
Natural Language Annotations

for the Semantic Web

Boris Katz1, Jimmy Lin1, and Dennis Quan2

1 MIT Artificial Intelligence Laboratory
200 Technology Square
Cambridge, MA 02139

{boris,jimmylin}@ai.mit.edu

2 IBM Internet Technology Division
1 Rogers Street

Cambridge, MA 02142
dennisq@us.ibm.com

Abstract. Because the ultimate purpose of the Semantic Web is to help
users locate, organize, and process information, we strongly believe that
it should be grounded in the information access method humans are
most comfortable with—natural language. However, the Resource De-
scription Framework (RDF), the foundation of the Semantic Web, was
designed to be easily processed by computers, not humans. To render
RDF friendlier to humans, we propose to augment it with natural lan-
guage annotations, or metadata written in everyday language. We argue
that natural language annotations are not only intuitive and effective,
but can also accelerate the pace with which the Semantic Web is being
adopted. We demonstrate the use of natural language annotations from
within Haystack, an end user Semantic Web platform that also serves as
a testbed for our ideas. In addition to a prototype Semantic Web question
answering system, we describe other opportunities for marrying natural
language and Semantic Web technology.

1 Introduction

The vision of the Semantic Web [2] is to convert information on Web sites into
a more machine-friendly form, with the goal of making the Web more effective
for its users. This vision grew out of the recognition that although a wealth of
information readily exists today in electronic form, it cannot be easily processed
by computers due to a lack of external semantics.

Fundamentally, we interpret Semantic Web research as an attempt to address
the problem of information access: building programs that help users locate, col-
late, compare, and cross-reference content. As such, we strongly believe that the
Semantic Web should be motivated by and grounded in the method of informa-
tion access most comfortable to users—natural language. We believe that natural
language is the best information access mechanism for humans; it is intuitive,

jimmylin
In Proceedings of the International Conference on Ontologies, Databases, and Application of Semantics (ODBASE 2002), October 2002, Irvine, California

easy to use and rapidly deployable, and requires no specialized training. In our
vision, the Semantic Web should be equally accessible by computers using spe-
cialized languages and interchange formats, and humans using natural language.
The vision of being able to ask a computer “when was the president of Taiwan
born?” or “what’s the cheapest flight to the Bahamas this month?” and getting
back “just the right information” is very appealing.

Because the first step to building the Semantic Web is to transform exist-
ing sources (stored as HTML pages, in legacy databases, etc.) into a machine-
understandable form (i.e., RDF), it is sometimes at odds with a human-based
natural language view of the world. Although the general framework of the
Semantic Web includes provisions for natural language technology, the actual
deployment of such technology remains largely unexplored.

Exactly what synergistic opportunities exist between natural language tech-
nology and the Semantic Web? State of the art natural language systems are
capable of providing users intuitive access to a wealth of textual data using or-
dinary language. However, such systems are often hampered by the knowledge
engineering bottleneck; knowledge bases are difficult, and often time consuming,
to craft. This is where the Semantic Web comes in: Semantic Web research is
concerned with constructing, integrating, packaging, and exporting segments of
knowledge to be usable by the entire world. We believe that natural language
technology can tap into this knowledge framework, and in return provide natural
language information access for the Semantic Web.

To illustrate the potential opportunities that lie on the intersect between
natural language and the Semantic Web, we describe a prototype question an-
swering system capable of retrieving relevant information from a repository of
RDF triples in response to user queries formulated in natural language. We draw
our inspiration from two existing systems: Start, the first question answering
system available on the World Wide Web, and Haystack, an end user Semantic
Web platform that aggregates all of a user’s information into a unified repository.

2 The START Natural Language System

The use of metadata is a common technique for rendering information fragments
more tenable to processing by computer systems. We believe that using natu-
ral language itself as metadata presents several advantages and opportunities:
it preserves human readability and encourages non-expert users to engage in
metadata creation. To this end, we have developed natural language annota-
tions [7], which are machine-parsable sentences and phrases that describe the
content of various information segments. These annotations serve as metadata
that describe the kinds of questions a particular piece of knowledge is capable
of answering. We have implemented natural language annotation technology in
the Start Natural Language System3 [6, 7].

