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Abstract

A lattice gas automaton (LGA) capable of modeling Maxwell’s equations in
three-dimensions is described.  The automaton is a three-dimensional
interconnection of two-dimensional LGA cells, with appropriate operations at the
junctions between cells to include the properties of polarization.  A homogeneous
mathematical description of the heterogeneous three-dimensional automaton is
provided in terms of the underlying binary variables.  The implementation of the
automaton on the CAM-8 cellular automata machine is described.  The LGA has
been validated through calculation of resonant frequencies of modes within
various cavities.  The numerical results indicate the success of the automaton in
analyzing three-dimensional EM field problems.  We have not proven analytically
that this model reproduces Maxwell’s equations in the macroscopic limit,
however, this is a topic of future study.
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I:  Introduction

Our goal is not only to solve Maxwell’s equations, but to accomplish this
using low precision integer arithmetic.  Our motivation is that this style of
algorithm is ideally suited for implementation on fine-grain parallel computers.
Special purpose fine grain computing architectures, such as the CAM-8 cellular
automata machine, already exist [1].  Operations within these types of
architectures require very few bits of memory, and simple logical hardware or
lookup tables can be used for fast evaluation.  This approach is unlike the real
number finite difference time domain (FDTD) [2], finite element (FE) [3], or
transmission line matrix (TLM) [4] methods which have been widely applied to
the solution of spatially heterogeneous electromagnetic (EM) field problems.
These algorithms require floating point processors.  Lattice Gas Automata (LGA)
have been previously developed for modelling the behavior of complex fluids [5],
and are extremely well suited for execution on machines such as CAM-8.  LGA are
represented by an extremely large regular lattice of interconnected cells.  The cells
are very simple, usually with only a few bits being used to define all possible
operating states, and are updated in synchronism according to the same
deterministic rule which is local spatially and temporally.  In this paper, a LGA for
Maxwell’s equations is presented.

Any system, of moving particles (bits) on a lattice, in which conservation of
mass and momentum are satisfied will exhibit some form of fluid behavior.
Depending on the underlying lattice and the selection of collision operator, the
behavior may not be exactly that of a true physical fluid system as governed by
the Navier-Stokes equation, but aspects of the qualitative behavior of a fluid will
still be valid.  As an example, the Hardy, de Pazzis, and Pomeau (HPP) LGA
which adequately models linear acoustics (not considering viscous damping) does
not model the Navier-Stokes equation properly [6].  Such a system is therefore
inappropriate for accurately modelling fluid dynamics.  However, the system may
still be appropriate as a model of linear acoustics, as governed by the linear wave
equation.  Thus, ignoring the effect of an anisotropic viscosity, which will be
discussed in section IV, the HPP automaton is capable of modelling linear wave
behavior and many variations of the HPP automaton are capable of modelling
different sound speeds [7].  These HPP automata are therefore also capable of
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modelling two-dimensional electromagnetism [8], [9].  However, most practical
EM field problems are three-dimensional for which the solution of Maxwell’s
equations is required.

Three-dimensional electromagnetism is described by the vector wave
equation, and consequently an attempt to describe it using an acoustic analogy
with only scalar wave phenomena is insufficient.  For three-dimensional EM field
problems, rules capable of yielding vector wave behavior are required where the
macroscopic density and flow perturbations of selected sets of particles within the
LGA obey the coupled partial differential equation form of Maxwell's equations,

ε  
∂
∂

= ∇ ×E

t
H µ 

∂
∂

= ∇ ×H

t
E (1a)

where E  is the electric field vector, H  is the magnetic field vector, ε is the
permittivity and µ the permeability.  In Cartesian coordinates (1a) can be
expressed as follows,
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There are a large variety of possible LGA mesh topologies, the complexity
of which depends on the fluid phenomena that is desired.  Fortunately, simple
lattice geometries can be employed if solving three-dimensional scalar acoustics is
the only requirement.  The simplest automaton capable of modelling the three-
dimensional scalar wave equation requires only six particles per cell, where each
particle possesses a unit mass and travels with speed ∆l/∆t (i.e., one mesh step, ∆l
in one time step, ∆t).  This automaton can be considered as a three-dimensional
version of the HPP automaton, where the lattice is aligned with the Cartesian
coordinates and consists of particles with identical mass and propagation speed.

