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Abstract

The existence of emotion and cognition as two interacting systems, both with important roles
in decision-making, has been recently advocated by neurophysiological research (LeDoux, 1998,
Damasio, 1994). Following that idea, this paper presents theALEC agent architecture which has
both emotive and cognitive learning, as well as emotive and cognitive decision-making capabili-
ties to adapt to real-world environments. These two learning mechanisms embody very different
properties which can be related to those of natural emotion and cognition systems.

The reported experiments testALEC within a simulated autonomous robot which learns to
perform a multi-goal and multi-step survival task when faced with real world conditions, namely
continuous time and space, noisy sensors and unreliable actuators. Experimental results show that
both systems contribute positively to the learning performance of the agent.
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1. Introduction

The purpose of the work reported here is to build an autonomous robot controller which can learn to
master a complex task when situated in a realistic environment (i.e., an environment endowed with
real-world problems such as continuous time and space, noisy sensors and unreliable actuators).
The robot’s task has several features that pose serious difficulties to the learning algorithm:

• it has multiple goals which may conflict with each other;
• there are situations in which the agent needs to temporarily overlook one goal in order to

accomplish another successfully;
• the agent has short-term and long-term goals;
• a sequence of different behaviors may be required to accomplish a certain goal;
• the behaviors are unreliable: they may fail or they may lead the agent to undesirable situations;
• the behaviors’ appropriate duration is undetermined, it depends on the environment and on

their success.

In order to make the learning task feasible, the agent does not have to learn its action abilities
from scratch, but relies on a small set of simple hand-designed behaviors. Experience has shown
that these low-level behaviors can be either easily designed or learned, but that the coordination of
these behaviors is not trivial. The major reason identified for this is the difficulty in knowing when
to switch behaviors (Gadanho and Hallam, 2001a).
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To solve this problem, Gadanho and Hallam (2001b) propose an emotion-based architecture (EB

architecture) in which a traditional reinforcement learning adaptive system is complemented with
an emotion system responsible for both reinforcement and behavior switching. The agent has some
innate emotions that define its goals, and it then learns emotion associations of environment-state
and behavior pairs, which determine its decisions. The agent uses a Q-learning algorithm to learn
its behavior-selection policy while it interacts with its environment. The policy is stored in neural
networks, which limits memory usage substantially and accelerates the learning process, but can
also introduce inaccuracies and does not guarantee learning convergence (Sutton and Barto, 1998).

The ALEC (Asynchronous Learning by Emotion and Cognition) architecture proposed here
aims at a better learning performance by augmenting theEB architecture with a cognitive system
which complements its current emotion-based adaptation capabilities with explicit rule knowledge
extracted from the agent-environment interaction. The different learning capabilities of the two
systems and their interaction have the potential to produce a more powerful adaptive system. The
cognitive system is based on the adaptive rule-decision system proposed within theCLARION model
(Sun and Peterson, 1998) which allows learning the decision rules from the agent-environment
interaction in a bottom-up fashion.

In summary, a modified version of theEB architecture, theEBII architecture, is considered to be
the emotion system ofALEC and the added rule system is considered to be its cognitive system. The
distinctive underlying learning mechanisms of the two systems are consistent with the assumption
that, in nature, the cognitive system can make more accurate predictions based on rules while the
emotional associations have less explanatory power but can make more extensive predictions and
predict further ahead in the future.

In the next section, there is a short review of related work. This is followed by a detailed
description of theEBII architecture and of the fullALEC architecture. In the experiments section,
both theEBII and theALEC architectures are tested and compared with alternative architectures
(including theEB architecture) in a robot task with the features mentioned above. Three different
versions ofALEC were tested, two testing alternative cognitive systems and a third one testing a
simplified emotion system. While the first cognitive system was directly inspired by the top-level
of theCLARION model, the second version takes advantage of the new underlying architecture. The
third version ofALEC follows earlier experiments which suggested that the emotion system may
be exclusively dedicated to learning about goal state and that learning about goal state transitions
could be left to the cognitive system alone. An non-asynchronous controller namedLEC (Learning
by Emotion and Cognition) was also tested to demonstrate the usefulness of the behavior-switching
mechanism ofALEC. Finally, theALEC architecture is discussed and conclusions are drawn.

2. Background

The EB controller (Gadanho and Hallam, 2001b) uses reinforcement-learning techniques (Sutton
and Barto, 1998) to learn the coordination of simple hardwired behaviors. For complex tasks, skill
decomposition is usually advisable as it can significantly reduce the learning time, or even make a
task feasible. Skill decomposition usually consists of learning some predefined behaviors in a first
phase and then finding the high-level coordination of these behaviors. Although the behaviors
themselves are often learned successfully, behavior coordination is much more difficult and is
usually hard-wired to some extent in robotic applications (Mahadevan and Connell, 1992, Lin, 1993,
Mataric, 1994).
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Learning low-level behaviors consists of deciding between simple reactive actions on a step-by-
step basis. However, in learning behavior selection, apart from deciding which behavior to select,
the controller must also decide when to switch and reinforce behaviors. There are various reasons
why a behavior may need to be interrupted: it has reached its goal; it has become inappropriate
due to changes in the environment situation; or it is not able to succeed in its goal. In practice,
the duration of behaviors must last long enough to allow them to manifest themselves and short
enough so that they do not become inappropriate (due to changing circumstances) long before being
interrupted. The correct timing of behavior-switching can be vital (Gadanho and Hallam, 2001a).

The problem of deciding when to change behavior is not an issue in traditional reinforcement
learning problems, because these usually consist of grid worlds in which a single discrete action
moves the agent to one of the cells in the neighborhood of the cell where the agent is located.
Once the cell transition occurs, the agent is in a new state (each cell is a state) where it is clearly
appropriate to take a new learning step,i.e. evaluate the previous action and make a new selec-
tion. In a continuous world, the determination of a state transition is not clear. In robotics, agent
states change asynchronously in response to internal and external events, and actions take variable
amounts of time to execute (Mataric, 1994). As a solution to this problem, some researchers extend
the duration of the current action according to domain-dependent conditions of goal achievement
or action applicability (e.g., Mahadevan and Connell, 1992, Lin, 1993, Mataric, 1994). Others
interrupt the action when there is a change in the perception (e.g., Rodriguez and Muller, 1995,
Asada, 1996). However, this may not be a very straightforward solution when the robot is equipped
with multiple continuous sensors that are vulnerable to noise. Marom and Hayes (2000) go a step
further by auto-regulating the degree of discrimination of new events in an attempt to maintain a
constant attentional effort.

Inspired by literature on emotions, empirical work with theEB architecture (Gadanho and
Hallam, 2001b,a) has shown that reinforcement and behavior-switching can easily be addressed
together by an emotional system. The justification for the use of emotions is that, in nature, emotions
are usually associated with either pleasant or unpleasant feelings that can act as reinforcement
(e.g., Tomkins, 1984, Albus, 1990, Bozinovski, 1982) and are frequently pointed to as a source
of interruption of behavior (Sloman and Croucher, 1981, Simon, 1967).

