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ABSTRACT

Conventional lattice gas automata consist of particles moving discretely on a �xed lattice.
While such models have been quite successful for a variety of uid ow problems, there
are other systems, e.g., ow in a exible membrane or chemical self-assembly, in which the
geometry is dynamical and coupled to the particle ow. Systems of this type seem to call for
lattice gas models with dynamical geometry. We construct such a model on one dimensional
(periodic) lattices and describe some simulations illustrating its nonequilibrium dynamics.

PACS numbers: 05.70.Ln, 02.70.Ns, 82.20.Mj, 82.65.Dp.
KEY WORDS: dynamical geometry, lattice gas, self-assembly, nonequilibrium dynamics,

reversible evolution, emergence.

Expanded version of a talk presented at the Seventh International Conference on the
Discrete Simulation of Fluids held at the University of Oxford, 14{18 July 1998.
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1. Introduction

Lattice gas automata (LGA) [1,2] have successfully modelled a variety of uid mechanics

systems: low Reynolds number ow in complicated geometry [3], multiphase ow [4],

micellular assembly [5] and even, transformed into discrete quantum systems, the Dirac

[6] and Schr�odinger [7] equations. All of these systems, however, consist of ow in a

�xed background geometry which is represented in the LGA models by a �xed lattice
(and boundary conditions). In contrast, there are many natural systems with dynamical

geometry. These range from the biological (ow in cell membranes [8] and gels [9]) to the

chemical (self-assembling lipid bilayers [10] and CO oxidation on Pt monocrystal surfaces

[11]) to the physical (spatial hypersurfaces in general relativity [12]).

The question we address in this talk is how to model such systems using LGA. We

are interested in modelling geometry intrinsically, e.g., a membrane as a two dimensional

manifold with dynamical geometry, not as a uctuating surface embedded in a �xed three
dimensional manifold. Since it is the lattices in LGA which de�ne the geometry, this means
that we want to construct models in which the lattice is dynamical.

There has been only limited investigation of such models. Two notable exceptions are
the work of Ilachinski [13] and Hillman [14], but their models have undergone little further
development. The two research programs face complementary di�culties: Ilachinski's
family of structurally dynamic cellular automata (CA) is so loosely constrained that the
rule space is too large to explore usefully [13]. Hillman constrains his models to be reversible
[14] but then faces the familiar di�culty of �nding reversible CA rules without partitioning
[15] or going to second order in time [16].

Lattice gas models may be expected to resolve both of these di�culties. Not only do
they constitute a physically natural class of models, but particle number and momentum
conservation impose tight constraints on the rule space. To construct fundamental models
we should also require reversibility.� But the separation of each LGA timestep into ad-
vection and scattering phases makes reversibility straightforward to implement: as we will
discuss further in Section 3, making the scattering matrix invertible su�ces. Neverthe-

less, the simultaneous requirements of particle number and momentum conservation, an

exclusion principle, and reversibility, tightly constrain the set of local deterministic LGA
with dynamical geometry. After discussing the general problem of dynamical lattices in
one dimension in the next section, however, we demonstrate by construction in Section 3

that this set is not empty. In Section 4 we describe the results of simulations and conclude

in Section 5 with a discussion and some directions for further investigation.

2. Lattice dynamics in one dimension

The simplest situation is one dimensional. This is not terribly realistic|although it does

provide the intrinsic description of interfaces in multiphase ow restricted to two dimen-

� By which we will always mean local reversibility.
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Figure 1. There are two local changes for a one dimensional lattice: The leftmost diagram
shows the deletion of an edge while the middle diagram shows the creation of an edge. The
rightmost diagram illustrates the absence of any change, locally. In each diagram the spatial
lattice is horizontal and time runs upward.

sions [5]. Furthermore, the classical (i.e., local, deterministic, single species) LGA in one

dimension is completely trivial as it can be interpreted as consisting of particles which

simply move to the left or right without change even upon scattering. Nevertheless, the
one dimensional LGA with dynamical geometry we will consider in Sections 3 and 4 is sig-

ni�cantly more interesting, illustrating some of the di�culties encountered in constructing
such models, how to resolve them, and also some of their novel properties.

So let us develop a toy model on the periodic integer lattices ZN . These one dimen-
sional lattices can change locally in two ways: two adjacent vertices can be identi�ed,
deleting the edge connecting them, or a vertex can split into two vertices, creating a new
edge connecting them. And, of course, a lattice may locally undergo no change at all. Fig-
ure 1 illustrates these three possibilities. Implicit in the diagrams of Figure 1 is a feature
our models for dynamical geometry have in common with standard lattice gas models: time
advances globally, in discrete steps. While this seems likely to be the wrong way to begin
constructing a discrete model for general relativity [12], it is perfectly natural for classi-
cal (nonrelativistic) problems involving biological membranes [8] or chemical self-assembly
[17,10], for example.