The four particle and six-particle HPP automata possess sufficient isotropy
to capture wave behavior in two and three-dimensions, respectively.  Therefore,
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these automata are capable of providing the appropriate linear wave behavior of
electromagnetism, and the only requirement is the augmentation of their
capabilities to capture the vector nature of Maxwell's equations.  The more
complex face centered hyper cube (FCHC) lattice [6] used for three-dimensional
Navier-Stokes equations is not required here.

In the following section we outline several methods for representing EM
fields on a three-dimensional lattice.  Even though LGA could be devised to make
use of all of these representations, we select an expanded representation for the
development of our automaton.  In section III, a homogeneous description of the
LGA collision operator is provided.  In section IV, the validation of the LGA is
described. In order to validate the automaton’s ability to model Maxwell's
equations, we have simultaneously simulated TE and TM modes within
rectangular cavities for a given set of boundary conditions.  Numerical results
indicate the resonant frequencies of both TE and TM modes are accurately
predicted.  While these numerical results validate our approach, we have not
proved analytically that the model reproduces Maxwell’s equations in the
macroscopic limit.  This topic is eventually necessary and is a topic of our current
research [22].  In section V we examine the computational resources of the LGA
and propose methods for improvement.

II:  Representation of EM Fields on a Three-Dimensional Lattice

The differential-equation based computational EM literature contains a
variety of approaches for the spatial organization of a unit cell.  Several different
strategies based on these existing approaches for the spatial organization of the
unit cell of our new LGA have been considered.  A method for representing EM
fields on a spatial lattice is required which accounts for the nature of LGA and
enables efficient implementation in a fine-grain computing architecture such as
the CAM-8 cellular automata machine.

For all differential equation based methods, including LGA, the volume of
space enclosing the EM fields is discretized into unit cells.  The spatial
organization of the unit cell is closely related to the method of discretization.  It is
however, possible to use an arbitrary spatial cell organization with a variety of
discretization techniques (i.e., finite difference, finite element, finite volume).
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Here, we classify the various spatial organizations of the unit cells in terms of two
parameters: symmetry and condensation.  A symmetric cell appears the same (in
terms of the vector components of the fields) from each coordinate axis.  A
condensed cell has all field components defined at the same spatial locations.  A
completely uncondensed cell has only a single field component defined at a given
spatial location, and a partially condensed cell has some, but not all, field
components defined at a given spatial location.  Examples of the spatial
organizations of unit cells are presented in Fig. 1.

In the computational EM literature, many of the spatial organizations of
unit cells shown in Fig. 1 have become associated with specific numerical
discretization schemes.  For example, the expanded representation of Fig. 1(a) has
become associated with the generic term ‘finite difference time domain’ [2].
However, such rigid association is not necessary and it is possible to formulate
finite difference algorithms based on all of the discretizations presented below.  It
is a more fundamental methodology to differentiate the mesh representation from
the numerical discretization.  For example, it is possible to formulate TLM
schemes with all of the cells shown in Fig. 1.  The original TLM scheme employs
the spatial cell of Fig. 1(a) [10].  The so-called symmetric condensed node TLM
scheme [11], which is actually partially-condensed, utilizes the unit cell of Fig.
1(b).  The three-dimensional extension of the hybrid finite-element/TLM
algorithm presented in [12] would require the unit cell of Fig. 1(c).

Given the above classification of EM field representations on three-
dimensional lattices, our goal is to develop a LGA utilizing one of these spatial
organizations.  Current LGA are based on the interaction of particles, which have
the properties of mass, and due to their direction of propagation, momentum.  The
automaton is based on the interaction of particles having the properties of mass,
momentum and polarization.  Each particle possessing a ξ-polarization
contributes to the ξ component of the macroscopic electric field, where ξ ∈( , , )x y z .
The particles on this lattice would conserve mass and momentum and interact
according to their polarization.  In this manner, the LGA appears as a TLM-like
algorithm in which single-bit variables are used.

A LGA implementation of the symmetric-condensed lattice as shown in Fig.
1(c) has a complete set of ξ-polarized particles at each spatial location and a unit
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cell would require 36 particles.  A LGA implementation on the symmetric, partially

condensed lattice shown in Fig. 1(d) would require 24 particles.  The spatial
organizations for these two cases with required particles are provided in Fig. 2.
Each node location (•) in Fig. 1(c) corresponds with a spatial location at which the
dashed lines intersect in Fig. 2(a).  The spatial locations in Fig. 2(a) at which the
particles exist correspond to spatial locations half way between the nodes of Fig.
1(c).  The node location (•) in Fig. 1(b) corresponds with the intersection of solid
lines in Fig. 2(b).  The spatial locations in Fig. 2(b) at which the particles exist
correspond to spatial locations at which the tangential fields are defined in Fig.
1(c).  Since only tangential fields are defined between nodal locations in Fig. 2(b)
and 1(b), only particles carrying tangential fields are required.