The second version of theEB architecture,EBII presented in Section 3, replaces the emotional
model with a goal system. The goal system ofEBII is an abstraction of the emotion system. The goal
system does not model emotions explicitly, although it is often inspired by them, but instead tries
to identify the properties it must have in order to work correctly. This goal system is based on a set
of homeostatic variables that it attempts to maintain within certain bounds. The idea of homeostatic
values stems from neurophysiological research on emotions (Damasio, 1994, 1999) and has been
modeled previously by the DARE model (Sadio et al., 2001). The DARE model, which also empha-
sizes the dual nature of decision making where both emotions and cognition take part, assumes the
agent has a body state with target values which has a central role in the evaluation of situations. The
use of homeostatic variables is common in biologically-inspired architectures designed to produce
adaptive animal-like behavior (e.g., Fujita et al., 2001, Breazeal, 1999, Vel´asquez, 1998, Blumberg,
1996). However, in these cases the use of variables is quite different from the one proposed within
the theEBII architecture: in the former, variables are monitored by drives which produce behavior
specifically designed to solve the homeostatic deviations instead of being monitored by emotion-
inspired processes which control the learning of appropriate behavior responses as inEBII .
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Extensive empirical results presented by Gadanho (1999) have demonstrated that theEB archi-
tecture is quite competent, and results presented in this paper demonstrate thatEBII has similar per-
formance. However, it was felt that the learning abilities of these architectures could be improved.
The adaptation mechanisms shared by these architectures can only provide implicit knowledge,
which limits the range of decision capabilities available to the agent at any one point. The agent
learns the relative utility of each behavior and can make a decision based on that, but it has no
knowledge on how this information was collected. This prevents the use of more advanced planning
techniques which rely on explicit knowledge of cause and effect (e.g., if agent is in situation S and
selects action A, then X happens). Furthermore, in special cases, the generalization abilities of the
neural-networks can sometimes work against the agent by preventing the acquisition of very fine-
tuned information in information-rich portions of the state space. In fact, strong opposite outcomes
in neighboring states can easily be merged and recorded as neutral outcomes.

To address these limitations, theALEC architecture adds a cognitive system to theEBII architec-
ture. The function of the cognitive system is to provide an alternative decision-making process to
the emotion system, relying on a collection of important discrete rule-based cases built by the agent.
This alternative memory representation has two main advantages: it is not prone to the inaccuracies
due to neural-network over-generalization and it may allow the use of more conventional A.I.
techniques such as planning.

The cognitive system collects knowledge independently and should step in to correct the emo-
tion system’s decisions. The cognitive system used here is based on the rule-based level of the
CLARION model (Sun and Peterson, 1998, Sun et al., 2001). TheCLARION model is a hybrid
cognitive model which has two decision-making levels, each with different learning capabilities.
The bottom-level is a Q-learning system that uses neural-networks and is similar to a subsystem
of the emotion system ofALEC (more specifically, the adaptive system presented in Section 3.2).
In particular, it shares withALEC’s emotion system the same problems of inaccuracies due to the
blurring effect of the neural-networks generalization abilities. The top-level is a rule-based system
that collects knowledge independently and complements the bottom-level by detecting and correct-
ing over-generalization (Sun and Peterson, 1998). However, the top-level learning capabilities are
limited and dependent upon the bottom-level, since the top-level has no form of temporal credit
assignment and needs the bottom-level’s long-term predictions. The main reason for selecting
CLARION’s rule system is that it is not derived from a pre-constructed set of rules given externally.
Instead, rules are extracted from the agent-environment interaction experience through the medi-
ation of low-level skills. Other rule models are usually top-down,i.e. through practice the agents
transform high-level knowledge into usable procedural skills (Sun et al., 2001). Nevertheless,a
priori knowledge can still be given easily to the system in the form of rules and if these are useful
they will be assimilated into procedural knowledge by the system (Sun et al., 2001).

There are several agent architectures that address the use of emotions with a functional role,
other than their simple expression, in the context of learning (Baillie and Lukose, 2002, Fujita
et al., 2001, Scheutz, 2001, Seif El-Nasr et al., 1999, McCauley and Franklin, 1998, Vel´asquez,
1998, Foliot and Michel, 1998, Wright, 1996, Balkenius, 1995, Elliott, 1992, Bozinovski, 1982),
but they do not consider differentiated emotional learning mechanisms as an alternative to cognitive
learning. In those architectures, either emotions are used in the control of learning (frequently as a
source of reinforcement) or the agent learns simple emotion associations with objects or situations.
The DARE model (Sadio et al., 2001, Mac¸ãs et al., 2001, Ventura and Pinto-Ferreira, 1999) is an
exception in that it provides two paths for stimulus evaluation: the perceptual and the cognitive. The
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perceptual path performs the “quick and dirty” processing usually associated with emotions. The
cognitive path attempts to provide a more sophisticated evaluation using higher-level reasoning.
These layers may have their own separate learning mechanisms for adapting their evaluations, but
in the experiments the perceptual evaluation is usually implemented as innate fixed knowledge and
the cognitive layer always learns from scratch. In the DARE model, the perceptual layer extracts
relevant features and the cognitive layer’s task is to identify objects. Nevertheless, a feature of its
implementations which it shares withALEC is that the perceptual layer has a non-differentiated
evaluation of events according to their main characteristics, while the cognitive layer accumulates
a set of individual instances of events. The DARE model differs fromALEC in the kind of learning
mechanisms used (in general consisting of stimulus matching using Euclidean distances, at two
levels of complexity) and the type of problems it addresses (the learning abilities are generally
applied to stimulus evaluation and the problems derived from the interaction of the agent with a real
world are often ignored).

3. EBII Architecture

Figure 1: TheEBII architecture.

TheEBII architecture — see Figure 1 — is composed of two major systems: the goal system and
the adaptive system. The goal system evaluates the performance of the adaptive system in terms of
the state of its homeostatic variables, and determines when a behavior should be interrupted. More
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specifically, it calculates a well-being value that is used as reinforcement by the adaptive system and
determines the trigger steps,i.e. the steps when relevant events are detected. The adaptive system
learns which behavior to select at trigger steps, using reinforcement-learning techniques that rely on
neural-networks to store the utility values. The two systems are described in detail next.

3.1 Goal System

The goal system’s role is to complement a traditional reinforcement-learning adaptive system so that
the learning is autonomous,i.e. independent of external influences. The goal system determines how
well the adaptive system is doing, or more specifically, determines the reinforcement due at each
step. Moreover, the goal system is responsible for deciding when behavior switching should occur.

The EB architecture addressed the problem of the goal system by using an emotional model.
A mixture of perceptual values and internal values were used in the calculation of a single multi-
dimensional emotional state. This state, in turn, was used to determine the reinforcement at each
time step and significant differences in its value were considered to be relevant events used to trigger
the behavior selection mechanism.

