error level

remained constant regardless of continued learning.

Two examples of the visual e�ect of the learning

procedure are shown in Figure 5. The center two

images are the expected target images �It recorded

before the saccade for the image positions (30,70)

and (90,110). Using the initial linear approximation

with no learning, the post-saccade image �In (shown

at left) does not provide a good match to the target

image (center). After 2000 learning trials, the di�er-

ence in results is dramatic; the post-saccade image

(shown to the right of the target) closely matches

the pre-saccade target image. If the mapping had

learned exactly the correct function, we would ex-

pect the pre-saccade and post-saccade images to be

identical (modulo lens distortion). Visual compar-

ison of the target images before saccade and the

new images after saccade showed good match for all

training image locations after 2000 trials. A larger

set of examples from the collected data is shown in

Figure 6.

4.3 Motion Detection and Segmentation

The motion detection and motion segmentation sys-

tems are used to provide visual feedback to the bal-

listic map trainer by locating the endpoint of the

moving arm. The motion detection module com-

putes the di�erence between consecutive wide-angle

images within a local �eld. The motion segmenter

then uses a region-growing technique to identify con-

tiguous blocks of motion within the di�erence image.

The bounding box of the largest motion block is then

passed to the ballistic map trainer as a visual feed-

back signal for the location of the moving arm. In

order to operate at speeds close to frame rate, the

motion detection and segmentation routines were di-

vided between two processors.

The motion detection process receives a digitized

120 � 120 image from the left wide-angle camera.

Incoming images are stored in a ring of three frame

bu�ers; one bu�er holds the current image I0, one

bu�er holds the previous image I1, and a third bu�er

receives new input. The absolute value of the dif-

ference between the grayscale values in each im-

age is thresholded to provide a raw motion image

(Iraw = T (jI0 � I1j)). The raw motion image is

then used to produce a motion receptive �eld map,

a 40 � 40 array in which each cell corresponds to

the number of cells in a 3 � 3 receptive �eld of the

raw motion image that are above threshold. This

reduction in size allows for greater noise tolerance

and increased processing speed.

The motion segmentation module takes the recep-

tive �eld map from the motion detection processor

and produces a bounding box for the largest contigu-

ous motion group. The process scans the receptive

�eld map marking all locations which pass threshold

with an identifying tag. Locations inherit tags from

adjacent locations through a region grow-and-merge

procedure. Once all locations above threshold have

been tagged, the tag that has been assigned to the

most locations is declared the \winner". The bound-

ing box of the winning tag is computed and sent to

the ballistic map trainer.

5 Arm Motion Control

5.1 Postural Primitives

The method used to control the arm takes inspira-

tion from work on organization of movement in the

spinal cord of frogs (Bizzi, Mussa-Ivaldi & Giszter

1991, Giszter, Mussa-Ivaldi & Bizzi 1993, Mussa-

Ivaldi, Giszter & Bizzi 1994). These researchers elec-

trically stimulated the spinal cord, and measured the

forces at the foot, mapping out a force �eld in leg-

motion space. They found that the force �elds were

convergent (the leg would move to �xed posture un-

der the �eld's in
uence), and that there were only

a small number of �elds (4 in total). This lead to

the suggestion that these postures were primitives

that could be combined in di�erent ways to generate

movement (Mussa-Ivaldi & Giszter 1992). Details on

the application of this research to robotic arms can

be found in (Williamson 1996).

In Cog's arm the primitives are implemented as a

set of equilibrium angles for each of the arm joints,

as shown in Figure 7. Each primitive corresponds

to a di�erent posture of the arm. Four primitives

are used: a rest position, and three on the extremes

of the workspace in front of the robot. These are

illustrated in Figure 8. Positions in space can be

reached by interpolating between the primitives, giv-

ing a new set of equilibrium angles for the arm, and

so a new end-point position. The interpolation is lin-

ear in primitive and joint space, but due to the non-

linearity of the forward kinematics (end-point posi-

Figure 7: Primitives for the reaching task. There are

four primitives: a rest position, and three in front of

the robot. Linear interpolation is used to reach to

points in the shaded area. See also Figure 8.

tion in terms of joint angles), the motion in Cartesian

space is not linear. However since only 4 primitives

are used to move the 6 DOF arm, there is a large

reduction in the dimensionality of the problem, with

a consequent reduction in complexity.

There are some other advantages to using this

primitive scheme. There is a reduction in communi-

cation bandwidth as the commands to the arm need

only set the rest positions of the springs, and do not

deal with the torques directly. In addition the mo-

tion is bounded by the convex hull of the primitives,

which is useful if there are known obstacles to avoid

(like the body of the robot!).

5.2 Reaching motion

The reaching behavior takes inspiration from stud-

ies of child development (Diamond 1990). Children

always begin a reach from a rest position in front of

their bodies. If they miss the target, they return to

the rest position and try again. This reaching se-

quence is implemented in Cog's arm. Infants also

have strong grasping and withdrawal re
exes, which

help them interact with their environment at a young

age. These re
exes have also been implemented on

Cog (Williamson 1996).