A problem with both spatial organizations of Fig. 2 is that a fairly large
number of bits are required per unit cell.  The main motivation for the LGA
approach is to enable operation as a fin-grain computing system and thus
minimization of the number of bits per unit cell is imperative.  For example, the
CAM-8 cellular automata machine performs collision operations using a 16-bit
look-up table and thus operates most efficiently on 16 bits of state per site at any
instant of time.  Implementations involving cell sizes of more than 16 bits can be
accommodated by parsing the particle interactions into 16 bit operations, but this
becomes computationally cumbersome.  In general, an n-bit collision process
requires a 2n sized look-up table.  If an n-bit collision operator look-up table must
be parsed in a brute-force manner into 16 bit operations, 2m look-up tables are
required for an m+16 bit collision operator.  It is therefore desirable to exploit any
symmetries of the lattice or factorizations to parse a collision operator involving
more than 16 bits.  For example, in [13] the implementation of an FCHC LGA on
CAM-8 is described.  The FCHC LGA requires 24 particles per cell, however
Adler, et. al. were able to split the 24 bit collision process into two 16 bit collision
events.  Instead of searching for a similar reduction of the collision process for
either of the 36 or 24 bit automata of Fig. 2, we have selected an unsymmetrical,

uncondensed (or expanded) lattice.  This reduces the number of bits required at
each CAM-8 site to less than 16 bits.  In fact, the number of particles per CAM-8
site is reduced to 8, if one site is assigned to each electric or magnetic field
component as shown in Fig. 1(a).  Therefore, 6 CAM-8 sites are required for a
complete unit cell based on the spatial organization of Fig. 1(a).  The CAM-8
implementation of the automaton is described in Section III.3.
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III:  New Three-Dimensional Vector Lattice Gas Automaton for
Maxwell's Equations

III.1:  Spatial Organization of the New Automaton

The state of a cell at discrete (integer indexed) spatial locations   
r
x x y z= ( , , )

in three-dimensional space and at time t is given by,
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or more concisely as,
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where the particles of our automaton are described using binary variables,

b±
± ∈{ }ξ 0 1, .  The ± superscript denotes a positive or a negative particle, and ±ξ

denotes a particle travelling in the ±ξ  direction, where ξ ∈{ }x y z, , .  Eq. (2) has

been constructed using 12 particles per lattice site.  We will eventually show that

due to the parity operators, only 8 particles are required.  In this document, since

binary variables are used, the algebra utilizes the Boolean AND, O R, and N O T

operations.  The operations, defined on two variables a and b are:  ab (AND), a+b

(OR), a  (NOT).  A site specific operator is not used in the description of the

particles.  Here we only use a polarity (positive or negative particle) identifier and

a propagation direction identifier.  Using this notation, we require additional

information in order to define the field quantities associated with the lattice

particles.

The description given by Eq. (2) of the automaton allows particles to exist in

all velocity states at all spatial locations within the lattice.  We will now define an

expanded-style unsymmetrical uncondensed lattice as in Fig. 1(a) using the 12-

particle cell of (2).  This will be accomplished by defining parity operators which

exclude particles from occupying illegal states.  The parity operators are defined

as,
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),,(for   
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Based on the interpretation of the expanded mesh of Fig. 1(a), each E or H

field site in the lattice should be associated with specific ‘polarized’ particles.  For

example, +ξ  polarized particles will be associated with + superscripts and

contribute to the macroscopic Eξ field component while -ξ polarized particles

subtract from it, where ξ ∈( , , )x y z .  To conform to the expanded lattice, we restrict

the particles to represent microscopic TEM propagators, and therefore the ξ

direction is perpendicular to the direction of propagation of the ±ξ polarized

particles.  Based on this interpretation, the fields at the various spatial locations of

the expanded mesh can be defined as,
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The resulting expanded style mesh is as shown in Figs. 3 and 4.