The EBII architecture presented here has been modified to emphasize the multiple goal nature
of the problem at hand and identify and isolate the different aspects of the agent-environment
interaction that need to be taken into consideration when assessing the agent overall goal state.

The goals are explicitly identified and associated with homeostatic variables. These homeostatic
variables are associated with three different states: target, recovery and danger. The state of each
variable depends on its continuous value, which is grouped into four qualitative categories: optimal,
acceptable, deficient and dangerous. The variable remains in its target state as long as its values are
optimal or acceptable, but it only returns to its target state once its values are optimal again. This
state transition is akin to that of a thermostat in that a greater deviation from the target values is
required to change from a target state into a recovery state than the inverse transition. The danger
state is directly associated with dangerous values and implies that recovery is urgent. Details of state
transitions are shown in Figure 2, and an example of the categorization of the continuous values of
a homeostatic variable is shown in Figure 3.

Figure 2: The state transitions of a homeostatic variable dependent on its value.

390



LEARNING BEHAVIOR-SELECTION BY EMOTIONS AND COGNITION

Figure 3: An example of a categorization of the continuous values of a homeostatic variable.

To reflect the current hedonic state of the agent, a well-being value is derived from the above.
This value depends primarily on the state values of the homeostatic variables. If a variable is in the
target state it has a positive influence on the well-being, otherwise it has a negative influence which
is proportional to its deviation from target values.

The well-being is also influenced by the following events:

State change— when a homeostatic variable changes from one state to another the well-being is
influenced positively if the change is towards a better state and negatively otherwise;

Prediction of state change— when some perceptual cue predicts the state change of a homeo-
static variable, the influence is similar to the above, but lower in value, and dependent on the
accuracy of the prediction and on how soon the state change is expected. In particular, if a
transition to the target state involves a sequence of steps then a positive prediction is made
any time a step is accomplished. The intensity of the prediction increases as the number of
steps to finish the sequence is reduced. Predictions are always associated with individual
homeostatic variables and are only made if the corresponding variable value is not optimal.

These two events were modeled after emotions, in the sense that they result from the detection of
significant changes in the agent’s internal state or predictions of such changes. In the same way that
emotions are associated with feelings of “pleasure” or “suffering” depending on whether a change
is for the better or not, these events influence the well-being value such that the information of how
good the event is is conveyed to the agent through the reinforcement. One may distinguish between
the emotion of happiness when a target is achieved (or predicted to be achieved) and the emotion of
sadness when a target state is lost (or about to be lost).

The primary influence of the homeostatic variables, on the other hand, is modeled after the
natural background emotions which reflect the overall state of the agent in terms of maintaining
homeostasis (Damasio, 1999).

φ = csrs+ ∑
h∈H

ct(sh)wh +cp ∑
h∈H

rph
wh (1)

The calculation of the well-being value (φ) is presented in Equation 1. The well-being value
depends on the domain-dependent set of homeostatic variables (H ) in different ways: their state,
their transitions and their predictions. These different influences are weighted by their respective
coefficients (cs, ct(sh) andcp), presented in Table 1. Note that the value of the transition coefficient
(ct(sh)) depends on the recent states (sh) of each homeostatic variable. The weightswh are constants,
which denote the relative importance of each homeostatic variableh, and their value should lie
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Coefficient Definition Value
cs State coefficient 0.6

ct(sh) State-transition coefficient
state ofh did not change 0.0
state ofh changed from to

– target 1.0
– danger -1.0

target recover -0.4
danger recover 0.4

cp Prediction coefficient 0.2

Table 1: Coefficient values used in the calculation of the well-being value. These values were
selected to reflect the relative importance of the different influences.

between 0 and 1.

rs =

{
1 if H − = /0
− max

h∈H −
(dn(vh)wh) otherwise (2)

dn(vh) = d(vh)/dmax
h (3)

H − = {h∈H : sh 6= Target∧d(vh) did not decreased in the last step} (4)

The influence of state on well-being is expressed byrs described in Equations 2, 3 and 4.
This value is 1 if the homeostatic variables are all in their target values or improving their values
(i.e. d(vh) is decreasing). Otherwise, it depends on the normalized deviation from optimal values
(dn(vh), defined in Equation 3),i.e. the distance (d(vh)) of the current value (vh) of the homeostatic
variable (h) to the nearest optimal value normalized by the maximum possible distance (dmax

h , see
example in Figure 3) of any value of this homeostatic variable to a optimal value. This ensures that
dn(vh) is always between 0 and 1.

The values of predictionsrph
depend on the strengths of the current predictions and vary between

-1 (for predictions of no desirable changes in the homeostatic variableh) and 1 (for predictions of
desirable changes). If there is no prediction thenrph

= 0. The values ofrph
are domain-dependent.

The goal events,i.e. state change and prediction of state change, are also responsible for trig-
gering the adaptive system for a new behavior selection. The adaptive system only performs a
reinforcement-learning step,i.e.evaluates the current behavior and makes a new behavior-selection,
during trigger steps. On other steps, the previous selected behavior is kept and there is no policy
update. The adaptive system is triggered when an event (one of the two described above) is detected.

3.2 Adaptive System

The adaptive system implemented is a well known reinforcement-learning algorithm that has given
good results in the field of robotics: Q-learning (Watkins, 1989). Through this algorithm, the agent
learns iteratively by trial and error the expected discounted cumulative reinforcement that it will
receive after executing an action in response to a world state,i.e. the utility values.
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Traditional Q-learning usually employs a table which stores the utility value of each possible
action for every possible world state. In a real environment, the use of this table requires some form
of partition of the continuous values provided by sensors. An alternative to this method suggested
by Lin (1993) is to use neural networks to learn by back-propagation the utility values of each
action. This method has the advantage of profiting from generalization over the input space and
being more resistant to noise, but on the other hand the on-line training of neural-networks may not
be very accurate. The reason being that the neural networks have a tendency to be overwhelmed
by the large quantity of consecutive similar training data and forget the rare relevant experiences.
Using an asynchronous triggering mechanism, such as the one proposed by the current architecture,
can help with this problem by detecting and using only a few relevant examples for training.

The state information fed to the neural-networks comprises the homeostatic variable values and
other perceptual values gathered from the robot sensors.

The developed controller tries to maximize the reinforcement received by selecting between one
of the available hand-designed behaviors.

At each trigger step, the agent may select between performing the behavior that has proven to
be better in the past and therefore has the best utility value so far, or selecting an arbitrary behavior
to improve its information about the utility of that behavior. The selection function used is based on
the Boltzmann-Gibbs distribution and consists of selecting a behavior with higher probability, the
higher its utility value in the current state.

