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Abstract

In this paper we explore the relationship between “preference elicitation”, a learning-style problem
that arises in combinatorial auctions, and the problem of learning via queries studied in computa-
tional learning theory. Preference elicitation is the process of asking questions about the preferences
of bidders so as to best divide some set of goods. As a learning problem, it can be thought of as a
setting in which there are multiple target concepts that can each be queried separately, but where the
goal is not so much to learn each concept as it is to produce an “optimal example”. In this work, we
prove a number of similarities and differences between two-bidder preference elicitation and query
learning, giving both separation results and proving some connections between these problems.

Keywords: exact learning, query learning, combinatorial auctions, preference elicitation.

1. Introduction

In a combinatorial auction, an entity (the “auctioneer”) has a set S of n items that he would like to
partition among a set of k bidders. What makes an auction combinatorial is that the valuations of
the bidders — how much they would be willing to pay for different subsets of items — may not
necessarily be linear functions over the items. For instance, if item a is a left shoe and item b is a
right shoe, then a bidder might be willing to pay a reasonable amount for the bundle {a,b} but very
little for just {a} or just {b}. In the other direction, if a and b are each pairs of shoes, then a bidder
might value {a,b} less than the sum of his valuations on {a} and {b} (especially if he just needs
one pair of shoes right now). A standard goal for the auctioneer in such a setting is to determine
the allocation of goods that maximizes social welfare: this is the sum, over all bidders, of the value
that each bidder places on the set of items that he receives. This goal is perhaps most natural if
one thinks of the auctioneer as not having a financial interest of its own but simply as an agent
acting to help divide up a given set of items in a way that maximizes overall happiness or value. For
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example, the auctioneer might be a government agency, or a manager dividing up resources among
different projects. The case of k = 2 can also be thought of as a situation in which one of the bidders
represents a buyer (with various preferences over bundles of items) and the other bidder represents
a marketplace (with various discounts and package-deals), and the auctioneer is helping the buyer
decide what subset of items to purchase from the marketplace.1

There are a number of issues that arise in the combinatorial auction setting. For example, there
is much work on designing protocols (mechanisms) so that bidders will be truthful in reporting
their valuations and not want to “game” the system (Sandholm, 2002b; Nisan and Ronen, 2000;
Lehmann et al., 2002). But another issue is that even if we can get bidders to be truthful, their
valuation functions can be quite complicated. Because of this, bidding in a traditional manner may
require an exponential amount of communication. This has led researchers to study the notion of
preference elicitation, in which the auctioneer asks questions of the bidders in order to learn (elicit)
enough information about their preferences to determine the best, or approximately best, allocation
of the items (Conen and Sandholm, 2001). Because the issues of truthfulness can be handled in
this setting via known mechanisms (discussed later in Section 6), the problem then becomes one of
determining which questions to ask in order to extract the information needed for allocation, and to
understand when this can be done quickly.

1.1 Preference Elicitation and Query Learning

We can think of preference elicitation in the context of query learning by thinking of each item as a
boolean feature, thinking of a subset of the n items (a “bundle”) as an example x ∈ {0,1}n indicating
which items are in the subset, and thinking of the bidder’s valuation function as a target function.
The standard assumption of “free disposal” — bidders can throw away items for free — means we
can assume that these valuation functions are monotone, though they typically will not be boolean-
valued (we might have f (x) = $100, for instance). Furthermore, one of the natural types of queries
studied in preference elicitation, the value query (where the auctioneer asks the bidder how much he
values some bundle), corresponds exactly with the learning-theoretic notion of a membership query.

On the other hand, a key difference between preference elicitation and query learning is in the
goals. In learning, the objective is typically to recover the target function, either exactly or approxi-
mately. In preference elicitation, however, the goal is more one of finding the “best example”. For
instance, if there are just two bidders with preference functions f and g, then the goal is to find
a partition (S′,S′′) of the n items to maximize f (S′)+ g(S′′). Thinking in terms of functions over
{0,1}n, the goal is to find x ∈ {0,1}n to maximize f (x)+g(x̄).

Notice that one of the immediate differences between preference elicitation and query learning
is that preference elicitation makes sense even if the target functions do not have short descriptions,
or even short approximations. We will see some interesting examples later, but as a simple case, if
we learn that bidder A will pay $100 for the entire set of n items but no more than $50 for any subset
of size n− 1 (she is a collector and wants the whole set), and B will pay a maximum of $50 even
for the whole lot, then we know we might as well give all items to A, and we do not need to know
exactly how much each bidder would have paid for different subsets. On the other hand, it is quite
possible for allocation of items to be computationally hard, even if the preferences of all the bidders
are known. For example, even if each bidder’s preferences can be expressed as a simple conjunction

1. To think of this as a combinatorial auction, it is easiest to imagine that the auctioneer has pre-purchased all the items,
and then is deciding which the buyer should keep and which should be returned for a refund.
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(these are called “single-minded” bidders), then if there are many bidders, allocation is equivalent
to the NP-hard set-packing problem. Even for two bidders, allocation can be NP-hard for somewhat
more complicated preference functions, such as read-once formulas (Zinkevich et al., 2003).

Another difference concerns the types of queries that are most natural in each setting. While
value/membership queries are common to both, equivalence queries are quite unnatural in the con-
text of preference elicitation. On the other hand, the demand query, a powerful type of query for
preference elicitation introduced by Nisan and Segal (2003), does not seem to have been studied in
query learning.2

In this paper, we discuss similarities and differences between the three objectives of exact learn-
ing, approximate learning, and preference elicitation. We then give a number of upper and lower
bounds for preference elicitation of natural preference (concept) classes. We focus primarily on the
case of k = 2 bidders, because even this case is quite interesting, both practically (since it mod-
els a buyer and a marketplace as mentioned above) and technically. We first consider monotone
DNF formulas, which have long been known to be hard to learn exactly from membership queries
alone but easy to learn approximately (in a strong, distribution-free PAC sense) given membership
queries and polynomially many random examples of the target formula (Angluin, 1988). We show
that monotone DNF formulas are hard for preference elicitation, even with demand queries. How-
ever, the hardness we show is 2Ω(

√
n)-hard rather than the 2Ω(n)-hardness one gets for exact learning

of monotone DNF. On the other hand, we show log(n)-DNF formulas are easy for preference-
elicitation, even if the functions have more than polynomially many terms. We also give a number
of general statements about when the ability to succeed for one of these goals implies being able
to succeed in the others. After comparing elicitation with boolean-valued and real-valued pref-
erence functions, we briefly consider the issue of truthfulness in elicitation. We then summarize
subsequent related work that has been done since the conference (COLT-03) version of this paper
appeared. Finally, we end with two open problems.

