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I. Introduction
 Lattice Gas Automata (LGA) can be considered as an alternative to the conventional differential

equation description of problems in electromagnetics.LGAs are discrete dynamical systems that are
based on a microscopic model of the physics being simulated. The basic constituents of anLGA are dis-
crete cells. These cells are interconnected according to certain symmetric requirements to form an
extremely large regular lattice. The cells of anLGA are extremely simple, requiring only a few bits to
completely describe their states. Even through they are simple however, the collective behaviour ofLGA
microscopic systems are capable of exhibiting those behaviours described by partial differential equa-
tions for real physical systems. One type of simpleLGA, theHPP LGA,is constructed with only a few
bits per cell and operated on a rectangular lattice. We have demonstrated [1] that it is capable of simulat-
ing two dimensional electromagnetic fields. Furthermore, the inherent parallelism and simplicity ofLGA
algorithms make them ideally suited to implementation in a parallel processing architecture.

In this paper we present newHPP-type mixtureLGA algorithms for modelling wave propagation in
inhomogeneous dense media. Change in sound speed of an LGA can be achieved by incorporating rest
bits at a lattice site as well as moving or interaction bits. We analytically show how this model can be
applied to the simulation of electromagnetic fields in inhomogeneous media. In this paper our analysis is
based on the more complex hexagonal lattice with results presented for a rectangular (HPP) lattice
shown in Fig.1. With the small perturbation assumption, we develop and check the validity of a simple
HPP model for simulating wave propagation. The ability to model media with different sound speeds is
analogous to modelling different dielectric constants in inhomogeneous media of electromagnetics. We
theoretically give a general formula for the sound speed which enables a wide range of dielectric con-
stant to be modelled by specifying various interaction models in an LGA. A variety of applications of
this model for problems of wave interaction with dielectric objects, from a simple heterogeneous dielec-
tric cylinder to complex biological structures, are reported and compared with traditional numerical
methods.

II. Lattice Gas Automata and Mixture Model

     AnLGA model without zero-velocity “rest particles” can only yield a uniform sound speed. To ena-
ble theLGA lattice to model media with different sound speeds (analogous to modelling different dielectric
constants in electromagnetics), certain rest particles are incorporated within sites of the lattice. It will be
seen in the analysis that there are only a few restrictions (conservations of mass and momentum, and semi-
detail balance) imposed on constructing such mixture models, and thus there are many ways for them to be
employed. One can also specify that certain regions of the lattice have different rest particle numbers and
masses. The energy exchanges between moving and rest particles in the regions are thus different, and a
lattice with inhomogeneous sound speeds can be realized.
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 Fig.2 shows two example cells of our mixture models, one for a rectangular (HPP) lattice and the
other for a hexagonal (FHP) lattice [2]. Except for the moving particles (4 moving particles associating
with aHPP cell, 6 moving particles with a FHP cell), there are up to  rest particles allowed at a lattice

site. We denote these  rest particles to be , ,..., , respectively. To obtain a spatial distribution

of sound speeds on the lattice,  is then defined to be a function of position.A completely arbitrary sound

can then be specified by creating mixtures of cells with different rest particle numbers by using a weight

parameter , where  is the creation or annihilation probability of rest particle . In

Fig.3, one of many rest particle models are shown, where a stack ( ) of particles of various

masses( =4, =8 and =16) can be created. Exchange of energy between moving and rest particles

occurs when a rest particle of mass4 is created when four unit mass moving particles collide and where
there is initially no mass4 rest particle. Alternatively, if a mass4 rest particle already exists at a site, and
there are no initial moving particles, four moving particles will be created after the collision phase, and the
rest particle will be annihilated. Even more generally, we could incorporate stochastic rules which probabi-
listically allow rest particles to be created or annihilated
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Fig.2:LGA rule with      probabilistically weighted rest particles: (a): HPP
mixture model, (b):FHP mixture model.

(a): A HPP cell. (b): A FHP cell.
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Fig.3: LGA rule with three weighted rest particles.
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In the analysis of this model we will use two subscript binary variables to represent the par-

ticle states at a particular sitex and time stept in the mixture lattice. In this notation the first subscripti rep-
resents the velocity direction of particles. Thus, the moving particles in a particular cell can be denoted as

, wherei=1,2,3 and4 for the four moving particles of theHPP model, andi=1,... 6 for the six

moving particles of theFHP model, andi= 0 for rest particles. The second subscriptk represents the mass

index of the particles. For moving particles (unit mass) . Following the notation, the

bits  represent the rest particles with mass . The random bit variables

 are introduced to stochastically describe the presence or absence of a rest particle-

s at a lattice site. These bits are randomly sampled with the average

values of ), and satisfying the limitations and .