In (2), there is no need to denote the field component to which the particle
contributes, since this is determined by the parity operator (3) and spatial
coordinates of the site. A valid propagation direction d̂  for a particle at an Eξ or
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Hξ site is any non-zero outcome of the operation ˆ ˆd × ξ .  Again, this is because the
particles represent TEM propagators.  To illustrate our definitions of particles,
four particles within a unit cell of the automaton are provided in Fig. 4.

Two cuts through the lattice in the y-z plane are shown in Fig. 3, and a
complete unit cell is provided in Fig. 4.  The unit cell shown in Fig. 4 occupies a
cube with a side length of 2 ∆l.  The distance from an Eξ site to the next occurrence
of an Eξ site is 2 ∆l.  In Figs. 3 and 4, the sites are labeled by the field component
represented by a particular site.  At an Eξ site, all the particles contribute to the ξ-
component of the electric field.  A site is required for each Cartesian component of
the electric and magnetic fields (Ex, Ey, Ez, Hx, Hy, Hz).  For this particular

automaton, only microscopic transverse electromagnetic (TEM) propagators exist.
Therefore, ξ-polarized particles do not travel in the ξ direction.  In both of these
figures, the solid lines indicate the presence of interconnections or paths along
which the particles travel.  The dashed lines are placed for visualization to
represent paths along which particles are not allowed to travel.  The intersections
of dashed lines represent locations where particles are not allowed to exist.
Because of this restriction, a specific spatial organization of sites is required in
order to connect the three electric and the three magnetic field sites.  This spatial
organization is the expanded unsymmetrical spatial organization of Fig. 1(a).  The
locations of the sites are given in terms of the parity operator (3) in Table I below.
The two null sites are spatial locations at which particles do not exist.  An
explanation of how the lattice of Fig. 3 and unit cell of Fig. 4 relate to the Cartesian
representation of Maxwell’s equations (1b) is given at the end of Section III.2.
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Table I:  Specification of Sites Locations in Terms of Parity Operators:

Site px
py pz

Ex px = 1 py = 1 pz = 0

Ey px = 0 py = 0 pz = 0

Ez px = 0 py = 1 pz = 1

Hx px = 0 py = 0 pz = 1

Hy px = 1 py = 1 pz = 1

Hz px = 1 py = 0 pz = 0

null odd even odd

null even odd even

III.2:  Operation of the Automaton

Based on the above description of the geometry of the LGA, the operation
of the LGA can be now described in the usual manner in terms of collision and
advection events [6].

The dynamics of the LGA are defined as,

  
b x c l t t b x t C B x t±

±
±
±

±
±± + = + ( )ξ ξ ξ ξ( , ) ( , ) ( , )

r r r r∆ ∆ (5)

where C±
±
ξ  is the collision operator for the particles travelling in the ±ξ  direction,

and ξ ∈( )x y z, , .  Eq. (5) can be interpreted as defining the states of the lattice at

time t+∆t in terms of the states at time t.  Here, the particles propagate with speed

1∆l per ∆t.  This collision operator includes the effects of both the collision and the

polarization event.  In order to separate the polarization and collision events

intermediate variables are employed.  The intermediate variables are denoted as

`b±
±
η , which are the bit values after the collision operation, but before the

polarization event.  Therefore, the lattice dynamics can also be defined as,

  ̀ ( , ) ( , ) ` ( , )b x c l t t b x t C B x t±
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±= ( )η η( , ) ` ( , )

r r
(6b)
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where the operator `C describes the collision event without the polarization event,

and the operator T describes the polarization event.  HPP collision rules are

applied [16], and using the above notation, the collision event is given as,

  ̀ ( , , , ) ( , ) ` ( , )b x l y z t t b x t C B x tx x x±
±

±
±

±
±± + = + ( )∆ ∆ r r

, (7a)

  ̀ ( , , , ) ( , ) ` ( , )b x y l z t t b x t C B x ty y y±
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±
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±± + = + ( )∆ ∆ r r

, (7b)

  ̀ ( , , , ) ( , ) ` ( , )b x y z l t t b x t C B x tz z z±
±

±
±

±
±± + = + ( )∆ ∆ r r

, (7c)
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The particle states in the definition for Θηξ
±  given above are evaluated at   

r
x t,( ) .  The

above collision operator is homogeneous, thus is applicable at every spatial

location throughout the lattice.  The parity operators, pξ , are used to specify the

appropriate spatial locations at which the appropriate particle interactions occur.