1.2 Related Work on Combinatorial Auctions

There is a substantial literature of work on combinatorial auctions. The standard view of these
auctions (without the interactive notion of preference elicitation) is that bidders submit bids on
bundles in some appropriate bidding language, and then the auctioneer determines who wins what
based on these bids. The issue of determining the winners in such auctions, given the bids, is
a complex optimization problem that has received considerable attention (Rothkopf et al., 1998;
Sandholm, 2002a; Fujishima et al., 1999; Nisan, 2000; Andersson et al., 2000; Sandholm et al.,
2001). Communication complexity issues have received substantial attention as well. There are 2n−
1 bundles, and each agent may need to bid on all of them to fully express its preferences. Appropriate
bidding languages (Sandholm, 2002a,b; Fujishima et al., 1999; Nisan, 2000; Hoos and Boutilier,
2001; Sandholm and Suri, 2001) can address the communication overhead in some cases where
the bidder’s utility function is compressible. However, they still require the agents to completely
determine and transmit their valuation functions and as such do not solve all the issues. So in
practice, when the number of items for sale is even moderate, the bidders cannot bid on all bundles.
Instead, they may bid on bundles which they will not win, and they may fail to bid on bundles they

2. In a demand query, the auctioneer proposes a price for each item and then asks the bidder to specify a single subset
of the items that is optimal for the bidder given those prices. Demand queries will be discussed further in Section 2.
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would have won. The former problem leads to wasted effort, and the latter problem leads to reduced
economic efficiency of the resulting allocation of items to bidders.

Preference elicitation, the subject of this paper, was recently proposed to address these prob-
lems (Conen and Sandholm, 2001), and several papers have studied different types of elicitors (Co-
nen and Sandholm, 2002b,a; Hudson and Sandholm, 2004; Nisan and Segal, 2003; Smith et al.,
2002). On the negative side, if valuations are arbitrary monotone functions, then the worst-case
communication complexity to find an (even approximately) optimal allocation is exponential in the
number of items, no matter what query types are used (Nisan and Segal, 2003). Nonetheless, em-
pirically, preference elicitation can provide a substantial savings compared to explicitly bidding on
all 2n −1 bundles (Hudson and Sandholm, 2004).

An issue that arises in the study of auctions is that bidders may lie about their preferences (e.g.,
bidder f when queried with x may not truthfully report f (x)) if they believe it may help in the
final allocation. However, Vickrey-Clarke-Groves (VCG) schemes (Vickrey, 1961; Clarke, 1971;
Groves, 1973) provide a method for charging bidders so that each is motivated to tell the truth about
its valuations. Briefly, in this scheme the elicitor first finds the optimal allocation OPT under the
assumption that bidders are behaving truthfully. Then, for each bidder i, the elicitor finds the optimal
allocation OPTi without bidder i, again assuming truthful behavior. Finally, bidder i is charged a
fee based on the difference between the utility of the other agents in OPT and OPTi. It seems
perhaps circular at first glance, but one can show that in such a scheme, each bidder will in fact
be motivated to be truthful throughout the whole process (Conen and Sandholm, 2001). Formally,
bidding truthfully is an ex-post equilibrium. We discuss these issues in more detail in Section 6,
but the conclusion is that if one can elicit the optimal allocation exactly assuming that agents tell
the truth, one can determine VCG payments that make truth-telling the best strategy for the bidders.
Because of this, for the remainder of the paper (except Section 6) we will assume that the bidders
are truthful.

Driven by the same concerns as preference elicitation in combinatorial auctions, there has also
been significant recent work on ascending combinatorial auctions (Parkes, 1999b,a; Ausubel and
Milgrom, 2002; Wurman and Wellman, 2000; Bikhchandani et al., 2001; Bikhchandani and Ostroy,
2001). These are multistage mechanisms. At each stage the auctioneer announces prices (on items
or in some cases on bundles of items), and each bidder states which bundle of items he would
prefer (that is, which bundle would maximize his valuation minus the price he would have to pay
for the bundle) at those prices. The auctioneer increases the prices between stages, and the auction
usually ends when the optimal allocation is found. Ascending auctions can be viewed as a special
case of preference elicitation where the queries are demand queries (“If these were the prices, what
bundle would you buy from the auction?”) and the query policy is constrained to increasing the
prices in the queries over time. Recently it was shown that if per-item prices suffice to support an
optimal allocation (i.e., a Walrasian equilibrium exists), then the optimal allocation can be found
with a polynomial number of queries, where each query and answer is of polynomial size (Nisan
and Segal, 2003).

Recently, some of us (Zinkevich et al., 2003), noticing the connection to query learning, showed
how the algorithm of Angluin et al. (1993) for learning read-once formulas over standard boolean
gates could be adapted to elicit preferences expressible as read-once-formulas over gates that are
especially natural in the context of combinatorial auctions. This work goes on to discuss compu-
tational considerations, showing on the negative side that allocation can be NP-hard even for two
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bidders with read-once-formula preferences, but on the other hand, allocation can be done in poly-
nomial time if one of the two bidders has a linear value function.

2. Notation and Definitions

Because subset notation is most natural from the point of view of preference elicitation, we will
use both subset notation and bit-vector notation in this paper. That is, we will think of the instance
space X both as elements of {0,1}n and as the power set of some set S of n items. We will also inter-
changeably call a subset of S a “bundle” or an “example”. When discussing preference elicitation,
we assume there are k bidders with monotone real-valued preference functions over the instance
space. The objective of preference elicitation is to determine a k-way partition (S1, . . . ,Sk) of S to
maximize f1(S1)+ f2(S2)+ . . .+ fk(Sk), where f1, . . . , fk are the k real-valued preference functions.
Unless otherwise noted, we will assume k = 2; Section 1.1 provides some justification for this focus.