To illustrate how our system works, consider the following paragraph about
Joseph Brodsky, which may contain images and other non-textual elements:
3 http://www.ai.mit.edu/projects/infolab/

“For an all-embracing authorship, imbued with clarity of thought and poetic

intensity,” Joseph Brodsky was awarded the 1987 Nobel Prize in Literature.

This paragraph may be annotated with the following English sentences and
phrases:

Joseph Brodsky was awarded the Nobel Prize for Literature in 1987.

1987 Nobel Prize for Literature

Start parses these annotations and stores the parsed structures (called
embedded ternary expressions [9, 6]) with pointers back to the original infor-
mation segments. To answer a question, the user query is compared against
the annotations stored in the knowledge base. Because this match occurs at
the level of syntactic structures, linguistically sophisticated machinery such as
synonymy/hyponymy, ontologies, and structural transformation rules are all
brought to bear on the matching process. Linguistic techniques allow the system
to achieve capabilities beyond simple keyword matching, for example, handling
complex syntactic alternations involving verb arguments. If a match is found
between ternary expressions derived from annotations and those derived from
the query, the segment corresponding to the annotations is returned to the user
as the answer. For example, the annotations above allow Start to answer the
following questions (see Figure 1):

What prize did Brodsky receive in 1987?

Who was awarded the Nobel Prize for Literature in 1987?

Tell me about the winner of the 1987 Nobel Prize for Literature.

To whom was the Nobel Prize for Literature given in 1987?

An important feature of natural language annotations is that any information
segment can be annotated: not only text, but also images, multimedia, and even
procedures!

Since it came online in December, 1993, Start has engaged in millions of ex-
changes with hundreds of thousands of users all over the world, supplying them
with useful knowledge. Currently, our system can answer millions of natural lan-
guage questions about places (e.g., cities, countries, lakes, coordinates, weather,
maps, demographics, political and economic systems), movies (e.g., titles, ac-
tors, directors), people (e.g., birthdates, biographies), dictionary definitions, and
much, much more.

In order to give Start uniform access to semistructured resources on the
Web, we have created Omnibase [8], a virtual database system that integrates
a multitude of Web sources under a single query interface. To actually answer
user questions, the gap between natural language questions and structured Om-
nibase queries must be bridged. Natural language annotations serve as the en-
abling technology that allows the integration of Start and Omnibase. Since
annotations can describe arbitrary fragments of knowledge, there is no reason
why they cannot be employed to describe Omnibase queries. In fact, annotations
can be parameterized, i.e., they can contain symbols representative of an entire

Fig. 1. Start answering the question “Who won the Nobel Prize for Literature in
1987?”

class of objects. For example, the annotation “a person wrote the screenplay for
imdb-movie” can be attached to an Omnibase procedure that retrieves the writ-
ers for various movies from the Internet Movie Database (IMDb). The symbol
imdb-movie serves as a placeholder for any one of the hundreds of thousands of
movies about which IMDb contains information; when the annotation matches
the user question, the actual movie name is instantiated and passed along to
the Omnibase query. After Omnibase fetches the correct answer, Start per-
forms additional postprocessing, e.g., natural language generation, to present
the answer.

3 Haystack

We are constantly investigating new systems whose integration with Start will
provide synergy. In this way, Haystack [5] provides a wealth of opportunities
from both a research and a practical standpoint. Haystack is a system that
aggregates all of a user’s information, including e-mail, documents, calendar, and

Fig. 2. Screenshot of Haystack

web pages, into a unified repository. This information is described using RDF,
which makes it easy for agents to access, filter, and process this information
in an automated fashion. As a motivating example, consider a query such as
“show me the letter from the woman I met with last Tuesday from Human
Resources.” Current information technology allows our computers to store all
of the information necessary to answer this question. However, it is scattered
amongst multiple systems; an agent resolving this query would need to be able
to communicate with an e-mail client, a calendar, the filesystem, and a directory
server. By reducing the protocol barriers to information—standardizing on RDF
as a common model for information—agents are free to mine the semantics of a
user’s various data sources and not be bogged down by syntactic barriers.