4. ALEC Architecture

The ALEC architecture — see Figure 4 — is an extension of theEBII architecture described previ-
ously. It basically has an additional cognitive system based on the rule system ofCLARION. The
two major systems of theALEC architecture, the emotion and the cognitive systems, are described
next.

4.1 Emotion System

The emotion system ofALEC is composed by the goal system and the adaptive system of theEBII

architecture described previously.
Apart from having learning mechanisms with capabilities analogous to those of natural emo-

tions, the emotion system is composed of two systems that can be related to emotions.
The goal system itself was originally an emotion model because its functions,i.e. reinforcement

and behavior interruption, are usually associated with emotions in natural systems. In theEBII

version, this emotion model has been replaced, but its mechanisms are still strongly inspired by
emotions. This system produces a well-being value which is derived from the agent’s internal
state,i.e. its homeostatic variables, by emotion-like processes. In this case, and as defended by
Damasio (1999), emotion processes are intrinsically related to the maintenance of the homeostasis
of the individual. One could argue that the well-being value is an emotional feeling that provides a
summary of the overall state of the agent.

The well-being value is used as reinforcement by the adaptive system, and thus this system is
ultimately associating behavior-state pairs with an expected long-term well-being value. This is
the reason why the adaptive system’s associations are considered to be analogous to the somatic-
markers defended by Damasio (1994). Both provide a long-term indication of the “goodness” of
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Figure 4: TheALEC architecture.

the options available to the agent, in terms of the agent’s internal goals and based on previous
experiences.

4.2 Cognitive System

Two different versions of the cognitive system were tested separately in the experiments. The first
is directly inspired by the rule system of theCLARION model and the second version has a few
innovations.

4.2.1 VERSION I

The cognitive system maintains a dynamic collection of rules which allows it to make decisions
based on past positive experiences. Each individual rule consists of a condition for activation
and a behavior suggestion. The activation condition is dictated by a set of intervals, one for each
dimension of the input space. The granularity of the possible interval ranges is determineda priori,
thus a condition interval may only start or end at pre-defined points of the input space. This may
represent a very large number of possible states.1 For this reason, rule learning is limited to those

1. In the experiments, there are 6 input dimensions varying between 0 and 1 and it was decided to segment each input
into intervals of 0.2. This implies a total of 65 possible states.
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few cases for which there is a particularly successful behavior selection, leaving the other cases to
the emotion system which makes use of its generalization abilities to cover all the state space.

If a behavior is found to be successful in a particular state then the agent extracts a rule corre-
sponding to the decision made and adds it to its rule set. Subsequently, whenever the same decision
is made again the agent updates the record of the success rate of the rule (SR). This is recorded
in terms of time-weighted statistics of the number of times the decision resulted in success (PM)
and the number of times it did not (NM). These statistics are incremented by one in the appropriate
trigger steps and are decreased by 0.001 of their value in every trigger step.

The success of the agent is measured in terms of its immediate reinforcementr and of the
difference of Q-values between the statex where the decisiona was made and the statey reached
after the decision was taken (as in Equation 5, whereγ is the reinforcement-learning discount factor
and Tsuccessis a constant threshold). This means that rule learning takes into consideration the
information collected by the emotion-system.

r + γmaxbQ(y,b)−Q(x,a) > Tsuccess (5)

If the rule is often successful, the agent tries to generalize it by making it cover a nearby
environmental state. If the rule’s success rate is very poor then the agent attempts to make it more
specific. If this does not improve the success rate, or the rule only covers one state, then the agent
deletes the rule. Statistics are kept for the success rate of every possible one-state expansion or
shrinkage of the rule, so that the best option may be selected. The exact conditions for expansion
and shrinkage of a rule are defined by Equations 6 and 7, respectively. The rule is compared against a
match-all rule with the same behavior suggestion (ruleall) and against itself after the best expansion
or shrinkage (ruleexpandandruleshrink, respectively). A rule is expanded if it is significantly better
than the match-all rule and the expanded rule is better or equal to the original rule. A rule that is
insufficiently better than the match-all rule is shrunk if this results in an improvement or otherwise is
deleted. The comparison is made in terms of the information gain (IG) of the success rate as defined
in Equations 8 and 9. The information gain measures the improvement of the success rate ofrule1

relative torule2. The success rate is calculated based on the time-weighted statistics gathered for
each rule and converges to 0.5 if the rule condition is not met again. The thresholdsTexpandand
Tshrink are positive constants which obey the conditionTexpand> Tshrink.

IG(rule, ruleall) > Texpand ∧ IG(ruleexpand, rule) ≥ 0 (6)

IG(rule, ruleall) < Tshrink ∧ IG(ruleshrink, rule) > 0 (7)

IG(rule1, rule2) = log2(SR(rule1))− log2(SR(rule2)) (8)

SR(rule) =
PM(rule)+1

PM(rule)+NM(rule)+2
(9)

Apart from being deleted due to bad performance, rules are also deleted if their condition has
not been met for a long time. In particular, when the maximum number of rules has been reached,
the creation of a new rule requires the elimination of the rule that has not been used for the longest
time.

When two rules propose the same behavior selection and their conditions are sufficiently similar,
they are merged into a single rule.
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Success statistics are reset whenever the rule is modified by a merging, expansion or shrinkage.
If the cognitive system has a rule that applies to the current environmental state, then the

cognitive system influences the behavior decision. It makes the selection of the behaviors suggested
by the rules more probable by adding an arbitrary constant value of 1.0 to the respective Q-value
before the stochastic behavior selection is made.

This first version of the cognitive system is based on the rule system ofCLARION (Sun and
Peterson, 1998) with no addition. The format of the rule’s activation condition inALEC consists of
a single continuous interval of values instead of a set of intervals for each dimension of the input
space. This new format is computationally advantageous, albeit less flexible. Furthermore, the rule
system ofCLARION has two different, but very similar, success criteria: one for extraction (the
decision whether a rule should be created) and another for rule modification (the update of PM and
NM). However, preliminary experiments carried out in the course of the current work showed that
having different criteria or having just one applied to both cases did not affect the performance of
the system.2 Another simplification made was the elimination of the lists of child rules associated
with each rule. These allow each rule to maintain a record of previously existent rules which had
been subsumed by the rule, so that once a rule was deleted the child rules could be recovered. The
extra complexity introduced by this list mechanism was not considered worthwhile.

4.2.2 VERSION II

The second version of the cognitive system attempts to take advantage of the properties of the
ALEC architecture. More specifically, it has a new success criterion which relies on the goal
system’s homeostatic-variable transitions. Instead of using Equation 5 to determine if a behavior
is successful, it considers that a behavior is successful if there is a positive homeostatic variable
transition,i.e. if there is a state transition event that consists of an improvement of a variable state
— more specifically, if a variable state changes to the target state or from the danger state.

5. Experiments

This section describes the experiments in detail. It starts with a description of the task and the
domain-specific implementation details of the controllers. This is followed by an explanation of the
experimental procedure and the presentation of the results.