Let C be a class of monotone functions. We will be interested in the learnability of various C —
that is, in various subsets of the class of monotone functions — in the exact learning, approximate
learning, and preference elicitation models given the ability to make various types of queries. While
learning algorithms are typically considered efficient if they run in time polynomial in the num-
ber of items n and in the length of the representation of the target (and possibly other parameters),
we will at times explicitly require run time bounds independent of description length in order to
demonstrate a fundamental advantage of preference elicitation for problems involving complex tar-
gets. The hardness observations for learning problems when this restriction is in place are therefore
not hardness results in the standard learning-theoretic sense.

Query types: A membership query or value query is a request x ∈ {0,1}n to an oracle for a target
f . The oracle responds with the value f (x) corresponding to x. We can think of these queries as
asking the following question of a bidder: “How much are you willing to pay for this bundle of
items?”

A demand query is a request w ∈ (R+)n (R+ here represents non-negative real values) to an
oracle for a target f . The oracle responds with an example x ∈ {0,1}n that maximizes f (x)−w · x.
We can think of a demand query w as asking the following question of a bidder: “If you were in a
store in which item i had cost wi, what subset of items would you choose to buy?”

We can illustrate the power of demand queries with the following observation due to Nisan.
If one of the bidders has a linear valuation function, and the other is arbitrary, then preference
elicitation can be done with n+1 queries: n value queries and one demand query. Specifically, we
simply ask the linear bidder n value queries to determine his value on each item, and then send the
other bidder these values as prices and ask him what he would like to buy. Thus it is interesting
that our main lower bounds, for elicitation of monotone DNF formulas, hold for demand queries as
well.3

Natural function/representation classes: One of the most natural representation classes of mono-
tone functions in machine learning is that of monotone DNF formulas. In combinatorial auctions,

3. Lahaie and Parkes (2004) recently studied a more powerful notion of demand query in which one can propose an
arbitrary polynomial-size function h(x), and receive the x that maximizes f (x)− h(x). With this type of query, one
can elicit monotone DNF formulas, since one can now directly apply Angluin’s algorithm (Angluin, 1988), making
a demand query of this kind whenever Angluin’s algorithm would make an equivalence query. Lahaie and Parkes go
on to explore further the power of this query class.
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the analog of this representation is called the “XOR bidding language” (Sandholm, 2002a).4 A
preference in this representation is a set of bundles (terms) T = {T1,T2, . . . ,Tm} along with a set
of values v = {v1,v2, . . . ,vm}, one value vi for each bundle Ti. The value of this preference for all
S′ ⊆ S is

fT,v(S
′) = max

Ti⊆S′
vi.

In other words, the value of a set of items S′ is the maximum value of any of the “desired bundles”
in T that are contained in S′. We will call this the DNF representation of preferences, or “DNF
preferences” for short. Our hardness results for this class will all go through for the boolean case
(all vi are equal to 1), while two of our positive results will hold for general vi.

3. DNF Preferences

Angluin (1988) shows that monotone DNF formulas are hard to exactly learn from value (mem-
bership) queries alone, but are easy to learn approximately given membership queries plus random
examples (in the PAC distribution-free, strong learning model). Angluin’s example showing hard-
ness of exact learning can be thought of as follows: imagine the n items are really n/2 pairs of
shoes. The buyer would be happy with any bundle containing at least one pair of shoes (any such
bundle is worth $1). But then we add one final term to the DNF: a bundle of size n/2 containing
exactly one shoe from each pair, where for each pair we flip a coin to decide whether to include
the left or right shoe. Since the learning algorithm already knows the answer will be positive to
any query containing a pair of shoes, the only interesting queries are those that contain no such
pair, and therefore it has to match the last term exactly to provide any information. Thus even for a
randomized algorithm, an expected 2n/2−1 value queries are needed for exact learning of monotone
DNF formulas.

We now consider the two-bidder preference elicitation problem when one or both of the prefer-
ences are represented as monotone DNF expressions, beginning with a few simple observations.

Observation 1 If f is a known DNF preference function with m terms, and g is an arbitrary un-
known monotone preference function, then preference elicitation can be performed using m + 1
value queries.

Proof Because g is monotone, the optimal allocation will either be of the form (Ti,S−Ti), for some
term Ti in f , or else all of the items in S will go to the bidder with preference g. So, we simply need
to query g once for S and once for each set S−Ti and then pick the best of these m+1 partitions.

Observation 2 If f and g are boolean DNF preferences each containing at most one term with
more than two literals (the hard case in Angluin’s construction) then preference elicitation can be
performed using poly(n) value queries.

Proof Since f and g are boolean (they each assign every bundle a value of either 0 or 1), the prob-
lem is simply to find terms Tf in f and Tg in g which have no items in common, if such a pair of

4. This terminology is to indicate that the bidder wants only one of his listed bundles and will not pay more for a set of
items that contains multiple bundles inside it. This usage is very different from the standard definition of XOR as a
sum modulo 2. Therefore, to avoid confusion, we will not use the XOR terminology here.
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terms exists. We begin by finding all terms in f of size ≤ 2 by asking n2 queries. Suppose two of
these terms T1 and T2 are disjoint. In that case, we query g on S−T1 and S−T2. If one answer is 1
then we are done. If both answers are 0 then this means all of g’s terms intersect both T1 and T2. In
particular, g can have only a constant number of terms, and therefore exactly learning g is easy, after
which we can then apply Observation 1 (swapping f and g). On the other hand, if f does not have
two disjoint terms of size ≤ 2, then the only way f can have more than three such terms is if they
all share some common item xi. It is thus now easy to learn the large term in f : if f (S−{xi}) = 1,
we can find this term by “walking downward” from the example S−{xi}, that is, by iteratively
removing as many items as possible from this bundle subject to keeping f ’s value 1. On the other
hand, if f (S−{xi}) = 0, meaning that the large term contains xi as well, we can walk downward
from the example in which all the other items in the small terms have been removed. Once f has
been learned, we can again apply Observation 1.