The one dimensional latticesZN , however, are homogeneous: there is no local (spatial)
geometry, only the global volume (length) N . Without additional structure any local
evolution rule must be the same everywhere on the lattice. The edge deleting rule is not
reversible since everyZN forN > 1 collapses toZ1 in one timestep as illustrated in Figure 2.

Similarly, the edge creating rule shown in Figure 3 does not have a locally de�ned inverse;

once the lattice evolves backwards to an odd size some global information is required for
any further evolution. So the only evolution rule which is local, deterministic and reversible
on ZN alone is just the identity map|which does not lead to a very dynamical lattice!

Figure 2. Applying the edge deleting rule homo-
geneously collapses any one dimensional lattice to
a single point.

Figure 3. The edge creating rule also fails to be
locally reversible; for odd size lattices, additional
(global) information is required.
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The di�culty is that there are not enough local degrees of freedom in ZN|none|to

record su�cient information about the state at the previous timestep to allow nontrivial
evolution to be reversed locally. There are two ways to generalize to interesting models:

allow the evolution rule to be second (or higher) order in time or introduce additional

(matter) degrees of freedom on the lattice. Because this is a lattice gas meeting, and

because we are interested in chemical self-assembly [17,10], for example, we will investigate

the latter alternative, while remarking that the former might be appropriate were we
constructing a discrete model for pure general relativity [12].

3. Constructing the model

Particles in standard LGA have both position and momentum, where the momentum is

constrained to be in some subset of lattice (di�erence) vectors. The evolution rule has two
phases: �rst each particle advects to the lattice point obtained by adding its momentum
to its current position; second, the particles at each lattice point scatter according to some
deterministic [1], probabilistic [2], or quantum mechanical [6,7] rule. The advection phase
is trivially reversible and the scattering phase will be also, provided it is described by a
permutation, a doubly stochastic, or a unitary matrix, respectively.

We remark, however, that physical time reversibility is not achieved exactly by (parity)
inverting all particle momenta and then running the forward evolution rule. Consider the
(two dimensional, triangular lattice) FHP evolution rule [2], for example: The scattering
of three particles with zero total momentum is illustrated in Figure 4. The evolution is
successfully reversed from t = 2 to t = 0 by inverting the momenta of the particles, evolving
for two timesteps, and inverting the momenta again. But the same procedure applied for
a single timestep fails to reverse the evolution from t = 1 to t = 0: Inverting the momenta
in the �nal t = 1 con�guration and then advecting the particles doesn't even take them
to the same lattice points as at t = 0. The di�culty is, of course, that even though both
advection and scattering are reversible, they do not commute. So exact time reversibility is
achieved by backward evolution with advection preceded by scattering, or more precisely,
the inverse scattering rule conjugated with parity (momentum inversion), which may or
may not be the same as the forward scattering rule. This is all quite straightforward, but
is worth clarifying in the standard LGA setting to avoid confusion about the meaning of
reversibility in the dynamical geometry LGA which we are about to construct.

t=0 t=1 t=1 t=2

Figure 4. The zero momentum three particle scattering rule in the FHP model. Advection
takes the t = 0 con�guration to the the �rst t = 1 con�guration shown; then the scattering rule
changes that to the second t = 1 con�guration; advecting again (followed by scattering, which
has no e�ect) produces the t = 2 con�guration.
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Figure 5. A possible scattering rule which cre-
ates an edge behind the lattice point to which
a single particle has just advected. The spatial
lattice is horizontal and time runs upward.

Figure 6. The pair of possible scattering rules
which create an edge behind and delete the edge
in front of a lattice point to which a single particle
has just advected.

In our one dimensional dynamical geometry model we want to maintain the same

advect/scatter formalism for particle evolution, but to modify the rules to allow for the

local changes of the lattice shown in Figure 1. That is, after advection some local particle

con�gurations should catalyze local edge deletions or creations. Since an edge is created

when a vertex splits into two vertices, the most local rule would depend only on the particle
con�guration at a single vertex. The exclusion principle restricts these con�gurations to
consist of no particles, one particle, or two particles with opposite momenta:

(0) We found already in Section 2 that reversibility fails if the evolution rule splits
vertices at which there are no particles.

(1) Suppose a vertex occupied by a single particle splits, with the new edge created
behind the particle as shown in Figure 5. If this is the only edge creation/deletion
rule for vertices occupied after advection by a single particle, the forward evolution
will continually expand the lattice|and the backward evolution will collapse it
to a stage at which the evolution is no longer de�ned, not unlike the situation
illustrated in Figure 3. This is unsatisfactory, so suppose we also include an edge
deletion rule, for the edge in front of the particle (in as much as deleting the
edge behind the particle could be de�ned|the problem is that the domains of
application of the two rules would overlap|it would simply cancel the e�ect of
the edge creation rule). The e�ect of this pair of rules is illustrated in Figure 6.

The two rules work together to double� the velocity of each particle, when it
does not scatter o� another particle. Notice that if these are the only edge
creation/deletion rules then the total number of vertices is constant. Since our

interest is in dynamical spatial geometryy let us keep our model simple by not

splitting the vertex when it is occupied by a single particle.