Figure 2 shows a screenshot of Haystack. In this scene, a user’s Haystack
“home page” is depicted, in which the user is given a snapshot of her e-mails
and to-do items, her calendar, applicable weather and news reports, and access
to a question answering service.

In addition to being an end-user application for managing information, Haystack
also serves as a powerful platform for experimenting with various information re-
trieval and user interface research problems. By incorporating natural language
search capabilities into Haystack, we are able to both demonstrate the usefulness
of natural language search and show its applicability to the Semantic Web in
general.

4 Towards Human-friendly RDF

RDF [10, 3] is the lingua franca of the Semantic Web, providing a standardized
data model for allowing interchange of metadata across the Internet. In short,
it is a portable representation of a semantic network, a labeled directed graph.
Nodes in the graph fall into two classes: resources and literals. Resources are
concrete objects or abstract concepts such as http://www.cnn.com/ or a person.
Literals are string values used for defining primitive properties of resources, such
as names. The basic unit of information in RDF is the statement, consisting of a
triple of subject (a resource), predicate (an arc in the graph), and object (another
resource or a literal).

In its original form, RDF was meant for consumption by computers, not
humans. Our central idea for bridging this gap between the core Semantic Web
data model and natural language revolves around the application of the natural
language annotations technology employed by Start. In essence, we propose to
“tag” fragments of RDF with language to facilitate access.

Suppose we want to endow Haystack with the ability to answer the following
“family” of questions about various attributes (e.g., state bird, state flower, state
motto, population, area, etc.) of states:

What is the state bird of California?

Tell me what the state motto of Massachusetts is.

Do you know Colorado’s population?

What is the capital of Kentucky?

Fortunately, the data necessary to answer such questions can be easily found
on the Web.4 However, in order for this data to be usable by any Semantic Web
system, it must be restructured in terms of the RDF model.5

Ordinarily, RDF data is written in XML syntax; however, as it was designed
for machine-to-machine interchange, this syntax tends to be cumbersome and
difficult for humans to read. In order to facilitate frequent manipulation of RDF
data, Haystack provides a programming language called Adenine specifically
suited for these purposes. Adenine incorporates features of Lisp, Python, and
Notation3 [1]. A full specification of Adenine’s syntax and semantics is beyond
the scope of this paper (for more information, please refer to [5]), but a brief
overview is presented here. Adenine’s basic data unit is the RDF triple. RDF
4 http://www.50states.com/
5 That is, until Web sites start exporting the contents of their sites in RDF.

triples are enclosed in curly braces {} and are expressed in subject-predicate-
object order. A semicolon denotes that the following predicate-object pair is
to assume the last used subject. URIs can be specified either in fully canonical
form using angle brackets (e.g., <http://www.w3.org/>) or using prefix notation
(e.g., rdf:Property). RDF literals are written as strings in double quotes. Finally,
DAML+OIL6 lists (i.e., Lisp-style lists) are written with an at sign followed by
parentheses @(...).

In this paper we will use Adenine syntax for expressing RDF data. The
following Adenine code declares the :State class and the :bird property as well
as some basic information about the state of Alabama.