We now show that even though Angluin’s specific example is no longer hard in the preference
elicitation model, monotone DNF formulas (defining boolean preference functions) remain hard for
preference elicitation using value queries, even when the preference functions are quite small. We
then extend this result to demand queries as well.

Theorem 1 Preference elicitation of monotone DNF formulas requires 2Ω(
√

n) value queries. This
holds even if each bidder’s preference function has only O(

√
n) terms.

Proof We construct a hard example as follows. There will be n = m2 items, arranged in an m-by-m
matrix. Let us label the items xi j for 1 ≤ i, j ≤ m. We will call the two preference functions fR and
fC. Both will be boolean functions. Bidder fR is happy with any row: that is, fR = x11x12 · · ·x1m ∨
x21x22 · · ·x2m∨ . . .∨xm1xm2 · · ·xmm. Bidder fC is happy with any column: that is, fC = x11x21 · · ·xm1∨
x21x22 · · ·xm2 ∨ . . .∨ x1mx2m · · ·xmm. Thus, at this point, it is impossible to make both bidders happy.
However, we now add one additional term to each preference function. We flip a coin for each of
the n items in S, labeling the item as heads or tails. Let H be the set of all items labeled heads, and T
be the set of all items labeled tails. We now add the conjunction of all items in H as one additional
term to fR, and the conjunction of all items in T as one additional term to fC. Thus now it is possible
to make both bidders happy, and the optimal allocation will be to give the items in H to the “row
bidder” and the items in T to the “column bidder”.

We now argue that no query algorithm can find this allocation in less than 1
2 2

√
n − 2 queries in

expectation. Let us enforce that the last two questions of the query protocol are the values of the
actual allocation. That is, if the elicitor assigns the items in H to the row agent and T to the column
agent, it must ask the row agent the value of H and the column agent the value of T . This constraint
only increases the length of the protocol by at most 2 questions.

Let us assume that the elicitor knows in advance the structure of the problem, the row sets and
the column sets, and the only information the elicitor does not know are the sets H and T . In this
case, we can assume without loss of generality that the elicitor never asks the row bidder about any
bundle containing a row (because he already knows the answer will be “yes”) and similarly never
asks the column bidder about any bundle containing a column.

We now argue as follows. If the elicitor asks a query of the row bidder, the query must be
missing at least one item in each row, and if the elicitor ask a query of the column bidder, it must be
missing at least one item in each column. However, notice that in the first case, the answer will be
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positive only if all missing items are in T , and in the second case, the answer will be positive only if
all missing items are in H. Therefore, for any given such query, the probability that the answer will
be positive taken over the random coin flips is at most 2−√

n. Thus, for any elicitation strategy, the
probability the elicitor gets a positive response in the first q queries is at most q2−√

n and therefore
the expected number of queries is at least 1

2 2
√

n.

We now show that preference elicitation remains hard for DNF preferences even if we allow
demand queries.

Theorem 2 Even if both demand queries and value queries are allowed, preference elicitation of
monotone DNF formulas requires 2Ω(

√
n) queries. This holds even if each bidder’s preference func-

tion has only O(
√

n) terms.

Proof We use the same example as in the proof of Theorem 1. As in that proof, we can insist that
the last question be a demand query where the agent responds with the set H or T respectively. Let
us without loss of generality consider a sequence of demand queries to the “row bidder”. What we
need to calculate now is the probability, for any given cost vector w, that the set H happens to be
the cheapest term in his DNF formula. The intuition is that this is highly unlikely because H is so
much larger than the other terms.

Specifically, for a given query cost vector w, let wi be the total cost of the ith row. Thus, the
cheapest row has cost min(w1, . . . ,wm) and the expected cost of H is 1

2(w1 + . . .+wm). One simple
observation that helps in the analysis is that if we define hi as the cost of the items in H that are in
the ith row, then Pr(hi ≥ wi/2) ≥ 1/2. That is because if any particular subset of the ith row has
cost less than wi/2, its complement in the ith row must have cost greater than wi/2. Furthermore,
these events are independent over the different rows.

So, we can reduce the problem to the following: we have m independent events each of proba-
bility at least 1/2. If at least two of these events occur, the elicitor gets no information (H is not the
cheapest bundle because it is not cheaper than the cheapest row). Thus, the probability the elicitor
does get some information is at most (m + 1)2−m and the expected number of queries is at least

1
2(m+1)2m.

Open Problem 1 Can preferences expressible as polynomial-size DNF formulas be elicited in 2O(
√

n)

value queries or demand queries? (This is open even for the boolean preference case.)

3.1 log(n)-DNF Preferences

In the previous problem, even though there were only O(
√

n) terms in each preference function, the
terms themselves were fairly large. What if all of the terms are small, of size no more than logn?
Observe that there are

( n
logn

)

possible terms of size logn, so some members of this class cannot be
represented in poly(n) bits.

Theorem 3 If f and g are DNF-preferences where all terms are of O(logn), then preference elici-
tation can be performed in a number of value queries polynomial in n.

Proof We begin by giving a randomized construction and then show a derandomization.
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For convenience let us put an empty term T0 of value 0 into both f and g. With this convention
we can assume the optimal allocation satisfies some term T ′ ∈ f and some term T ′′ ∈ g.

We now simply notice that since T ′ and T ′′ are both of size O(logn), a random partition (S′,S′′)
has probability at least 1/poly(n) of having the property that S′ ⊇ T ′ and S′′ ⊇ T ′′. So, we simply
need to try poly(n, log 1

δ) random partitions and take the best one, and with probability at least 1−δ
we will have found the optimal allocation.