5.1 Robot Task

The aim ofALEC is to allow an agent faced with realistic world conditions to adapt on-line and
autonomously to its environment. In particular, the agent should be able to cope with continuous
time and space while constrained by limited memory, time constraints, noisy sensors and unreli-
able actuators. Furthermore, the agent is required to perform a task with multiple and sometimes
conflicting goals, which may require sequences of actions to be completed.

Experiments were carried out in a realistic simulator (developed by Michel, 1996) of a Khepera
robot — a small robot with left and right wheel motors, and eight infrared sensors that allow it to
detect object proximity and ambient light. Six of the sensors are located in the front of the robot and
two in the rear. The experiments evaluate the agent in a survival task that consists of maintaining
adequate energy levels in a closed maze-like environment — Figure 5 — with some walls and two

2. This was confirmed by the RANOVA test described in Section 5.3.
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Figure 5: The Khepera robot and its simulated environment.

lights surrounded by bricks on opposite corners. The robot can acquire energy from energy sources
which are associated with the lights so that the robot can sense them when nearby. The robot wastes
a small amount of energy in every step, which increases with its usage of the motors.

The extraction of energy is complicated by requiring the agent to learn sequences of behaviors
and temporarily overlooking the goal of avoiding obstacles in the process. To gain energy from an
energy source, the robot has to bump into it. This will make energy available for a short period of
time. It is important that the agent is able to discriminate the existence of available energy, because
the agent can only get energy during this period. Energy is obtained by receiving high values of
light in its rear light sensors, which means that the robot must quickly turn its back to the energy
source as soon as it senses that energy is available. To receive further energy, the robot has to restart
the whole process by hitting the light again so that a new time window of released energy is started.

The goal of maintaining energy also requires the robot to find different energy sources in order
to survive. An energy source can only release energy a few times before it is exhausted. In time, the
energy source will recover its ability to provide energy again, but meanwhile the robot is forced to
look for other sources of energy in order to survive. The robot cannot be successful by relying on a
single energy source,i.e. the time it takes for new energy to be available in a single energy source
is longer than the time it takes for the robot to waste that energy. When an energy source has no
energy, the light associated with it is turned off and it becomes a simple obstacle for the robot.

In summary, the agent has three goals: to maintain its energy, avoid collisions and move around
in its environment.

5.2 Controllers’ Setup

The state information that is fed to the neural-networks and the rule’s state conditions are the
homeostatic variable values and three perceptual values: light intensity, obstacle density and energy
availability. The energy availability value indicates whether a nearby energy source is releasing
energy.

The behavior system has three hand-designed behaviors to select from: avoid obstacles, seek
light and wall following. These behaviors were not designed to be very reliable and, in fact,
they often fail. On the one hand, the avoid-obstacles and seek-light behaviors may, under special
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Homeostatic variable Optimal Acceptable Deficient Dangerous
Energy [1.0,0.9] (0.9,0.6] (0.6,0.2] (0.2,0.0]
Welfare [1.0,0.9] (0.9,0.7] – (0.7,0.0]
Activity [1.0,1.0] (0.9,0.8] – (0.8,0.0]

Table 2: Value intervals of the different qualitative categories of the homeostatic variables.

conditions, fail to attain their goal. On the other hand, the wall-following behavior may lead the
robot to crash,i.e. become immobilized against a wall. It is part of the robot’s task to be able to
cope with these limitations.

Three homeostatic variables were identified:

Energy — is the battery energy level of the agent and reflects the goal of maintaining its energy;

Welfare — maintains the goal of avoiding collisions, this variable is in its target state when the
agent is not in a collision situation;

Activity — ensures that the agent keeps moving, if the robot keeps still this value slowly decreases
until eventually its target state is not maintained.

These variables are directly associated with the robot goals mentioned previously. Their associ-
ated weights (wh) are 1.0 for energy, 0.6 for welfare and 0.4 for activity. These weights reflect the
relative importance of the goals. The most important tasks are for the agent to maintain its energy
and avoid obstacles when possible — the activity goal is secondary. The homeostatic-variable values
were categorized according to Table 2 based on observations of the variable values and a subjective
qualitative appreciation of the correspondent situation of the agent. The selection of the categories
values did not require any tuning and the system was quite robust to slight variations on the weight
values.

State change predictions were only considered for the energy and the activity variables (rpwelfare
=

0). In the energy case, two predictions are made. A small value prediction is made whenever
the light detected by the sensors is above a threshold and its value has just changed significantly.3

Another, higher-valued, prediction is made whenever the agent detects significant changes in energy
available to re-charge. The actual values of the predictions are:

• rpenergy= p(Ia) with function p as defined in Equation 10 and withIa being the energy
availability, when the agent detects significant changes in energy availability; or

• rpenergy= p(Il)/2 with Il equal to light intensity, if there is solely a detection of a light change
andIl > 0.4.

p(I) =
{

I I value has increased
−0.5(1− I) I value has decreased

(10)

3. A significant change is detected when its value is statistically different from the values recorded since a state transition
was last made,i.e. if the difference between the new value and the mean of the previous values exceeds both a small
tolerance threshold (set to 0.02) andξ times the standard deviation of those previous values (theξ constant was set to
2.5).
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The activity prediction provides a no-progress indicator given at regular time intervals when
the activity of the robot is low for long periods of time. This is, in fact, a negative prediction
(rpactivity

=−1), because it predicts future failure in restoring activity to its target state (should the

current behavior be maintained) since the behavior has failed to do so within a reasonable amount
of time. It is important that the agent’s behavior selection is triggered in these situations, otherwise
a non-moving agent will eventually run out of events.

The rule system’s thresholds are set toTsuccess= 0.2, Tshrink = 1.0 andTexpand= 2.0. The
maximum number of rules is 100. The six input dimensions of the rule conditions were segmented
with 0.2 granularity, meaning that condition intervals can start or end at 0, 0.2, 0.4, 0.6, 0.8 and 1.
An example of a possible rule is: if energy∈ [0.6,1] and activity∈ [0,1] and welfare∈ [0,0.6] and
light intensity∈ [0,1] and obstacle density∈ [0.8,1] and energy availability∈ [0,1] then execute
behavior avoid obstacles. Note that the parts of the condition requiring values to be in the interval
[0,1] are always true and could be omitted.

Unless otherwise specified the tested architectures share the features and setup of theEB archi-
tecture which is described in detail in Gadanho and Hallam (2001b), apart from a minor increase in
difficulty level (lower energy autonomy than previously).