(2) This leaves only the possibility of splitting a vertex which is occupied by two par-
ticles, as shown in Figure 7. Reversibility implies the dual edge deletion rule also

shown in Figure 7. These rules are well de�ned as they cannot have overlapping

� The opposite choice, namely that the new edge is created in front of the particle and an edge is
deleted behind it, makes the velocity of isolated particles zero, destroying the reversibility of the
advection phase|and almost all the dynamics in the model.

y This rule does a�ect the spacetime geometry and so might be reconsidered in the context of relativistic
models [12].
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domains of application. They do not leave the total number of vertices invariant

and thus they de�ne the simplest lattice gas model with dynamical geometry.

The reversible scattering rule shown in Figure 7 ensures nontrivial dynamical geometry

for our LGA. In doing so it breaks the Z2 symmetry of the standard one dimensional LGA

with its associated `spurious' conservation of the number of particles on even (odd) lattice

points [18]. To examine further properties of this dynamical geometry LGA we turn next
to simulations.

Figure 7. The scattering rules for our dynamical geometry LGA: An edge is created when two
particles advect to the same lattice point and an edge is deleted if after advection each endpoint
is occupied by a single particle with outward momentum.

4. Simulations

Simulation of one dimensional LGA is straightforward, even with dynamical geometry.
The lattice points, with their local particle con�gurations, form a list of pairs of bits (the
left/right bit being 0 (1) indicates the absence (presence) of a particle moving left/right).
At each timestep advection shifts the left/right bit of each pair to the left/right bit of
the adjacent pair to the left/right. After advection, the scattering phase replaces each 11
pair of bits with two pairs 10; 01 and vice versa. Since the numbers of left/right moving
particles are separately conserved, the exclusion principle constrains the lattice size to be
no less than the larger of these numbers. There is, however, no a priori upper bound to
the possible size of the lattice. Thus, in contrast to standard reversible LGA in which
every orbit must be periodic, it is in principle possible for some initial con�guration of our
dynamical geometry LGA to cause the lattice to grow without bound, and thus to lie on

an in�nite orbit.

In order for the geometry to be dynamical there must be both left and right moving
particles on the lattice. Figure 8 shows the results of 104 timestep simulations starting on

a lattice of size 10 with randomly distributed particles. The graphs plot the size of the

lattice at each timestep; as always, time runs upward. The graph with smaller lattice sizes
is for 4 left moving and 6 right moving particles, while the one with larger sizes is for 7
left moving and 10 right moving particles.

We can make a few heuristic remarks immediately: In each case the initial con�gu-

ration appears to lie on an in�nite orbit: the trend in the lattice size is to increase. The
increase is not constant, however; there are irregular uctuations in the lattice size. Fur-

thermore, these uctuations develop intermittent structure: Figure 9 shows the 17 particle
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Figure 8. Lattice sizes for simulations of 10000
timesteps from initial con�gurations of 10 and 17
particles on a lattice of size 10. Time runs upward
and the graph of (mostly) smaller sizes is the 10
particle simulation.

Figure 9. The 17 particle simulation extended
to 100000 timesteps. The insert shows the norm
squared of the �rst 100 Fourier coe�cients (the
ticks are at multiples of 20) calculated for the last
10000 sizes in the time series.

simulation continued for 105 timesteps, while the inset graphs the norm squared of the
�rst 100 Fourier coe�cients calculated for the last series of 104 lattice sizes. Notice the

spikes at about 18 and 69. The emergence of structure at multiple scales is one of the
most interesting features of this simple reversible model.

5. Discussion

We have taken advantage of the natural physical interpretation of, and ease with which
reversibility can be implemented in, the lattice gas formalism to construct the unique one

dimensional reversible model with dynamical geometry satisfying our simplifying assump-
tions. One may imagine many variations which might tailor this basic model to particular

applications: multiple particle species, additional labels on the lattice points, etc. We ex-
pect, however, that some features of the simulations described in Section 4 are universal

and appropriate for modelling the biological and chemical systems of interest. Speci�cally,
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these are reversible systems far from equilibrium which `explore' more and more of their

phase space as they evolve. The simulations indicate that almost any initial condition on
a �nite lattice is out of equilibrium, in the sense that the lattice size will tend to increase.

This model poses a multitude of questions, however: Can we analyze exactly which

initial con�gurations lie on open orbits? Are there useful conserved quantities|beyond the

numbers of left and right moving particles|which would help identify orbits? (Any initial
con�guration itself is, of course, an invariant of its orbit, but not a particularly useful one.)

Is there a macroscopic/continuum limit of this model and if so, what is it? Finally, how

do we generalize to higher dimensional models with dynamical geometry? There is local

geometry in higher dimensions so one may investigate local changes to the lattice which
preserve the total lattice size, or change it as in our one dimensional model. The Pachner

moves provide a complete set of local changes to simplicial lattices in any dimension [19];

we are currently using them to develop dynamical geometry LGA in two dimensions.
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