We can now derandomize this algorithm using the (n,k)-universal sets of Naor and Naor (1990).
A set of assignments to n boolean variables is (n,k)-universal if for every subset of k variables, the
induced assignments to those variables covers all 2k possible settings. Naor and Naor (1990) give
efficient explicit constructions of such sets using only 2O(k) logn assignments. In our case, we can
use the case of k = O(logn), so the construction is polynomial time and size. Each of these assign-
ments corresponds to a partition of the items, and we simply ask f and g for their valuations on each
one and take the best.

4. General Relationships

In this section we describe a number of general relationships between query learning and preference
elicitation. We will solely concern ourselves here with communication/query complexity issues, and
not with the issue of computation time.

To begin with some simple relationships, it is clear that preference elicitation is no harder than
exact learning, since one way to perform elicitation is to simply learn each bidder’s preferences
exactly. On the other hand, the results from the previous section show that this is not true for
approximate learning. Occam’s razor theorems (Blumer et al., 1987) imply that any function can be
approximately learned with a number of queries polynomial in the description length of the function
(ignoring issues of computation time), and thus Theorems 1 and 2 imply a super-polynomial gap
between the number of value queries needed for preference elicitation and approximate learning for
the case of monotone DNF formulas. In the other direction, we have seen several examples of cases
where preference elicitation is easy and yet it is hard to perform exact learning (Theorem 3) or even
approximate learning (example in Section 1.1) because the target function cannot be written down,
even approximately, in a small number of bits.

These last examples are something of a “cheat” because the function cannot even be described
compactly. We now describe a case in which preference elicitation is easy but exact learning is
hard, even though the function has a small description. We then show that in certain circumstances,
however, the ability to elicit does imply the ability to learn with queries.

4.1 Almost-Threshold Preferences

We now define a class of boolean preference functions that we call almost-threshold. This class will
be used to show that, even if all of the functions in a class have representations of size polynomial
in n, we can still separate exact learning and preference elicitation with respect to value queries. In
fact, the gap is super-exponential.

An “almost threshold” preference function is defined by specifying a single set S′. This set in
turn defines a preference function that is 1 for any set of size greater than or equal to |S′|, except for
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S′ itself, and is 0 otherwise. Formally, for any S′ 6= /0, define

hS′(S
′′) =

{

1 if S′′ 6= S′ and |S′′| ≥ |S′|
0 otherwise

The class HAT of almost-threshold preference functions is then HAT = {hS′}.

Observation 3 It requires at least
( n
dn/2e−1

)

value queries to exactly learn the class HAT .

Theorem 4 If f ,g ∈ HAT then the optimal allocation can be elicited in 4+ log2 n value queries.

Proof Recall that we use S to represent the set of all items, and assume |S| > 2. Also suppose
f = hS′ . The first step is to determine |S′|. We can do this in log2 n+1 queries using binary search.
We next find two sets T,T ′ of size |S′| such that f (T ) = f (T ′) = 1. This can be done by picking
three arbitrary sets of size |S′| and querying the first two: at most one of these two sets can have the
value 0, and if one of the two sets does have this value then the third set must have the value 1. Our
final query is for the value of g(S−T ). If this query returns 1, then T,S−T is an optimal allocation
(and has value 2). Otherwise, T ′,S−T ′, regardless of its value, is an optimal allocation. Thus, we
can find the optimal allocation in 4+ log2 n value queries, although we may need one more query if
we wish to determine the value of this allocation.

4.2 When Easy Elicitation Implies Easy Learning

We now show that in certain circumstances, however, the ability to elicit with a polynomial number
of value queries does imply the ability to exactly learn with a similar number of queries. In partic-
ular, we will show that if preference elicitation can be performed query-efficiently for preferences
drawn from certain boolean classes then a superset query can be efficiently simulated using value
queries.

Definition 5 A superset oracle for a target f ∗ in a boolean concept class H takes a function f ∈ H
as input. If f is a superset of f ∗, that is, {x : f (x) = 1} ⊇ {x : f ∗(x) = 1}, then the query returns
“true”. Otherwise the query produces a counterexample: an x such that f (x) = 0 but f ∗(x) = 1.

Recall that Angluin’s algorithm (Angluin, 1988) for learning monotone DNF uses value (mem-
bership) and equivalence queries, but that the equivalence oracle is always queried with a hypothesis
that is a subset of the target function (it is an improper subset, the target itself, on the final query).
Therefore, the same algorithm can be used to learn monotone DNF from a value and superset oracle.
In fact, it can be seen that any subclass of monotone DNF that is closed under removal of terms can
be learned from value and superset queries by the same algorithm.

What makes this interesting is the following relationship between preference elicitation and
superset queries. First, for any boolean function f , let us define its “dual”

f̂ (S′) = 1− f (S−S′).

Or, in other words, f̂ (x) = f̄ (x̄). Given a boolean hypothesis class H, define Ĥ = { f̂ : f ∈ H}.
For example, the dual of the class of monotone log(n)-DNF formulas is the class of monotone
log(n)-CNF formulas. The set of monotone functions is closed under dual.
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Theorem 6 Let H be a boolean concept class with dual Ĥ. If, given value oracles for any f ∈ H
and g ∈ Ĥ, the optimal allocation S′,S′′ can be elicited using M value queries, then a superset query
for a target f ∗ ∈ H can be simulated using M +2 queries to a value oracle for f ∗.

Proof Suppose that one wants to perform a superset query with g ∈ H. First, compute ĝ ∈ Ĥ. Then,
perform preference elicitation on f ∗, ĝ. If this procedure returns an allocation satisfying both agents,
this means we have an x such that f ∗(x) = 1 and ĝ(x̄) = 1. But, ĝ(x̄) = ḡ(x) so this means that x is a
counterexample to the superset query. On the other hand, if the elicitation procedure fails to satisfy
both agents then no such x exists, so the superset query can return “true” in this case.

Corollary 7 If H is a subclass of monotone DNF that is closed under removal of terms, and if
preference elicitation for (H, Ĥ) can be performed in M queries, then H is exactly learnable from a
number of value queries that is polynomial in n, M, and the number of terms in the target monotone
DNF.