These terms specify the spatial heterogeneity of the lattice as shown in Figs. 3 and

4 within a homogeneous particle description (2).

It must be noted that in the description of the collision operator (7), +ξ
particles do not interact with -ξ particles and vice versa.  The HPP collision
operator defined in (7) as Θηξ

±  is succinctly described as:  particles do not interact,

except for pairwise head on collisions; for pairwise head-on collisions, the
resultant particles are transformed 90o to the original pair [6].

Operation (6a) is applied at all sites within the lattice to obtain the values `b
throughout the entire mesh.  These values are then transferred to adjacent sites,
via the polarization operation (6b), to obtain the new states of the automaton, b.
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Again, due to the spatial organization shown in Figs. 3 and 4, the

polarization event is spatially heterogeneous and requires the parity operators in

order to be described in a homogeneous manner.  The polarization event is given

as,
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Operation (8a) is invariant with respect to shifts in space or time, and can be re-

written as,
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We can now substitute (7) into the above polarization event (8b), to obtain,
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In order to obtain the dynamics of the form (5), we have to re-arrange the terms in

(9).  Rearranging the collision event for b x+
±  yields
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adding and subtracting ),( txbpp xzy
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+  from the RHS of (10) yields the appropriate

form of the collision operator,
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Similarly for the other particles,
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A particular example of the polarization event (8a) required to link all of the
lattice sites which represent different electric and magnetic field components is
provided in Fig. 5.  Two adjacent sites in the x-y plane are shown in Fig. 5 (an Hy
and an Ez cell).  At the junction between these sites, an operation is required to
ensure consistent polarization as particles pass to an adjacent site.  For instance, a
positive Ez particle travelling in the positive x direction is transformed into a
negative Hy particle when it enters the Hy site as shown in Fig. 5(a).  Similarly, a
negative Ez particle travelling in the positive direction is transformed into a
positive Hy particle when it enters the Hy site as shown in Fig. 5(b).  A positive
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(negative) Hy particle travelling in the negative x direction remains a positive
(negative) particle upon entering the Ez site.

Each of the six sites which comprise the unit cell (labelled as Ex, Ey, Ez, Hx,
Hy, Hz in Fig. 4), can be considered to model one of the six expressions in the
Cartesian representation of Maxwell's equations (1).  For instance, the expression
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∂
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∂
∂=

∂
∂
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H
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H

t

E yzx

ε
1

 
, can be considered to be represented by the Ex field site.

The Ex field component in the expression is linked to the Hy and Hz fields.  In the
unit cell of Fig. 4, the sites representing Hy and Hz are adjacent to the Ex site.  The
transformation events linking adjacent sites can be thought of as providing
coupling between the six expressions representing the expression of Maxwell’s
equations in Cartesian coordinates.

III.3:  CAM-8 Cellular Automata Machine Implementation

All of our computational investigations of cellular automata utilize the
CAM-8 cellular automata machine [1].  CAM-8 can be considered as a personal
cellular automata supercomputer and consists of about 2MBytes of SRAM and
64MBytes of DRAM.  A SUN workstation acts as its host.  The machine is capable
of performing 200M site updates per second on a space of 32M sites.

The updating of sites is performed by table look-up.  The binary variables
which belong to a particular 16 bit site are passed from DRAM memory through a
look-up table stored in SRAM, and then placed back into the same DRAM
memory location.  Movement of data corresponding to the bit-fields within the
site is accomplished through DRAM address manipulation.  For the case of
CAM-8 evaluation of a LGA, the collision operator is compiled into a look-up table
and the advection events performed via DRAM address manipulation [1].

To implement the LGA described in III.1 and III.2, each field location in the
mesh is assigned to an individual CAM-8 site.  The allocation of bits used to
encode the LGA is shown in Table II.  Note that for this initial implementation we
exceed the first subcell by 1 bit, and therefore require the use of a single additional
subcell.  This leaves plenty of bits available in the second subcell for implementing
rest particles, material markers, source markers, random bits, etc.
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The implementation described in Table II is selected to minimize
computational complexity, although it is inefficient in terms of memory storage.
For instance, at an Ex site, there exists 8 moving particles (see Fig. 4)

  b x t b x ty z±
±

±
±( , ), ( , )

r r
.  However, 12 bits are allocated in Table II to describe this site

resulting in 4 unoccupied bits per site.  As well, allocating each field location to a
CAM-8 site, and hence using a marker to denote the site type, is also wasteful.
The LGA cell of Fig. 4 requires a 2 by 2 by 2 region of CAM-8 sites.  Two of every
eight CAM-8 cells contain a null-cell at which there never exists information.