5.3 Procedure

An experiment was performed for each controller tested. Each experiment consisted of one hundred
different robot trials of three million simulation steps. In each trial, a new, fully recharged, robot
with all state values reset was placed at a randomly selected starting position. For evaluation
purposes, the trial period was divided into sixty smaller periods of fifty thousand steps. For each of
these periods the following indicators were recorded:

Reinforcement — mean of the reinforcement (or well-being) value calculated at each step;

Energy — mean energy level of the robot;

Distance — mean value of the Euclidean distanced, taken at one-hundred-step intervals,4 between
the opposing points of the rectangular extent containing all the points the robot visited during
the last interval — this is a measure of the distance covered by the robot;

Collisions — percentage of steps involving collisions;

5.4 Results and Discussion

Results and their discussion are organized in two sections, the first regarding the evaluation of the
EBII architecture and the second concerning the fullALEC architecture. In both cases, results cover
several variations of the architectures and alternative architectures.

The results in the graphs presented are averages of the different indicators over the several trials,
with error bars depicting 95% confidence intervals.5 The table summaries show the means of the
values obtained in the last five hundred thousand steps of each trial and the means associated errors
in the 95% confidence intervals. It is assumed that the performance of the agent is already stable,
i.e. the learning has converged, when these measures are taken.

4. The robot takes approximately this number of steps to efficiently move between corners of its environment.
5. The calculation of the confidence interval assumes a normal distribution of the raw values.
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Some pairs of controllers were compared using a randomized analysis of variance
(RANOVA). These comparisons were made according to the algorithm proposed by Piater et al.
(1999) using a sampling distribution F with 100000 elements (instead of the 1000 suggested by
the authors). The performance of two controllers was considered different when it was possible to
reject the null hypothesis that there was no effect on the different indicators of bothalgorithm (or
controller) andinteraction effectat p < 0.0001. The performance of two controllers was said to be
the same if the null hypotheses above could not be rejected atp < 0.05. The controller differences
found were all confirmed by an equivalent test using a conventional two-way analysis of variance.

5.4.1 EBII

The first set of experiments evaluated theEBII architecture as an alternative toEB. For this purpose
three experiments were carried out: one with theEBII controller, one with theEB controller and
another with a random controller. The random controller simply selects randomly amongst the
differently available behaviors at regular intervals.6 The results of this controller can be considered
the baseline performance of the learning controllers. Results are shown in Figure 6 and summarized
in Table 3.

Controller Energy Collisions Distance
EBII 0.61±0.03 1.21±0.39 1.68±0.03
EB 0.54±0.01 2.14±0.58 1.98±0.02
Random 0.02±0.01 3.74±0.16 0.83±0.01

Table 3: Summary of the controllers’ performances. The new controller,EBII is compared with its
original version,EB. The results of a random controller, which selects random behaviors
at regular intervals, are also presented.

Empirically, theEBII controller performs similarly to theEB controller, but with significant
statistical differences according to the RANOVA procedure. In fact, it shows a slight improvement
in terms of energy and collisions, while maintaining a high distance traveled. Previous exhaustive
experiments on theEB controller have shown that it is quite competent and performs better than
more traditional approaches (Gadanho and Hallam, 2001b,a, Gadanho, 1999). In fact, previous ex-
periments on learning behavior selection using the same adaptive system (Lin, 1993) had to resort to
severe simplifications of the behavior selection learning task. These simplifications included having
behaviors associated with very specific pre-defined conditions of activation and only interrupting a
behavior once it had reached its goal or an inapplicable behavior had become applicable.

To assess the necessity of each of the properties ofEBII , a new set of experiments was performed
for which properties of the controller were removed one at a time for empirical comparison against
the complete controller. The results obtained are presented in Table 4.

In terms of reinforcement, the most valuable contribution is that of the state value. Final
results obtained without the contributions of state transitions and predictions are very similar to
those of the complete controller. Nevertheless, note that these contributions alone,i.e. when the

6. The interval selected was 35 steps based on previous results (Gadanho, 1999) which indicated this value as the most
suited for the task.
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Figure 6: EBII compared with the originalEB architecture. Results obtained with a random
controller provide the baseline of the learning process.

state contribution is omitted, are enough to provide some proficiency in solving the learning task.
Furthermore, the omission of these contributions slows learning down, resulting in a larger time
to convergence. The decrease in convergence time is larger when the contributions of the state
transitions are omitted.

It was also found that for the successful accomplishment of the task and particularly for the
achievement of their respective goals, all homeostatic variables should be taken into consideration in
the reinforcement. Agents with no energy-dependent reinforcement fail their main task of maintain-
ing adequate energy levels. If the welfare contribution is ignored then there is an increased number
of collisions. Agents without activity reinforcement move only as a last resort (i.e. when energy is
low and there is no light nearby). Avoiding moving helps to reduce the number of collisions.

The behavior interruptions provided by both state transitions and predictions of state transitions
proved essential for the satisfactory performance of the task. The former are responsible for inter-
rupting the behavior when a problem arises or has been solved. The latter allow the agent to take
the necessary steps to accomplish its aims. In particular, a controller with no energy prediction is
not able to acquire energy (it will simply travel around the environment) and a controller with no
activity prediction will eventually stop moving.
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Reinforcement independent of Energy Collisions Distance
State (cs = 0) 0.42±0.04 0.56±0.12 2.17±0.01
State change (ct(sh) = 0) 0.57±0.03 1.07±0.29 1.67±0.03
Prediction (cp = 0) 0.62±0.02 1.09±0.39 1.67±0.03
Energy (H = {welfare,activity}) 0.03±0.01 0.30±0.28 2.08±0.05
Welfare (H = {energy,activity}) 0.64±0.02 2.89±0.40 2.01±0.03
Activity (H = {energy,welfare}) 0.68±0.02 0.50±0.24 0.33±0.05
Behavior-switching independent of Energy Collisions Distance
State change 0.52±0.04 2.67±0.37 2.03±0.03
Prediction All 0.00±0.00 8 bumping 15 moving

Energy 0.00±0.00 0.00±0.00 2.37±0.00
Activity 0.00±0.00 3 bumping 0.00±0.00

Table 4: Summary of results of modifications made toEBII . In the first instance, influences on
reinforcement were selectively dropped and in the second instance, specific trigger events
were disregarded. In this latter case and in particular if activity prediction events were
ignored, the agent would eventually stop receiving triggering events altogether. This would
usually happen with the agent stopped in an isolated position, but sometimes it would
also happen to a moving agent or to an agent crashed into a wall. These exceptions are
accounted for in the table.

5.4.2 ALEC

Three different experiments were carried out, one for each version ofALEC. The difference between
version I and version II ofALEC relies on which version of the cognitive system they use, version I
and version II respectively. The third version ofALEC will be explained later. In order to analyze
the contribution of the two different forms of learning,ALEC version II was submitted to three
further experiments: one without cognitive learning (equivalent toEBII , rule acquisition was turned
off), one without emotion learning (no learning by the neural-networks in the adaptive system) and
one with no learning. The summary of the results obtained can be found in Table 5. This table
also repeats the results for theEB controller and presents the results for theLEC architecture which
is discussed later in this section. A summary of the specifications of the different controllers is
presented in Table 6.