5. Boolean-Valued Versus Real-Valued Elicitation

It might seem that eliciting real-valued preference functions would generally be much more difficult
than eliciting boolean preferences. In this section, we show that—under certain conditions—the
number of value queries necessary for elicitation of real-valued preferences is not that much greater
than the number of queries required for eliciting boolean preferences.

First of all, for any real-valued function class H we define a related boolean-valued class as
follows. Let � be a variable representing either the > or ≥ relational operator and let P(S) represent
the power set of S. Given a function f : P(S) → R+ and an a ∈ R, define thresh�f ,a : P(S) → {0,1}
to be a function such that

thresh�f ,a(S
′) =

{

1 if f (S′) � a
0 otherwise.

A function f is said to project onto a set of boolean-valued functions H ′ if for all a∈R, thresh≥f ,a, thresh>
f ,a ∈

H ′. A set of functions H is said to project onto a set H ′ if each f ∈ H projects onto H ′. The boolean
projection of H is the smallest set of functions that H projects onto.

Now, imagine that f and g, the preferences for two agents, are drawn from H. This problem is
closely related to the case where preferences f ′ and g′ are drawn from H ′, the boolean projection
of H. By considering the ranges of the functions in H, it is sometimes clear that the above two
problems are equally hard. We begin with the observations that when the functions in H all share
a small known domain, it is easy to see that these problems are of similar difficulty. We will show
in the first theorem below that if the ranges of the functions in H are small sets, then these two
problems are still of similar difficulty. On the other hand, in the second theorem of this section,
we will show that there exists a real-valued H with a corresponding boolean projection H ′ such
that exponentially more value queries are required to perform preference elicitation on H than are
required to exactly learn H ′ from value queries.

5.1 Single Small Co-Domain

First of all, suppose that H is such that there exists a small set RH which is a co-domain for every
function f ∈ H. That is, for any f ∈ H, for every S′ ⊆ S, f (S′) ∈ RH . Observe that if the elicitor

659



BLUM ET AL.

knows H, then it knows RH . In this scenario, it is easy to prove that the elicitation of an optimal
allocation for f ,g ∈ H and the elicitation of an optimal allocation for f ′,g′ ∈ H ′, where H ′ is the
boolean projection of H, can be performed using similar numbers of value queries.

Before we describe the proof, we define a threshold query. Let both � and �′ be variables
taking on values in {>,≥}. Then a (a,b,��′) threshold query is defined as follows: Does there
exist a set S′ ⊆ S such that f (S′)� a and g(S−S′)�′ b? If so, return ( f (S′),g(S−S′),S′), otherwise
return false.

Observation 4 Suppose class H has boolean projection H ′ such that the optimal allocation for
any f ′,g′ ∈ H ′ can be elicited in k value queries. Then a threshold query on any f ,g ∈ H can be
performed using at most k +2 value queries.

Proof Suppose that we are attempting to perform an (a,b,>≥) threshold query on f and g, and let
f ′ = thresh>

f ,a and g′ = thresh≥g,b. Then the threshold query should return false if and only if no allo-
cation can satisfy both f ′ and g′. So, we simply perform elicitation on f ′ and g′, using value queries
to f and g to simulate value queries to f ′ and g′ respectively, and see if both can be satisfied. If so,
we perform two more queries (one each to f and g) to determine the actual value of this allocation.

Observation 5 Suppose class H has boolean projection H ′, and suppose that RH is a co-domain
for every function f ∈ H. If |RH |= m, and the optimal allocation for two preferences f ′,g′ ∈ H ′ can
be elicited in k value queries, then the optimal allocation for any two preferences f ,g ∈ H can be
elicited in (k +2)m2 value queries.

Proof
The algorithm to elicit the optimal allocation for f ,g ∈ H is as follows. For all (a,b) ∈ R2

H ,
perform an (a,b,≥≥) threshold query, and let X be the set of all non-false responses (a,b,S′)
returned by these queries. Return the allocation (S′′,S− S′′) from the triple (a′′,b′′,S′′) ∈ X that
maximizes a′′ +b′′.

By the previous observation, all of these threshold queries can be simulated using at most
(k + 2)m2 value queries. To see that this algorithm returns an optimal allocation, let (S∗,S− S∗)
be a fixed optimal allocation, and define f ∗ = f (S∗) and g∗ = g(S−S∗). Observe that ( f ∗,g∗)∈ R2

H ,
so the algorithm will make the threshold query ( f ∗,g∗,≥,≥). Furthermore, this query will return
some set S′′ such that f (S′′) = f ∗ and g(S−S′′) = g∗, since such an S′′ exists and since by the opti-
mality of S∗ any response (a,b,S′′) to this query must have a ≤ f ∗ (since b ≥ g∗) and b ≤ g∗ (since
a ≥ f ∗). Thus X contains at least one optimal allocation.

5.2 Many Small Ranges

We again consider a set of real valued preference functions H. However, we will not assume a finite
co-domain shared by all of the functions f ∈ H. Instead, we will assume that there exists an m such
that for every f ∈ H, the size of the range5 of f is bounded by m.

5. The size of the range of a function is the number of elements in the range. Technically, for a function f : X → Y , the
size of the range is |{y ∈ Y : ∃x ∈ X such that f (x) = y}|.
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Such problems are not as conducive to the easy analysis of the earlier section. For instance,
given a function f ∈ H, we may not be able to discover its entire range without a number of queries
exponential in the number of items. However:

Theorem 8 Given an integer m and a set H such that each function f ∈ H has a range of size less
than m, if H ′ is the boolean projection of H, and the optimal allocation for f ′,g′ ∈ H ′ can be elicited
using k value queries, then the optimal allocation for f ,g ∈ H can be elicited using 2+4(k +2)m2

value queries.

Proof
Let (S∗,S − S∗) be any fixed optimal allocation, f ∗ = f (S∗), and g∗ = g(S − S∗). We give

an algorithm that will iteratively construct subsets of the ranges of f and g such that, when the
construction is complete, the final subsets will contain f ∗ and g∗, respectively. By the analysis of
Observation 5, if the algorithm of that observation is run using the cross product of these two subsets
in place of R2

H , the algorithm will still successfully locate an optimal allocation.
The full algorithm is as follows:

1. Initialize R f = { f ( /0)} and Rg = {g( /0)}.

2. For all (a,b) ∈ R f × Rg, if one has not already done so, perform three threshold queries
(a,b,>>), (a,b,>≥), and (a,b,≥>).