Although memory inefficient, the implementation described above is
relatively easy to develop in a programming sense.  Data movement is easily
accomplished.  The algorithm is easily parsed into different look-up tables for
boundary condition implementation, particle collisions, intercell polarization
operations, and event-counting.  Separation of these events, with a single data
transfer event between the collision and event counting table scans, allows for
easy testing.  In the final implementation, in order to improve computational
speed only two lookup tables and therefore two scans of the computational space
are required.  One is to perform the boundary condition implementation, particle
collisions, intercell polarization operations, and another for the event counting.

Both perfect electric conducting (PEC) and perfect magnetic conducting
(PMC) boundary conditions have been implemented.  These are enforced through
locally setting the tangential electric (for PEC) and tangential magnetic (for PMC)
fields equal to zero.  An electric (magnetic) field component at an Eξ (Hξ) site is set
to zero by reversing the polarization of the positive and negative particles.



Submitted to the Journal of Computational Physics (in review O2/98)

19

Table II:  Bit allocations for CAM-8 Implementation.

Subcell 0:

Bits Usage

0-3 x-directed moving particles

4-7 y-directed moving particles

8-11 z-directed moving particles

12-14 three bit cell marker (6 types of cells, Ex, Ey, ... Hz)

15 PEC boundary marker

0-7 also reused as counting bits

Subcell 1:

Bits Usage

0-14 not used

15 Marker for counting window

One possible assignment of the three-bit cell marker is:

marker bits field component

0 0 0 Ex

0 0 1 Hx

0 1 0 Ey

0 1 1 Hy

1 0 0 Ez

1 0 1 Hz

1 1 0 null

1 1 1 null
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IV: Numerical Validation

In this section, the LGA is validated through calculations of the resonant
frequencies of various cavities.  The first problem considered is the simultaneous
solution of both TE and TM modes within a rectangular PEC cavity.  TE or TM
modes within a rectangular PEC cavity can be individually described by their
scalar potential functions, ϕmnp

TE  and ϕmnp
TM  (13) [17], with appropriate boundary

conditions imposed on them.  These boundary conditions can be enforced through
setting the tangential component of the electric field to zero on the cavity walls.
This condition is imposed differently on the two scalar potential functions, since
the components of the electric fields are derived differently (see (13a) and (13b)).
Therefore, a simulation involving both TE and TM modes with boundary
conditions enforced on the field components can not yield correct results without
the capability of solving Maxwell's equations.  In Table III, results obtained from
various simulations are provided.  To compute the resonant frequencies, a discrete
Fourier transformation of the transient response was computed and peaks in the
frequency spectrum were identified with the various modes.  In each simulation,
TE and TM modes are excited within cavities of various sizes, and the resonant
frequencies are compared to the exact solutions.  The results indicate the resonant
frequencies of the TE and TM modes are accurately predicted by our LGA for a
variety of different mode numbers and simulation space sizes.  The errors
provided in Table III are less than one percent.  The results were obtained from
single LGA simulations.  If ensemble averages of different LGA simulations are
calculated, the resultant resonant frequencies (as computed from the ensemble
averaged field responses), would more closely match the exact solutions.

Table III:  Percent error in resonant frequency predicted by the
LGA simulation of TE and TM modes [17]

Simulation Modes Size of Space % error TE, TM solution

1 TE111, TM111 (128)3 0.12, 0.12

2 TE121, TM222 (128)3 0.08, 0.12

3 TE121, TM222 (128, 128, 256) 0.82, 0.12

4 TE112, TM321 (128, 128, 256) 0.15, 0.27

5 TE111, TM221 (256, 256, 128) 0.75, 0.09
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The present capacity of our machine is 64MBytes and therefore permits a
maximum space size of (256 CAM-8 sites)3 -> 256*256*256*(2sites)*2Bytes/site ~
64MBytes.  This refers specifically to CAM-8 sites.  The number of LGA unit cells
(as displayed in Fig. 4) is therefore 1283.  The simulations were run for 4,000 time
steps.