In Figure 7, the results obtained with first version ofALEC are compared with the results of
the EBII architecture. TheEBII architecture is presented as the reference sinceALEC extends it.
These first results show that the addition of a cognitive system provides a significant increase in
the learning speed of the agent, but only a very small improvement in terms of reinforcement. In
fact, the agent’s performance indicators all converge to better values (the controllers are different
according to the RANOVA). The larger differences are in terms of collisions (decrease of near 40%)
and distance (increase of almost 20%).

The graphs in Figure 8 compare the second version ofALEC with the EBII architecture. Re-
sults show that version II not only learns faster than theEBII architecture but also achieves better
performance in terms of the reinforcement obtained. In fact, it manages to simultaneously have
significantly higher energy and distance values, while decreasing the collisions.
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Controller Reinforcement Energy Collisions Distance
ALEC I 0.22±0.04 0.63±0.03 0.74±0.20 2.00±0.03
ALEC II 0.31±0.02 0.69±0.01 0.74±0.35 1.78±0.02

Only emotional learning 0.17±0.04 0.61±0.03 1.21±0.39 1.68±0.03
Only cognitive learning −0.00±0.05 0.48±0.03 0.83±0.38 2.08±0.02

No learning −0.33±0.04 0.25±0.03 1.20±0.16 1.84±0.04
ALEC III — 0.69±0.01 0.55±0.20 1.75±0.02
EB — 0.54±0.01 2.14±0.58 1.98±0.02
LEC −0.50±0.04 0.09±0.03 4.36±0.57 0.78±0.03

Table 5: Summary of the performance of the different versions of theALEC controller. Version II
was also tested with partial learning abilities (only cognitive or emotional) and with no
learning at all. Note that the ALEC controller with no cognitive learning is equivalent to
the EBII presented earlier. The results obtained with theEB andLEC controllers are also
given for comparison.

Controller Description
ALEC I Cognitive system version I (cognitive level ofCLARION model)
ALEC II Cognitive system version II (Success determined by positive transitions of

homeostatic variables)
ALEC III Simplified emotion system (transition-independent well-being)

Cognitive system version II
EB Reference emotion-based architecture (presented in previous work)
LEC Non-asynchronous behavior switching (triggered at regular intervals)

Analogous to theCLARION model

Table 6: Brief description of the controllers tested.

Analysis of the performance of versions I and II of the cognitive system demonstrates that im-
provements in learning are greater when the cognitive system is exclusively dedicated to collecting
knowledge about homeostatic variables’ transitions. In fact, the RANOVA procedure showed clear
differences in performance between the two versions, with version II achieving higher reinforcement
than version I (0.31 against 0.22).

The improvement in performance obtained by the addition of a cognitive system is quite good.
This is specially true since theEB architecture was designed to solve the exact same task used in the
experiments, and has been proved very competent (Gadanho and Hallam, 2001b,a). In this context,
a significant improvement in learning speed is already a very good result.

The results shown in Figure 9 evaluate the contribution of the two different adaptation mech-
anisms ofALEC. As discussed previously, the addition of a cognitive system improves the perfor-
mance of the system. Nevertheless, the cognitive system ofALEC does not perform well alone,
demonstrating that the emotion system also contributes positively towards learning performance.
This result may not be as expected in version II ofALEC as in version I since, in this case, the
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Figure 7:ALEC version I compared with theEBII architecture.

cognitive system does not depend directly on the emotion system. Nevertheless, it is important to
recall that the rules of the cognitive system are not meant to cover the full state space and can only
predict one trigger step ahead in time. When faced with the task of deciding in every situation, the
cognitive system fails.

In the case of theCLARION model, which shares important features with theALEC architecture,
the authors attribute the higher success of the full two-level system to the synergy between the two
levels (Sun and Peterson, 1998) which derives from the complementary representations (discrete
vs.continuous) and learning methods (one-shot rule-learningvs.gradual Q-value approximation) of
the two levels. The experimental results obtained with theALEC architecture confirm the success
of such a dual approach. The cognitive and emotional system both have serious limitations in
their learning abilities — the cognitive system is more accurate but is reduced to a few short-term
predictions, while the emotion system provides a broader knowledge which is highly vague and
uncertain. However, when working together these limitations are reduced and the robot performance
is improved.

The ALEC architecture is akin to the fullCLARION model, but with an important difference:
it has a well-defined goal system whereCLARION only has a classical reinforcement function.
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Figure 8:ALEC version II compared with theEBII architecture.

The goal system endowsALEC with emotion-like properties and allows it to solve more tasks.
In particular, theCLARION model cannot cope with the task used in the experiments presented —
experimental results with theLEC controller confirm that its performance would be compromised by
the large number of non-eventful steps. The existence of a goal system also opens extra possibilities
for the development of the rule system. For instance, the rule system can be extended to treat
separately the various goals of the system and learn how to individually reach the target states of
each one of the homeostatic variables. The second version ofALEC is an example of how the use of
the goal variables can increase the system performance. In this case the rule system specializes in
learning about transitions in the agent’s internal variable’s state and leaves long-term state prediction
to the emotion system.

The LEC controller, for which results are presented in Figure 10, is a version ofALEC which
is not asynchronous. In practice, instead of having behavior-switching steps triggered by the goal
system’s events, these are triggered at fixed intervals. Results clearly show that the asynchronous
triggering is an essential aspect of theALEC architecture. TheLEC architecture is a closer match
to theCLARION model thanALEC. Since theCLARION model is also devoid of an asynchronous
triggering mechanism, it is reasonable to conclude that it would similarly fail in this particular task.
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Figure 9:ALEC version II with different learning abilities on and off.

Furthermore, the results in Figure 10 also show that the fullALEC architecture clearly outper-
forms the originalEB architecture.

In fact, theALEC outperforms both architectures which inspired it:EB andCLARION.
During the experiments withALEC and EBII it become apparent that the cognitive system

performed better when dedicated to learning state transitions of the homeostatic variables (version II
outperformed version I) and that the emotional system still works well when learning only about the
state of homeostatic variables (Table 4 shows that state transitions and predictions can be omitted
from the reinforcement function). This led to the development of version III ofALEC for which
these two roles are divided among the two systems as just discussed.ALEC version III is the same
asALEC version II, except that the well-being does not depend on state transitions nor predictions
(i.e., ct(sh) = 0 andcp = 0). Results for this third version are compared with the results of the
second version in Figure 11. As expected, although simpler, version III has a performance very
similar to version II.7 In this new version, the cognitive system is dedicated to tracking individual
events which have been significant in terms of major changes in the internal goals of the agent,

7. In reality, the RANOVA reveals differences in terms of energy and distance and the effect of thealgorithm in the
collisions. However, the indicators converge to similar values in the end.
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Figure 10:ALEC version II compared with theEB architecture and theLEC architecture.

while the emotion system tries to capture a “feeling” of how good are certain options in terms of
long-term internal goal state.