@prefix dc: <http://purl.org/dc/elements/1.1/>

@prefix : <http://www.50states.com/data#>

add { :State

rdf:type rdfs:Class ;

rdfs:label "State"

}

add { :bird

rdf:type rdf:Property ;

rdfs:label "State bird" ;

rdfs:domain :State

}

... more property declarations

add { :alabama

rdf:type :State ;

dc:title "Alabama" ;

:bird "Yellowhammer" ;

:flower "Camellia" ;

:population "4447100"

... more information about Alabama and other states

}

Adenine also supports imperative functions, called “methods”, that can take
parameters and return values. A unique feature of Adenine is that methods
compile into RDF, i.e., each Adenine instruction is encoded as a node in the RDF
graph, and a sequence of instructions is expressed by adenine:next arcs between
these instruction nodes. As a result, data and procedures can be embedded
within the same RDF graph and can thus be distributed together.

Adenine uses tabbing to denote block structure as Python does. Function
calls and instructions are expressed in prefix notation; for example, = x 1 assigns
the value 1 to the variable x.
6 http://www.daml.org/2001/03/daml+oil-index.html

Given this description of Adenine, we can now express the connection between
the RDF schema and the natural language annotations in a natural language
schema, as follows:

@prefix nl: <http://www.ai.mit.edu/projects/infolab/start#>

add { :stateAttribute

rdf:type nl:NaturalLanguageSchema ;

This annotation handles cases like "[state bird] of [Alabama]"

and "[population] of [Maine]".

nl:annotation @(:attribute "of" :state) ;

Code to run to resolve state attribute

nl:code :stateAttributeCode

}

add { :attribute

rdf:type nl:Parameter ;

nl:domain rdf:Property ;

nl:descriptionProperty rdfs:label

}

add { :state

rdf:type nl:Parameter ;

nl:domain :State ;

nl:descriptionProperty dc:title

}

The identifier [state] will be bound to the value of the named

parameter :state. The identifier [attribute] will be bound to the

value of the named parameter :attribute.

method :stateAttributeCode :state = state :attribute = attribute

Ask the system what the [attribute] property of [state] is

return (ask %{ attribute state ?x })

The definition of :attribute restricts the resource representing the attribute
to be queried to have type rdf:Property; furthermore, the rdfs:label property
should be used to resolve the actual literal, e.g., “State bird” or “population”.
Similarly, :state restricts the resource to have type :State and to have the
resolver dc:title. In short,

@(:attribute "of" :state)

is a stand-in for any natural language phrase such as state bird of Alabama,
population of Maine, area of California, etc.

Given this natural language schema, Haystack and Start can now answer
questions about various natural attributes of states. The process of answering a
question such as “what is the state bird of Alabama?” is as follows:

1. Start parses the question and determines that :stateAttribute is the rele-
vant natural language schema to invoke.

2. Start extracts the natural language bindings of :attribute and :state,
which are “state bird” and “Alabama”, respectively. This is further resolved
into the RDF resources :bird and :alabama.

3. As a response to the question, the method :stateAttributeCode is invoked
with named parameter :attribute bound to :bird and named parameter
:state bound to :alabama.

4. The invoked method performs a query into Haystack’s RDF store, which
returns “Yellowhammer”, the state bird of Alabama.

Because the user query is parsed by Start, a single natural language anno-
tation is capable of answering a wide variety of questions:

What is the state bird of California?

Tell me what the state motto of Massachusetts is.

Do you know Colorado’s population?

What is the capital of Kentucky?

For example, Start knows that a possessive relation can also be expressed as
an of prepositional phrase. In addition, Start is capable of normalizing different
methods for requesting the same information, e.g., imperative (“Tell me...”),
interrogative (“What is...”).

As another example, consider the following natural language schema:

add { :stateAttribute

rdf:type nl:NaturalLanguageSchema ;

nl:annotation @(:state " has the largest " :comparisonAttribute) ;

nl:code :maxComparisonAttributeCode

}

method :maxComparisonAttributeCode :comparisonAttribute = attribute

return (ask %{

rdf:type ?x :State ,

adenine:argMax ?x ?y 1 xsd:int %{

:attribute ?x ?y

}

} @(?x))

Instead of a simple request for information, the method invoked by the nat-
ural language schema queries the RDF store for the resource of type :State that
contains the maximal integer value for the property given by :comparisonAttribute.
As a result, this schema would allow a system to answer the following questions:

Which state has the largest population?