The initial conditions for each analysis were enforced through the
specification of Hz and Ez field distributions throughout the simulation space.
The distribution function for TMm n p and TEmnp modes with subsequent

definitions for the electric and magnetic field components are [17]:

ϕmnp
TM = sin(

mπx

a
)sin(

nπy

b
)cos(

pπz

c
) ;   m,n = 1,2,...  ;   p = 0,1,2,... (13a)
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.

We have also analyzed a finned waveguide using the LGA.  Although this
is actually a two-dimensional problem, we have utilized the three-dimensional
automaton to analyze it.  The fin-line cross-section is aligned in the x-y plane, and
a short simulation space in the z direction is used (with a wrap-around boundary
condition used to terminate the z=minimum and z=maximum planes).  A
complete description of these numerical simulations is provided in [9].  The
problem has been previously investigated with the symmetric condensed node
(SCN) TLM algorithm by Herring and Hoefer [18].  The geometry is specified by
a=2b, and the resonant frequency is computed for various gap sizes, d.  A
benchmark solution was obtained through the use of the SCN-TLM algorithm
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with a lattice size of 256 by 128 ∆l [19].  The results are summarized in Fig. 7, and
indicate possible values for the LGA to TLM mesh ratios.  This problem is an
interesting one to carry out a meaningful comparison because it is simple enough
to allow rigorous computational investigation, yet clearly distinguishes between
dispersive errors and errors due to imperfect modelling of a spatial field
distribution.  The discretizations (for the TLM and FDTD analysis) are such that
numerical dispersion should be minimal.  As discussed, the LGA results are free
of numerical dispersion, however they possess numerical dissipation, similar to
that due to Lax-Wendroff style finite-difference or finite-element algorithms [20].
The errors in the determination of cut-off frequency demonstrated in Fig. 7, are
due to the inability of the algorithms to accurately predict the behavior of the EM
field distribution around the fin.  As expected as the gap size increases (size of the
fin decreases), the errors for all discretizations are minimized.  We can see in Fig. 7
that the solutions for a TLM mesh of 32 by 16 cells provides the same accuracy as a
LGA mesh of 2048 by 1024 CAM-8 sites.  The 2048 by 1024 CAM-8 sites
corresponds with 1024 by 512 LGA cells, and therefore the ratio of LGA to TLM
cells required for equivalent accuracy is approximately 30:1 per linear dimension
of the problem.

The final problem examined is a short cylindrical perfect electric conducting
(PEC) cavity.  This particular problem adds the twist of requiring a stair-stepped
discretization of the cylindrical surface.  This problem is convenient since an
analytic solution exists.  The cylinder was embedded within a CAM-8 space of size
128 by 128 by 8 sites.  The LGA results are compared to stair-stepped FDTD results
provided in [21].  The spatial cell size within the automaton is 0.01m, as compared
to 0.05m within the FDTD results provided by [21].  This 5:1 LGA to FDTD mesh
ratio is much smaller than that indicated by the finned waveguide analysis.  It
should be noted that a stair-stepped FDTD analysis does not represent the current
state-of-the-art.  In fact, the results provided in [21] were actually presented in
order to demonstrate the accuracy of their conformal-style algorithm which
reduces stair-stepping errors.  Their 'corrected' resonant frequencies differ from
the analytic results by less than 0.1%.  We compare the LGA to the stair-stepped
FDTD results here to indicate one advantage of the fine discretization required by
the LGA.  The special treatment of curved PEC boundaries and perhaps even
curved material boundaries (which have not received alot of attention) is not
necessary within LGA.  Fitting a numerical mesh to a geometrically complex
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object is not a simple task.  Due to the extremely fine spatial discretization
associated with LGA, accurate spatial description of PEC boundaries is achieved
by default.

h

d
Table V:  Comparison of % error in LGA results

and stair-stepped FDTD results from [21]

Diameter (m) % error LGA % error stair-stepped FDTD

1.00 0.29 2.53

1.03 0.36 2.38

1.05 0.46 4.36

1.07 0.76 3.18

1.10 0.46 1.95

Moreover, all of the results indicate that the numerical dispersion of the
LGA is very small, for the discretization we have selected.  However, numerical
dissipation is present in all of these simulations, in the form of a bulk viscosity.
This is a result of using fluid like collision rules (HPP collisions).  As expected, the
viscosity we have observed is anisotropic [6], and, examining the decay of various
modes in various sized simulation spaces indicates it is in the range of 0.07 to 0.50
∆l2/∆t.