3. For every triple (a′,b′,S′) returned in the previous step, add a′ to R f and b′ to Rg.

4. If R f and Rg increased in size on the previous step, return to step 2.

5. If R f and Rg did not increase in size, run the algorithm of Observation 5 using R f ×Rg in
place of R2

H .

Let the final values of R f and Rg be denoted by R∗
f and R∗

g, respectively. Observe that R∗
f

is a subset of the range of f , because only values of f are inserted into it. Similarly, R∗
g is a

subset of the range of g. Thus |R∗
f ×R∗

g| ≤ m2. Observe that 2 value queries are made in step 1,
3|R∗

f ×R∗
g| threshold queries are made in step 2 (which, by Observation 4, can be simulated by

at most 3(k + 2)m2 value queries), and, by Observation 5 and the earlier analysis, no more than
(k + 2)m2 value queries are made in step 5. Thus, no more than 2 + 4(k + 2)m2 value queries are
made.

Now, consider the sets R f ⊆ R∗
f and Rg ⊆ R∗

g just before the ith execution of step 2 of the
algorithm. We will show below that if at least one of f ∗ and g∗ is not contained in R f and Rg,
respectively, then at least one of these sets will increase in size when this step is executed. Thus, the
algorithm will continue iterating this step until f ∗ ∈ R f and g∗ ∈ Rg.

First, assume that both f ∗ /∈ R f and g∗ /∈ Rg, and let f < (g<) be the largest value in R f (Rg) that
is less than f ∗ (g∗). Note that the value f < exists6 because f ( /0) ∈ R f and for all S′, f ( /0) ≤ f (S′)
by the monotonicity of preference functions. Similarly, g< exists. Therefore, at some iteration of
the algorithm the threshold query ( f <,g<,>>) will be made, and when it is made it will not return
“false” because ( f ∗,g∗,S∗) is a valid response. Furthermore, any response (a,b,S′) must either
have a ≤ f ∗ or b ≤ g∗, since a + b ≤ f ∗ + g∗. But, by the definition of f < and g< as well as of the

6. If f ( /0) = f ∗, then f ∗ ∈ R f at all stages.
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threshold query, this means that at least one of a or b is a value that is not contained in R f or Rg. But
both a and b will be contained in their respective R∗ sets. Therefore, at least one of the conditions
R f 6= R∗

f and Rg 6= R∗
g holds, so at least one of the sets R f and Rg must grow during execution i of

step 2.
Next, consider the case when f ∗ ∈ R f and g∗ /∈ Rg (the remaining case f ∗ /∈ R f and g∗ ∈ Rg

is symmetric). Define g< as above and consider the threshold query ( f ∗,g<,≥>). Reasoning as
above shows that this query will produce a response (a,b,S′) such that b /∈ Rg. Thus, in all cases
when at least one of f ∗ or g∗ is not in its respective set, one of the sets grows at step 2.

5.3 When Real Values Make a Problem More Difficult

Theorem 9 There exists a class of real-valued functions that requires 2n −1 value queries to elicit
while its boolean projection requires at most n+1 value queries to exactly learn.

Proof
Imagine that the items are “more or less” unrelated. In particular, each item has a basic value

in {1,2,4,8, . . . ,2n−1}. For all a ∈ S, define V (a) to be the basic value of a, and assume that this
mapping is known. For all S′ ⊆ S, define V (S′) = ∑a∈S′ V (a). Thus, the basic value of any set is the
sum of the basic values in that set. Observe that for any S′ ⊆ S, V (S′)+V (S−S′) = 2n −1.

Now, each agent has a special set that they value slightly more than other agents do. Thus, for
all S′,S′′ ⊆ S, define fS′(S′′) = V (S′′) if S′ 6= S′′, and fS′(S′) = V (S′)+ 1

2 . The class of preferences
of interest is therefore { fS′}S′⊆S.

In order to determine the optimal allocation when preferences are drawn from this class, the
elicitor must find the special set for one agent. And in the worst case it requires 2n−1 value queries
in order to find a special set, since the only information obtained from a value query on a non-special
set is that it is not special. Therefore, 2n−1 value queries are required to elicit this preference class.

Now, consider the boolean projection of this class. For all a ∈ R, for all S′ ⊆ S, define ga(S′)
to be true if and only if V (S′) ≥ a. Then the projection can be represented as {ga}a∈{0,...,2n}. Now,
using value queries, we can perform a binary search for the value of a defining a target member of
this class. Thus, we can exactly learn a target g in the boolean projection with at most n + 1 value
queries.

One point to observe is that it is easy to approximate any function with an exponential number
of values with a function with a polynomial number of values. However, one must be careful when
one computes an allocation that is only approximately optimal, because the traditional techniques
to motivate the agents to answer truthfully (which we describe in the next section) will no longer
work.

6. Truthfulness and VCG

In combinatorial auctions and mechanism design, one key issue that arises is that bidders have their
own interests: they each want to receive as valuable a bundle as possible, and therefore may lie
in their responses if they perceive it to be to their advantage. For example, if the auctioneer is
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not going to actually charge the bidders anything for the bundles they get, then bidders have an
incentive to report overly high valuations, in order to make the auctioneer think that social welfare
will be improved by giving more to them. On the other hand, if the bidders are charged exactly
the valuations that they report, then they have an incentive to underbid, in the hope of making a
profit (paying less for a bundle than it is actually worth to them).7 In preference elicitation, the issue
of motivating the bidders to answer queries truthfully is exacerbated by the fact that the elicitor’s
queries leak information to the bidder about the answers that other bidders have given.