Do you know what state has the largest area?

We have built a prototype implementing the natural language schemata de-
scribed above. The system is currently limited in the types of questions that
it can answer and the domain; in fact, Start can easily handle the types of
questions discussed above. However, we believe that the system is a proof of
concept that demonstrates a viable method of marrying natural language with
the Semantic Web. Naturally, more development of our system is required to
validate our approaches.

In our vision of the Semantic Web, natural language schemata, such as the
ones presented above, would co-exist alongside RDF metadata. These schemata
could be distributed (e.g., embedded directly into web pages) or centralized; ei-
ther way, a software agent would compile these schemata into a question answer-
ing system capable of providing natural language information access to users.

5 Further Integration

In addition to our working prototype of natural language schemata, we have
further explored other methods of integrating natural language technology with
the Semantic Web. Specifically, we propose two additional opportunities for the
integration of natural language technology with the Semantic Web.

5.1 Adding Language to RDF Properties

We have noticed a striking similarity, both in form and in spirit, between RDF
triples and Start’s ternary expression representation of natural language [9, 6].
To support a seamless integration of the two technologies, we propose to hook
natural language annotations directly into rdf:Property definitions.

To illustrate our proposed approach, consider this fragment of an ontology
modeling an address book entry in Haystack:

add { :Person

rdf:type rdfs:Class

}

add { :homeAddress

rdf:type rdf:Property ;

rdfs:domain :Person ;

rdfs:range xsd:string ;

nl:annotation @(nl:subject " lives at " nl:object) ;

nl:annotation @(nl:subject "’s home address is "

nl:object) ;

nl:annotation @(nl:subject "’s apartment") ;

nl:generation @(nl:subject "’s home address is "

nl:object)

}

The :homeAddress is a property specifying a user’s home address. Our annota-
tion expresses this connection concretely in natural language, via the nl:annotation
property. For example, the phrase “nl:subject lives at nl:object” is linked to
every RDF statement involving the :homeAddress property, where nl:subject is
shorthand for indicating the subject (domain) of the relation, and nl:object is
shorthand for the object (range) of the relation. From this, a natural language-
aware software agent could answer the following English questions:

Where does John live?

What’s David’s home address?

Tell me where Bob’s apartment is.

In addition, the nl:generation property specifies a natural language rendi-
tion of the knowledge, allowing software agents to present meaningful, natural
sounding responses to users:

Question: Where does Jimmy live?

Jimmy’s home address is 200 Technology Square.

By “hooking” natural language annotations directly into RDF property def-
initions, we can not only ensure that our triples “make sense” to a user, but also
provide natural language question answering capabilities simultaneously with
minimal cost to the knowledge engineer.

5.2 Natural Language Plans

Consider the question “how do I get from Dave’s apartment to John’s apart-
ment?” A person faced with this question would first lookup the address of
Dave’s apartment, i.e., from the user’s personal address book, and then find the
address of John’s apartment using the same method. Given the two address, the
user would probably then use a mapping service, e.g., MapQuest, to obtain direc-
tions from one address to the other. People generally have no difficulty describing
in natural language a “plan” for answering questions that require multiple oper-
ations from different sources. Could humans “teach” such plans to a computer
directly? Currently, the answer is no, because existing mechanisms of knowledge
acquisition require familiarity with precise ontologies, something that cannot be
realistically expected for all users. Despite having plenty of common sense, most
users cannot become effective knowledge engineers. We propose to utilize nat-
ural language annotations to address this difficulty in imparting knowledge to
computers.