The results of this section indicate the success of the LGA to compute
solutions to EM field problems.  The present validation does not, however, prove
that the LGA is a consistent or convergent method for solving Maxwell’s
equations.  In this paper we have not proven analytically that this model
reproduces Maxwell’s equations in the macroscopic limit, however, we are
currently investigating this topic [22].
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In this paper, we have only addressed EM field problems with
homogeneous material properties.  Most general problems require the modelling
of heterogeneous material regions.  We have modelled EM wave interaction with
complex heterogeneous objects including a human body cross section in two
dimensions using LGA [7], [7a].  The LGA described in [7] and [7a] are based on
the addition of rest particles to the HPP automaton.  These modified HPP LGA
can be implemented in the same way as the standard HPP automata have been
implemented in this paper, in order to obtain an LGA for modelling
heterogeneous three-dimensional EM field problems.

The increased mesh density required by the LGA is largely due to the
presence of numerical viscosity.  The viscosity has a large impact on problems
with rapid spatial variation of the field distributions.  These variations occur in the
vicinity of sharp edges such as that encountered with the finned waveguide which
results in a LGA to TLM cell ratio of 30:1.  Although we are utilizing only single-
bit variables such an increase in mesh density will result in impractical memory
requirements.  The reduction of this viscosity is extremely important for the
practical application of LGA for EM field modeling.  We have investigated integer
LGA (ILGA) utilizing low-precision integer variables (4 bits per variable).
Theoretical and numerical investigation of these ILGA have indicated a significant
decrease in the LGA mesh density required for the finned waveguide problem
(from 30:1 to 3:1 [23-24]).  This decrease results in a one thousand fold decrease in
the number of cells.  This development allows for the practical application of LGA
to the modelling of spatially heterogeneous three-dimensional EM field problems.
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V:  Conclusions

In this paper, we describe a LGA for modelling three-dimensional EM field
problems.  The automaton utilizes particles which possess mass, momentum, and
polarization.  Conservation of mass and momentum are maintained through
utilization of HPP collision events at individual sites, and polarization
transformations are applied to maintain correct polarization information for
particles travelling to adjacent sites.  The new automaton utilizes an expanded
spatial cell representation which allows for reasonably simple implementation on
a CAM-8 machine.  This three-dimensional interconnection of two-dimensional
cells is reminiscent of that utilized by the Yee FDTD algorithm [14], the expanded
TLM algorithm [10], and the Spatial Network Method [25].  The numerical results
indicate the success of the automaton in analyzing three-dimensional EM field
problems.
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Figure 1: Spatial organization of unit cell: (a) Yee finite-difference algorithm
[14], and the expanded node transmission line matrix model [10]
(unsymmetrical, uncondensed), (b) transmission line matrix algorithm [11]
and Shankar finite-volume algorithm  [15] (symmetric, partially-
condensed), (c) nodal-based finite-element method (symmetric, condensed),
(d) edge-element finite-element methods (symmetric, partially-condensed).
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(a)

(b)

Figure 2: Spatial organization of unit cells including the required particles
for the three-dimensional LGA cell constructed from, (a) the symmetric
condensed cell of Fig. 1(c) requiring 36 particles, and (b) the symmetric
partially-condensed cell of Fig. 1(b) requiring 24 particles.
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Figure 3: Visualization of two cuts of the lattice in the y-z plane.  These cuts
are at x=xo∆l and x=(xo+1)∆l.  Both here and in Fig. 4, the solid lines
indicate paths along which particles may propagate, and dashed lines
indicate paths along which particles may not propagate.
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Figure 4: A single expanded three-dimensional cell indicating the spatial
organization of the E and H field sites and their relation to the particles.
This expanded mesh implementation occupies a space of 23 CAM-8 sites.
Positive Ex and Hy particles are shown propagating from the Ex to Hy, and
Hy to Ex sites, respectively.  Positive Ez and Hx particles are shown
propagating from the Ez to Hx, and Hx to Ez sites, respectively.  The front
face (x=0) and the back face (x=1) can be seen as a portion of the planes of
Fig. 3.
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Figure 5: The junction between two cells displaying ±Ez and ±Hy particles.
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Figure 6: Visualization of a single particle propagating through the mesh
on successive time steps.
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Figure 7: Percent error in determination of the resonant frequency of the
dominant mode versus gap size for various TLM and LGA simulations
utilizing different mesh spacing.