6. Conclusion

The emotion and the cognitive systems ofALEC have distinctive learning capabilities that solve the
problem of the overabundance of information provided by the agent-environment interaction in two
different ways: one stores all events, but no information to distinguish between individual events,
so all events are mixed together; the other one only extracts the most significant events.

TheALEC approach implies that while emotional associations may be more powerful in their ca-
pacity to cover states, they lack explanatory power and may introduce errors of over-generalization.
Cognitive knowledge, on the other hand, is restricted to learning about simple short-term relations
of causality. Cognitive information is more accurate, but at a price — since it is not possible to store
and consult all the single events the agent experiences, it selects only the few instances that seem
most important.

This is consistent with the idea defended by Cytowic (1993) that emotions give an intuitive
sense of what is correct while cognition constructs a model of reality which allow the individual to
analyze the decisions.

In theALEC architecture, the way the emotion system interacts with the cognitive system is akin
to Damásio’s somatic-marker hypothesis (Damasio, 1994). In his hypothesis, Dam´asio suggested
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Figure 11:ALEC version II compared with version III.

that humans associate high-level cognitive decisions with special feelings that have good or bad
connotations depending on whether choices have been emotionally associated with positive or
negative long-term outcomes. If these feelings are strong enough, a choice may be immediately
followed or discarded. Interestingly, these markers do not have explanatory power and the reason for
the selection may not be clear. In fact, although a decision may be reached easily and immediately,
the person may subsequently feel the need to use high-level reasoning capabilities to find a reason
for the choice. Meanwhile, a fast emotion-based decision could be reached which, depending of
the urgency of the situation, may be vital.ALEC shows similar properties when it uses emotional
associations to guide the agent. These associations (or more specifically, the utility values) are akin
to the somatic-markers suggested by Damasio (1994) in that both provide a long-term indication
of the “goodness” of the options available to the agent. Furthermore, the cognitive system can
correct the emotion system when it reaches incorrect conclusions. By knowing the exceptions from
previous experiences, the cognitive system may choose to override the emotion reactions, which —
though powerful — can be more unreliable.

The concept of dual decision path implemented inALEC and based on neurophysiological
research findings (LeDoux, 1998, Damasio, 1994) is shared by the DARE model (Ventura and Pinto-
Ferreira, 1999, Mac¸ãs et al., 2001, Sadio et al., 2001). Although the DARE implementations thus far
follow simpler computational approaches with emphasis on different theoretical aspects, the basic
ideas regarding a dual decision path are in tune with the ones presented here.
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Experimental results have shown that the cognitive system ofALEC can improve learning. The
cognitive system cannot perform well without the help of the emotion system because it only has
information on part of the state space, but it helps the emotion system to make the correct decisions.
The two systems together perform better than either one on its own, suggesting that such a dual
approach can be profitable in robotic systems.

The experiments also tested a simple example of how the goal system ofALEC can be used
directly by the cognitive system to learn about positive transitions of the agent’s internal state.
This proved particularly advantageous in terms of learning performance. This approach relied on
the explicit representation of the agent’s goals in terms of homeostatic variables. The representation
used consisted of a flat collection of variables and was adequate for the task at hand, but hierarchical
structure may be required in order to scale to more complex tasks. Nevertheless, experiments
showed how positive transitions of the goal state can be advantageously used in the learning process.

Furthermore, experiments showed equivalent performance when the emotion system was dedi-
cated solely to the learning of state value, while the cognitive system learned about state changes.
This suggests that in a similar hybrid-learning system, the purpose of each learning system may be
specialized to address either goal state or goal state transitions and thus simplify the whole system
at no cost to the learning performance.

A further advantage ofALEC is the infrastructure for endowing the agent with innate knowledge
about the world in two distinct forms, as preferences/dislikes in the emotion system or as simple
action rules in the cognitive system. For different subproblems of the same task, the knowledge may
be more evident to the designer one way or the other.

The fact thatALEC gathers explicit knowledge about the world also opens a door for new
future work. Extensions to this architecture could consist of adding more specific knowledge in
the cognitive system which then may be used for planning of more complex tasks.
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Márcia Maç̃as, Paulo Couto, Carlos Pinto-Ferreira, Luis Cust´odio, and Rodrigo Ventura. Experi-
ments with an emotion-based agent using the DARE architecture. InProceedings of the AISB’01
Symposium on Emotion, Cognition and Affective Computing, pages 105–112, University of York,
U. K., March 2001.

Sridhar Mahadevan and Jonathan Connell. Automatic programming of behavior-based robots using
reinforcement learning.Artificial intelligence, 55:311–365, 1992.

Yuval Marom and Gillian Hayes. Maintaining attentional capacity in a social robot. In R. Trappl,
editor,Cybernetics and Systems 2000: Proceedings of the 15th European Meeting on Cybernetics
and Systems Research. Symposium on Autonomy Control — Lessons from the emotional,
volume 1, pages 693–698, Vienna, Austria, April 2000.

Maja J. Mataric. Reward functions for accelerated learning. In William W. Cohen and Haym
Hirsh, editors,Machine Learning: Proceedings of the Eleventh International Conference, pages
181–189. San Francisco, CA: Morgan Kaufmann Publishers, 1994.

Lee McCauley and Stan Franklin. An architecture for emotion. In Dolores Canamero, editor,AAAI
Fall Symposium on Emotional and Intelligent: The tangled knot of cognition, Technical Report
FS-98-03, pages 122–127. Menlo Park, CA: AAAI Press, 1998.

Olivier Michel. Khepera Simulatorpackage version 2.0: Freeware mobile robot simulator written
at the University of Nice Sophia–Antipolis, March 1996. Downloadable from the World Wide
Web athttp://diwww.epfl.ch/lami/team/michel/khep-sim/ .

Justus H. Piater, Paul R. Cohen, Xiaoqin Zhang, and Michael Atighetchi. A randomized
ANOVA procedure for comparing performance curves. In J. Shavlik, editor,Machine Learning:
Proceedings of the Fifteenth International Conference, pages 430–438. Morgan Kaufmann
Publishers, San Francisco, CA, 1999.

Miguel Rodriguez and Jean-Pierre Muller. Towards autonomous cognitive animats. In F. Mor´an,
A. Moreno, J.J. Merelo, and P. Chac´on, editors,Advances in artificial life — Proceedings of the
Third European Conference on Artificial Life, Lecture Notes in Artificial Intelligence Volume
929, Berlin, Germany, 1995. Springer-Verlag.

Rui Sadio, Gonc¸alo Tavares, Rodrigo Ventura, and Luis Cust´odio. An emotion-based agent
architecture application with real robots. In Lola Ca˜nmero, editor,AAAI Fall Symposium on
Emotional and Intelligent II: The tangled knot of social cognition, pages 117–122. Menlo Park,
California: AAAI Press, 2001. Technical report FS-01-02.

Mathias Scheutz. The evolution of simple affective states in multi-agent environments. In Lola
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