Recently, a methodology was proposed by which elicitors can be made incentive compatible
in the sense that every bidder answering the queries truthfully is an ex post equilibrium (Conen
and Sandholm, 2001).8 This is accomplished by organizing the mechanism so that if all the bid-
ders answer truthfully, the final allocation and payments follow the Vickrey-Clarke-Groves scheme
(VCG) (Vickrey, 1961; Clarke, 1971; Groves, 1973). In this scheme (the Clarke version), the amount
bidder i has to pay is the sum of others’ revealed valuations for the bundles they get had bidder i
not participated, minus the sum of others’ revealed valuations for the bundles they get in the actual
optimal allocation. The elicitor can determine these payments by asking enough queries to be able
to determine the welfare maximizing allocation overall, and by asking extra queries to determine
the welfare maximizing allocation for the auctions where each agent is ignored in turn. The essence
of the argument is that the auction in which agent i is removed serves only to determine agent i’s
payment, and therefore in this auction there is no motivation for any of the participating agents to
lie. This then means that the payments given to the bidders can be assumed to be the correct VCG
payments, which then implies by standard VCG arguments that the optimal strategy for the bidders
in the first auction is to tell the truth as well. Conceptually, one could think of k + 1 “elicitors”,
each working to solve one of these problems. Once all of the “elicitors” have found their welfare
maximizing allocations respectively, the process can terminate. Note that the extra overhead of
motivating the bidders to bid truthfully is just solving k additional elicitation problems beyond the
original elicitation problem. Therefore, if elicitation can be done in a polynomial number of queries,
then so can elicitation that motivates the bidders to answer the queries truthfully.

7. Subsequent Work

Since the conference (COLT-03) version of this paper appeared, a significant amount of closely
related work has been done. In this section we summarize that work.

7. Throughout this paper we have let each bidder i have some valuation function f i from bundles of items to reals. This
notation implicitly makes the following common economic assumptions: (1) private values: bidder i knows f i (in
other words, the function fi does not depend on the other bidders in any way); and (2) no externalities: bidder i does
not care who gets the items that i does not get. For the truthfulness discussion we additionally make the common
economic assumption (3) quasilinear preferences: the utility that bidder i tries to maximize is ui(Si, pi) = fi(Si)− pi,
where Si is the set of items that i gets and pi is the total price that i has to pay.

8. This means that bidding truthfully is each bidder’s best strategy (for any prior probability distribution that he may
hold about the other bidders) given that the other bidders bid truthfully. In other words, truthful bidding strategies
form a Nash equilibrium even in hindsight. This does not mean that bidding truthfully is a dominant strategy: if
others bid insincerely, one may also do better by bidding insincerely. For example, in a 2-bidder setting, if bidder 1’s
strategy involves dropping out (bidding zero from then on) whenever it receives a particular query stream, then it can
be bidder 2’s best strategy to answer queries in a way that causes the elicitor to submit that query stream to bidder 1.
In summary, implementation in ex post equilibrium is stronger than implementation in Nash equilibrium, but weaker
than implementation in dominant strategies.
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One of the oldest techniques for preference elicitation is an ascending auction. An ascending
auction can be considered to be a sequence of increasing demand queries, where if one asks a query
w′ after a query w, then it must be the case that for all i, w′

i ≥ wi. In the conference (COLT-03)
version of this paper we presented the following problem as an interesting open question:

Open Problem 2 Does there exist a preference elicitation problem that is hard (or impossible) to
elicit using an ascending auction but easy to elicit using demand queries?

Since then, this question has been answered, and the answer is affirmative. Nisan (2003)
presents a 2-item auction where no ascending item-price auction can determine the optimal allo-
cation (using any number of queries), but the optimal allocation can easily be determined using
(nonascending) item-price demand queries.

On the other hand, if bundle-price demand queries are allowed — i.e., prices are not assigned
to items only, but potentially also to bundles — then ascending auctions exist that always determine
the optimal allocation (using potentially an exponential number of queries), at least if each bidder is
assumed to act truthfully (Parkes and Ungar, 2002; Ausubel and Milgrom, 2002). As pointed out by
Nisan (2003), it remains an open question whether there exists an ascending bundle-price auction
that always determines the optimal allocation if the auction is restricted to being anonymous, that
is, at any time, the price of a bundle is the same for each agent. Bundle-price demand queries are
quite powerful: as mentioned in footnote 3, one can use them to efficiently elicit monotone DNF
formulas, and this fact as well as other results on these queries are given by Lahaie and Parkes
(2004).

As to preference elicitation using value queries only, new valuation classes learnable in a poly-
nomial number of queries have been introduced in Conitzer et al. (2003) and Santi et al. (2004).
These include valuations where items have at most k-wise dependencies, and certain other valu-
ations. Furthermore, if two classes of valuations are each learnable in a polynomial number of
queries, then so is their union—even though the elicitor does not know in advance in which of
the two classes (or both) the bidder’s valuation belongs. Santi et al. (2004) also present severely
restricted valuation classes where learning nevertheless requires an exponential number of value
queries. First steps toward a characterization of polynomial learnability of valuation functions are
also given.

8. Conclusions and Open Problems

In machine learning, one’s objective is nearly always to learn or approximately learn some target
function. In this paper, we relate this to the notion of preference elicitation, in which the goal
instead is to find the optimal partitioning of some set of items among the bidders. In the case of two
bidders, preference elicitation can be thought of as a learning problem with two target functions f
and g, where the goal is rather than necessarily learning f and g to instead find the example x that
maximizes f (x)+g(x̄).

We now describe several open problems left by this work. We begin with a problem stated in
Section 3.

Open Problem 2 Can preferences expressible as polynomial-size DNF formulas be elicited in 2O(
√

n)

value queries or demand queries?
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A somewhat fuzzier question related to our results on log(n)-DNF is the following. Our algo-
rithm in this case was non-adaptive: the questions asked did not depend on answers to previous
questions. It seems natural that for some classes adaptivity should help. In fact, it is not hard to
generate artificial examples in which this is the case. However, we know of no natural example
having this property.

Open Problem 3 Are there natural classes of functions for which exact learning is information-
theoretically hard, preference elicitation via a non-adaptive algorithm is hard (i.e., an algorithm in
which the questions can all be determined in advance) but elicitation by an adaptive algorithm is
easy.
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