III.Theoretical Analysis

 Considering the exclusion of viscosity in the final analysis, we begin with the more complexFHP lat-
tice and then later limit it to the Euler equation derived from the lowest order of the Chapman-Enskog
expansions[3]. TheFHP lattice is used since it enables a more rigorous analysis. The microscopic dynam-
ics can be expressed in terms of the bit variables for the moving particles as

,                (1)

and for the rest particles as

,              (2)

where  represents the velocity states in which the moving particles at a site might exit, and where =6

4 for theFHP and =4 forHPP lattice. The collision operator  describes the change in bits due

to collisions. The symbol  indicates the dependency of the collision operator on all bit varia-

bles at sitex and timestept. The macroscopic understanding of the lattice dynamic system can be

obtained by performing an ensemble average by assuming Boltzmann molecular chaos assumption. The

Boltzmann equations in terms of the mean population of particles can then be obtained as

,                   (3)

,                     (4)

where , and  indicates that the dependency of the collision operator

on all the mean population of particles . To obtain a solutions for the above equation and

understand the macroscopic behaviour, a Chapman-Enskog perturbation expansion and multi-scale tech-
nique [2] can be utilized. In order to this we first consider the solutions for equations (3) and (4) at local
equilibria with density and momentum slowing changing in space and time. It can be proved [2,4] if the
collisions verify the semi-detailed balance and conserve mass and momentum, the mean population of par-

ticle at equilibria  are described by theFermi-Dirac distribution. By using the conservation of mass

and the conservation of momentum,
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            (5)                     (6)

whereρ and u are the mass density and flow velocity per cell, respectively. The filling ratio  is related to

the initial condition, representing that in this mixture model  sites on the lattice are initialized with rest

particle of mass . The random bit probability of  is related to the local collision rules.The equilibrium

solution for moving and rest particles can be obtained as

,            (7)

                                        (8)

    In the above expressions, Greek index represents the spatial components of velocity of the particles. At

the equilibrium the average moving particle densityd and the rest particle density  with mass  can be

related by .  is the sound speed of the lattice to be determined latter.

Now, to obtain the perturbation solution to the Boltzmann equations (3) and (4) near equilibria we

expand  around the equilibria as a series in powers of  [2,4]

,                                               (9)

where . Based on Chapman-Enskog expansion, a multi-scale technique is used by assuming

that the gradients of the  and the related time  are very small, thus satisfying for

the first order derivative and for thenth order derivative.

Now we insert the expansion (7) in the Boltzmann equations (3) and (4) and use the above multi-scale

technique. By identifying the terms at orderO( ), the following equations can be written for the first order

solutions of  and , respectively,

,                             (10)

,                                       (11)

, , .

It can be shown that by using the conservations of mass and momentum (5) and (6), the macroscopic equa-
tions for mass and momentum can be written as

                                                           (12)

                                           (13)
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                                           (15)

         Equations (12)-(15) show that the first order perturbation on the lattice obey the Euler equation. To

determine the linear wave behaviour of the lattice and associated sound speed , we consider a case in

which a small perturbation( ) is superposed onto an equilibrium state with density  and zero

flow . We can write  and , where  is the uniform background density,

and are, respectively, weak density and flow perturbation with the order of .   For this situation,

the conservation of mass and mass at order  can be expressed as

,                                                (16)

,                                                (17)

where the parameter, the sound speed , is calculated from (17)as

    (18)

 Equations(16) and (17) can be combined to eliminate  and lead to the linear wave equation in terms of

 as

                                                         (19)

Here we can note that the regime of undamped sound wave involves only the lower symmetric requir-
ments[2,4], and thus the simple rectangular lattice ofHPP is valid for modelling linear wave propagation.

 An analogy now can be made between the above two-dimensional wave equation (19) and two-

dimensionalTM or TE electromagnetic fields. For the  case, the macroscopic perturbative density,

can be equated to the electric field , and the x- and y- components of the perturbative flow velocity,

, can be equated to magnetic field components,  and , respectively. Similarly,

for the case of ,  can be equated to the magnetic field ,    and =  can then be

equated to electric field components  and  respectively. In additional to this analogy, the mixture

HPP enables us to control the sound speed (dielectric constant) in a very flexible way.

IV.Numerical Results

Several results are then presented as examples of the mixtureHPP LGA for modelling inhomogeneous
dielectric media in two-dimensional electromagnetic problems. Fig.4 shows the time-domain scattering

intensity inside a dielectric cylindrical shell with  and of inner radius a=80  and outer radius

b=100 . The shell was created using a single rest particle . Fig.5 demonstrates a gaussian plane

propagating through a dielectric cylindrical shell with . To obtain a relative dielectric constant
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, a mixture model with up to three rest particles with masses , , and

was constructed. As an example of wave interaction with a complex biological structure, the scattering
field from a human body cross-section model (dielectric values only) was simulated and shown in Fig.6. In
this body cross-section model more than eight tissues with different dielectric constants ranging from4 to
85 were modelled.

V. Conclusion

We have presented and analysed a new LGA mixture model for inhomogeneous media. As indicated
by the sound speed formula (18), only with a few restrictions on such things as the conservation laws and
the semi-detailed balance condition, there are a great number of the collision rules which are qualified to
specify the lattice to enable a wide range of dielectric constant to be modelled. This has been confirmed by
a variety of simulation experiments[5].
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Fig.4: Time-domain field intensities for the electric field intensity inside a dielectric
            cylindrical shell withεr 5.=  Comparison is made to the results obtained

 using theTLM method[6].



1998 Symposium on Antenna Technology and Applied Electromagnetics, Aug. 14-16, Ottawa, Canada

7
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Fig.5: Snapshot of the microscopic field
intensity for a gausian plane wave pro-
pagating through a dielectric cylindrical
shell with .

Fig.6: Image of the instantaneous field inten-
sity for harmonic plane wave incidence on the
the cross section of human torso at 975MHz.