The actual motion takes inspiration from observa-

tions of the smooth nature of human arm motions

(Flash & Hogan 1985). To produce a movement, the

joints of the arm are moved using a smooth, mini-

mum jerk pro�le (Nelson 1983).

Figure 8: The basic arm postures. From left, \rest", \front", \up", and \side."

6 Ballistic Map

The ballistic map is a learned function ~B mapping

eye position ~e into arm position ~�, such that the re-

sulting arm con�guration puts the end of the arm

in the center of the visual �eld. Arm position is

speci�ed as a vector in a space of three basic 6-

dimensional joint position vectors | the reach prim-

itives (shown in Figure 8). There is also a fourth

\rest" posture to which the arm returns between

reaches.

The reach primitive coe�cents are interpreted as

percentages, and thus are required to sum to unity.

This constrains the reach vectors to lie on a plane,

and the arm endpoint to lie on a two-dimensional

manifold. Thus, the ballistic map ~B is essentially a

function R2 ! R2.

We attempted to select reach primitives such that

the locus of arm endpoints was smooth and 1-to-1

when mapped onto the visual �eld. The kinematics

of the arm and eye specify a function ~E : ~� 7! ~e

which maps primitive-speci�ed arm positions into

the eye positions which stare directly at the end of

the arm. The ballistic map ~B is essentially the in-

verse of ~E: we desire ~E(~B(~e)) = ~e. If ~E is 1-to-1,

then ~B is single-valued and we need not worry about

learning discontinuous or multiple output ranges.

The learning techniques used here closely parallels

the distal supervised learning approach (Jordan &

Rumelhart 1992). We actually learned the forward

map ~E as well as ~B; this was necessitated by our

training scheme. However, ~E is useful in that it gives

an expectation of where to look to �nd the arm. This

can be used to generate a window of attention to

�lter out distractions in the motion detection.

6.1 Map Implementation

The maps ~B and ~E are both implemented using a

simple radial basis function approach. Each map

consists of 64 Gaussian nodes distributed evenly over

the input space. The nodes have identical variance,

but are associated with di�erent output vectors. The

output of such a network (~y) for some input vector
~i is given by:

~y =
X
k

~wkgk(~i);

where

gk(~i) = exp(�
1

�2
k~i� ~ukk

2):

and ~wk is a set of weights.

The ballistic map is initialized to point the arm to

the center of the workspace for all gaze directions.

The forward map is initialized to yield a centered

gaze for all arm positions.

6.2 Learning the Ballistic Map

After the arm has reached out and its endpoint has

been detected in the visual �eld, the ballistic map
~B is updated. However, since the error signal is a

position in the image plane, the training cannot be

done directly. We need to use the forward map ~E

and the saccade map ~S.

The current gaze direction ~e0 is fed through ~B to

yield a reach vector ~� (�-space is a two dimensional

parameterization of the � reach-primitive space).

This ~� is sent to the arm to generate a reaching

motion. It is also fed through the forward map ~E

to generate an estimate ~ep of where the arm will be

in gaze-space after the reach. In an ideal world, ~ep
would equal ~e0.

After the arm has reached out, the motion detec-

tion determines the position ~x of the arm in pixel

coordinates. If the reach were perfect, this would be

the center of the image. Using the saccade map ~S,

we can map the di�erence in image (pixel) o�sets

between the end of the arm and the image center

into gaze (eye position) o�sets. So, we can use ~S to

convert the visual position of the arm ~x into a gaze

direction error �~e.

We still cannot train ~B directly, since we have an

e-space error but a �-space output. However, we

can backpropagate �~e through the forward map ~E

to yield a useful error term.

After all is said and done, we are performing basic

least-mean-squares (LMS) gradient descent learning

on the gaze error �~e. For ~B de�ned by:

~� = ~B(~e) =
X
k

~wkgk(~e)

the update rule for the weights ~wk is:

�wik = ��

�~e �

@ ~F

@�i

!
gk(~e):

for some learning rate �.

The forward map ~F is learned simultaneously with

the ballistic map. Since ~e = ~e0 + �~e is the gaze

position of the arm after the reach, and ~ep is the

position predicted by ~F , ~F can be trained directly

via gradient descent using the error (~ep � ~e).

7 Results, Future Work, and Conclu-

sions

At the immediate time of this writing, the complete

system has been implemented and debugged, but has

not been operational long enough to fully train the

ballistic map. Initial results on small subsets of the

visual input space show promising results. However,

it will take some more extended training sessions be-

fore Cog has fully explored the space of reaches.

In addition to completing Cog's basic ballistic

pointing training, our plans for upcoming endeavors

include:

� incorporating additional degrees of freedom, such

as neck and shoulder motion, into the model

� re�ning the arm �nding process to track the arm

during reaching

� expanding the number of primitive arm postures

to cover a full three-dimensional workspace

� extracting depth information from camera ver-

gence and stereopsis, and using that to imple-

ment reaching to and touching of objects.