We propose to capture human-like question answering knowledge in “nat-
ural language plans,” which can dramatically simplify the task of knowledge
engineering:

add { :directionsPlan

rdf:type nl:NaturalLanguagePlan ;

nl:annotation @("directions from " :location1

" to " :location2) ;

nl:annotation @("getting from " :location1

" to " :location2) ;

nl:plan @(

${ nl:annotation @("What is the address of "

:location1 "?") ;

nl:result :address1

}

${ nl:annotation @("What is the address of "

:location2 "?") ;

nl:result :address2

}

${ nl:annotation @("How do I get from "

:address1 " to " :address2 "?") ;

nl:result :directions

}

) ;

nl:action :displayDirections

}

method :displayDirections :directions = directions

Some code to display this information

print directions

Instead of directly manipulating RDF, which would require knowledge of
domain-specific ontologies, we could use natural language itself to describe the
process of answering a question. The answer plan (nl:plan) reflects the user’s
thought process expressed in natural language: first find the respective addresses
of the desired locations, and then obtain directions. In the fragment above, the
${} operator denotes an RDF anonymous node whose properties are given by
the predicate-object pairs within the curly braces {}.

This method of specifying schemata essentially serves to capture the intuitive
thought patterns of a human, and allows ordinary users to “teach” a computer
knowledge using natural language.

5.3 Hiding the details

Ultimately, the actual details of natural language annotations should be hidden
from the user behind GUI authoring tools, so that she need not come into direct
contact with XML or RDF. Haystack’s user interface was specifically designed
with these needs in mind. Additionally, an authoring tool could pre-parse the
natural language annotations and store those representations (essentially triples
themselves) alongside the annotations.7 With both natural language and parsed
7 Without an authoring tool, such a scheme would not be feasible because we cannot

expect humans to manually generate parse structures. Note also that keeping natural

representations at their disposal, software agents would have even greater flexi-
bility in manipulating metadata.

6 Deploying the Semantic Web

We believe that natural language annotations are not only an intuitive and
helpful extension to the Semantic Web, but will also assist in the deployment
and adoption of the Semantic Web itself. The primary barrier to the success of
the Semantic Web is a classic chicken-and-egg problem: people will not spend
extra time marking up their data unless they perceive a value for their efforts, and
metadata will not be useful until a “critical mass” has been achieved. Although
researchers have been focusing on ontology editors to reduce barriers to entry,
such initiatives may not be sufficient to overcome the hurdles. As James Hendler
[4] remarks, lowering markup cost is not enough; for many users, the benefits of
the Semantic Web should come for free.

Haystack takes a relatively unique approach to bringing the Semantic Web to
the average computer user: Semantic markup should be a by-product of normal
computer use. The act of organizing documents, entering contact information,
or replying to e-mails in Haystack all result in the creation of semantic markup.
In addition to the relatively structured information that can be entered with
graphical user interfaces, natural language descriptions can be used as an alter-
native input modality for entering information. This markup then serves as a
rich source of semistructured information that can then be queried by advanced
natural language question answering systems such as the one described here.

By providing “natural” means for creating and accessing information on the
Semantic Web, we can dramatically lower the barrier of entry to the Semantic
Web. Natural language support gives users a whole new way of interacting with
any information system, and from a knowledge engineering point of view, natural
language technology divorces the majority of users from the need to understand
formal ontologies and precisely defined vocabularies.

Furthermore, just as RDF schemata can be shared on the Semantic Web,
natural language schemata, also being expressed in RDF, can be shared in the
same fashion. Clients such as Haystack will be able to interact with global ontol-
ogy directories and download both the RDF schema and the natural language
schema for any data types encountered by the user. On the flip side, new data
types invented by the user can be uploaded to these directories. Our technology
of information access schemata provides a system for creating these annotations
suitable for different levels of user experience. Novices to the Semantic Web
merely have to tag resources with a short natural language description in order
to access to those resources later on using natural language. For more advanced
users, the ability to access RDF directly and manipulate it using Adenine allows
finer-tuned control, greater flexibility, and more concise descriptions.

language annotations makes it possible for them to be re-analyzed later as more
powerful parsers become available.

By facilitating the creation, display, retrieval, and sharing of natural language
schemata, we are enabling users to interact with information on the Semantic
Web in an intuitive fashion. We believe that these benefits go a long way in
advancing the concept of the Semantic Web.