� adding re
exive motions such as arm withdrawal

and a looming response, including raising the

arm to protect eyes and head

� making better use of the inverse ballistic map in

reducing the amount of computation necessary

to visually locate the arm.

This pointing task, albeit simple when viewed

alongside the myriad complex motor skills of hu-

mans, is a milestone for Cog. This is the �rst task

implemented on Cog which integrates major sensory

and motor systems using a cohesive distributed net-

work of processes on multiple processors. To the

authors, this is a long-awaited proof of concept for

the hardware and software which have been under

development for the past two and a half years. Hope-

fully, this task will be a continuing part of the e�ort

towards an arti�cial machine capable of human-like

interaction with the world.

8 Acknowledgments

The authors wish to thank the members of the Cog

group (past and present) for their continual sup-

port: Mike Binnard, Rod Brooks, Cynthia Ferrell,

Robert Irie, Yoky Matsuoka, Nick Shectman, and

Lynn Stein.

References

Ballard, D. (1989), `Behavioral Constraints on An-

imate Vision', Image and Vision Computing

7:1, 3{9.

Bizzi, E., Mussa-Ivaldi, F. A. & Giszter, S. F.

(1991), `Computations underlying the execu-

tion of movement: A biological perspective',

Science 253, 287{291.

Brooks, R. (1996), L, Technical report, IS Robotics

Internal Document.

Brooks, R. & Stein, L. A. (1994), `Building Brains

for Bodies', Autonomous Robots 1:1, 7{25.

Brooks, R., Bryson, J., Marjanovic, M., Stein,

L. A., & Wessler, M. (1996), Humanoid Soft-

ware, Technical report, MIT Arti�cial Intelli-

gence Lab Internal Document.

Cannon, S. & Zahalak, G. I. (1982), `The mechan-

ical behavior of active human skeletal muscle

in small oscillations', Journal of Biomechanics

15, 111{121.

Diamond, A. (1990), Development and Neural Bases

of Higher Cognitive Functions, Vol. 608, New

York Academy of Sciences, chapter Develop-

mental Time Course in Human Infants and In-

fant Monkeys, and the Neural Bases, of In-

hibitory Control in Reaching, pp. 637{676.

Ferrell, C. (1996), Orientation Behavior Using Reg-

istered Topographic Maps, Society of Adaptive

Behavior. In these proceedings.

Flash, T. & Hogan, N. (1985), `The Coordination of

Arm Movements:An Experimentally Con�rmed

Mathematical Model', Journal of Neuroscience

5(7), 1688{1703.

Giszter, S. F., Mussa-Ivaldi, F. A. & Bizzi, E.

(1993), `Convergent Force Fields Organized in

the Frog's Spinal Cord', Journal of Neuro-

science 13(2), 467{491.

Irie, R. (1995), Robust Sound Localization: An Ap-

plication of an Auditory Perception System for

a Humanoid Robot, Master's thesis, MIT De-

partment of Electrical Engineering and Com-

puter Science.

Jordan, M. I. & Rumelhart, D. E. (1992), `For-

ward Models: supervised learning with a distal

teacher', Cognitive Science 16, 307{354.

MacKay, W. A., Crammond, D. J., Kwan, H. C.

& Murphy, J. T. (1986), `Measurements of hu-

man forearm posture viscoelasticity', Journal of

Biomechanics 19, 231{238.

Marjanovic, M. (1995), Learning Functional Maps

Between Sensorimotor Systems on a Humanoid

Robot, Master's thesis, MIT Department of

Electrical Engineering and Computer Science.

Matsuoka, Y. (1995), Embodiment and Manipula-

tion Learning Process for a Humanoid Hand,

Master's thesis, MIT Department of Electrical

Engineering and Computer Science.

Mussa-Ivaldi, F. A. & Giszter, S. F. (1992), `Vector

�eld approximation: a computational paradigm

for motor control and learning', Biological Cy-

bernetics 67, 491{500.

Mussa-Ivaldi, F. A., Giszter, S. F. & Bizzi, E.

(1994), `Linear combinations of primitives in

vertebrate motor control', Proceedings of the

National Academy of Sciences 91, 7534{7538.

Nelson, W. L. (1983), `Physical Principles for

Economies of Skilled Movements', Biological

Cybernetics 46, 135{147.

Pratt, G. A. & Williamson, M. M. (1995), Se-

ries Elastic Actuators, in `Proceedings of the

IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS-95)', Vol. 1,

Pittsburg, PA, pp. 399{406.

Scassellati, B. (1995), High Level Perceptual Con-

tours from a Variety of Low Level Features,

Master's thesis, MIT Department of Electrical

Engineering and Computer Science.

Williamson, M. M. (1996), Postural primitives: in-

teractive behavior for a humanoid robot arm,

Society of Adaptive Behavior. In these proceed-

ings.

Zajac, F. E. (1989), `Muscle and tendon:Properties,

models, scaling, and application to biomechan-

ics and motor control', CRC Critical Reviews of

Biomedical Engineering 17(4), 359{411.