7 Patterns of Information Requests

Now that we have addressed the question, “are natural language annotations
a good idea?” let us turn to the question, “are they enough?” Specifically, can
information access schemata achieve broad enough knowledge coverage to be
useful? We believe the answer is yes.

Natural language annotations can serve as more than metadata; they can
capture generalized patterns of information access. As shown in the previous
sections, our annotations can be parameterized to encompass entire classes of
questions. For example, our prototype can answer questions about half a dozen
attributes of any state, which translates into hundreds of possible questions.
A schema about the CIA Factbook in which the properties and countries are
parameterized can answer tens of thousands of potential questions. The cost
of writing schemata is not proportional to the number of class instances but
rather to the complexity of the class itself. A single schema to the Internet
Movie Database, for example, could grant the user natural language access to
over three hundred thousand titles! Furthermore, because a natural language
engine analyzes the questions, simple grammatical alternations would be handled
automatically without requiring additional annotations.

It is our empirical experience that people ask the same types of questions
frequently [11, 8]. Thus, information access schemata are an effective way of
achieving broad knowledge coverage at reasonable costs.

8 The Future

Much like the development of the Semantic Web itself, early efforts to integrate
natural language technology with the Semantic Web will no doubt be slow and
incremental. However, we believe that our prototype system demonstrates a
step in the right direction, and that our proposals sketch out a path for future
developments. By weaving natural language annotations into the basic fabric of
the Semantic Web, we can begin to create an enormous network of knowledge
easily accessible by both machines and humans alike. Furthermore, we believe
that natural language querying capabilities will be a key component of any future
Semantic Web system.

9 Acknowledgements

Special thanks to David Karger for his insightful comments on drafts of this pa-
per. Thanks to David Huynh and Vineet Sinha for numerous conversations about

the Semantic Web, as well as reading earlier drafts of this paper. This research
is funded by DARPA under contract number F30602-00-1-0545, the MIT-NTT
collaboration, a Packard Foundation fellowship, IBM, and MIT Project Oxygen.

References

1. Tim Berners-Lee. Primer: Getting into RDF and Semantic Web using N3, 2000.
2. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific

American, 284(5):34–43, 2001.
3. Dan Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF

Schema. W3C Working Draft, World Wide Web Consortium, April 2002.
4. James Hendler. Agents and the Semantic Web. IEEE Intelligent Systems, 16(2):30–

37, 2001.
5. David Huynh, David Karger, and Dennis Quan. Haystack: A platform for creating,

organizing and visualizing information using RDF. In Proceedings of the Eleventh
World Wide Web Conference Semantic Web Workshop, 2002.

6. Boris Katz. Using English for indexing and retrieving. In Proceedings of the
1st RIAO Conference on User-Oriented Content-Based Text and Image Handling
(RIAO ’88), 1988.

7. Boris Katz. Annotating the World Wide Web using natural language. In Proceed-
ings of the 5th RIAO Conference on Computer Assisted Information Searching on
the Internet (RIAO ’97), 1997.

8. Boris Katz, Sue Felshin, Deniz Yuret, Ali Ibrahim, Jimmy Lin, Gregory Marton,
Alton Jerome McFarland, and Baris Temelkuran. Omnibase: Uniform access to
heterogeneous data for question answering. In Proceedings of the 7th International
Workshop on Applications of Natural Language to Information Systems (NLDB
2002), 2002.

9. Boris Katz and Patrick H. Winston. Parsing and generating English using com-
mutative transformations. AI Memo 677, MIT Artificial Intelligence Laboratory,
1982.

10. Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) model
and syntax specification. W3C Recommendation, World Wide Web Consortium,
February 1999.

11. Jimmy J. Lin. The Web as a resource for question answering: Perspectives and
challenges. In Proceedings of the Third International Conference on Language
Resources and Evaluation (LREC-2002), 2002.

