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Abstract

The present paper discusses robustness against outliers in a principal component analysis (PCA).
We propose a class of procedures for PCA based on the minimum psi principle, which unifies
various approaches, including the classical procedure and recently proposed procedures. The
reweighted matrix algorithm for off-line data and the gradient algorithm for on-line data are both
investigated with respect to robustness. The reweighted matrix algorithm is shown to satisfy a
desirable property with local convergence, and the on-line gradient algorithm is shown to satisfy
an asymptotical stability of convergence. Some procedures in the class involve tuning parame-
ters, which control sensitivity to outliers. We propose a shape-adaptive selection rule for tuning
parameters using K-fold cross validation.

Keywords: K-fold cross validation, on-line algorithm, reweighted matrix algorithm, influence
function, data contamination

1. Introduction

In both neural network and statistical studies, PCA is one of the most fundamental tools of dimen-
sionality reduction for extracting effective features from high-dimensional vectors of input data.
See Croux and Haesbroeck (2000) and De la Torre and Black (2001) for recent discussions. PCA
is implemented by projecting input data onto the most informative subspace of lower dimension so
that the hidden structure behind the input data may be clarified. The procedure of detecting principal
components from input data in an on-line manner is related to the mechanism of a single neuron by
the Hebbian adaptation rule, for which the learning theory has been discussed (Amari, 1977; Oja,
1982).

One of the frequently occurring difficulties in PCA is that a few outliers give disturbance in
finding the effective features in a bulk of input vectors. The usual PCA satisfies the statistical
optimality only under the assumption of a Gaussian distribution for all of the input data. A small
departure from the assumption produces a gross error in the performance of the principal component
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vector or subspace in the PCA. This motivates our study of robust PCA procedures. In what follows,
we discuss an ε-contamination model for a data distribution Fε defined by

Fε = (1− ε)N(µ,V )+ εH, (1)

where N(µ,V ) is a Gaussian distribution with mean vector µ and covariance matrix V , and H is a
distribution of possible outliers. In this modeling, it is assumed that ε, or the probability of outliers,
is small and that the distribution H is unspecified but qualitatively different from the supposed dis-
tribution N(µ,V ). Thus, the model (1) lies in a kind of ε-neighborhood surrounding N(µ,V ) taking
into account all of the possible distributions H. If H has the mean vector µH and the covariance
matrix VH , then the data distribution Fε has the covariance matrix

Vε = (1− ε)V + εVH + ε(1− ε)(µ−µH)(µ−µH)T . (2)

Thus, the classical procedure works properly as long as VH 'V and µH ' µ, because the procedure
basically searches for the dominant eigenvectors of Vε by learning from input data generated by the
assumed distribution Fε. However, even if the probability ε is quite small, the classical procedure
often breaks down when input data have a distribution Fε, such that µH or VH is far from the assumed
µ or V , as observed from (2).

A variety of outlier distributions H have infinite dimensionality, and the simplest candidate is a
point-mass distribution δξ(x) degenerated at x = ξ. This choice corresponds to a situation in which
the outliers occur deterministically in a singleton ξ with probability ε. The influence function of
a procedure in the PCA is defined as the derivative at ε = 0 of the procedure under Fε in (1) with
H = δξ. This concept will be more explicitly explored in a subsequent discussion. See Higuchi and
Eguchi (1998) for the case of the PCA, and see Hampel (1974) and Hampel et al. (1986) for the
general case.

We discuss a class of principal component analyzers defined using generic functions which con-
tain tuning parameters. For example if we adopt a log-sigmoidal function as a generic function, the
tuning parameters are the inverse temperature and saturation value parameters, as will be discussed
in detail. In general the tuning parameter set makes a delicate trade between loss of information and
degree of insensitivity to outliers. The main objective in the present paper is to provide a reasonable
selection of tuning parameters of principal component analyzers. The basic idea is to craft a loss
function that reflects as appropriate trade off between loss of information and robustness to outliers.
We introduce K-fold cross validation for estimating the expected loss based on a given data set. As
a result we build a method of data-adaptive selection of tuning parameters. In a simulation study,
we examine the performance of the adaptive selection under three types of outlier distributions H
displaying deterministic, structural and distributional contaminations based on (2). The three types
of outliers are simulated in a numerical experiment, and we test the performance in a few cases
of principal component analyzers. We provide an S implementation of the basic robust PCA at
http://home.hiroshima-u.ac.jp/oxbow/RobustPCA/.

The present paper is organized as follows. Section 2 introduces a class of procedures in PCA
derived by the minimum psi method. In Section 3 we discuss the robustness of the procedure in the
class, and in Section 4 we present an adaptive method of selecting tuning parameters. Finally, in
Section 5 we provide the results of a simple simulation study to validate our theoretical discussion
in previous sections and tests numerical behavior in three types of departures from the Gaussian
distributional assumption.
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2. A Class of Principal Component Vectors

In this section we propose a class of principal component vectors. In general, PCA aims to extract
the most informative k-dimensional output vector y from an input vector x of p-dimension. This is
achieved by learning the matrix Γ which connects x to y = ΓT(x− µ) based on input data {xt ; t =
1,2, · · ·}, where µ is a vector of center of the input data and Γ is a p× k orthonormal matrix, or
ΓTΓ = I (the k-identity matrix). In neural networks, Γ is interpreted as the matrix of coefficients
connecting p neurons to k neurons, where a learning process works by renewing Γ according to a
batch of inputs in an off-line manner or sequential input vectors in an on-line manner (Oja, 1982,
1989 and §8 in Haykin, 1999). By combining these approaches, we propose a certain class of
procedures for PCA.

We present a concise review of the classical PCA for detecting the principal k-subspace. Let

z(x,µ,Γ) =
1
2
{‖x−µ‖2 −‖ΓT(x−µ)‖2} (3)

be half the square of the residual distance of x−µ from the subspace spanned by the columns of Γ.
We note that z(x,µ,Γ) = 1

2 minβ∈Rk ‖x−µ−Γβ‖2. See Hotelling (1933) for the original derivation.
The classical PCA is simply given by minimizing

1
n

n

∑
t=1

z(xt ,µ,Γ)

with respect to µ and Γ, which reduces to solving k dominant eigenvectors of the sample covariance
matrix

S =
1
n

n

∑
t=1

(xt − µ̄)(xt − µ̄)T, (4)

where the centralized vector µ̄ is given by∑n
t=1 xt/n. Thus, we obtain a solution Γ by stacking the k

dominant eigenvectors of S, which we write in the form

Γ = eigen(S).

We propose a variant of this classical procedure for PCA obtained by minimizing an objective
function

E(µ,Γ) =
1
n

n

∑
t=1

Ψ(z(xt ,µ,Γ)), (5)

where Ψ(z) is assumed to be a monotonic increasing function of z > 0. Various Ψ yield various
procedures for PCA. As typical examples, the identity function Ψ0(z) = z reduces to the classical
PCA and

Ψ1(z) = log
1

1+ exp{−β(z−η)} (6)

defines Xu and Yuille’s self-organizing rule, where β and η are tuning parameters, referred to as
the inverse temperature and saturation value, respectively (Xu and Yuille, 1995). Another possible
function is

Ψ2(z) =
1− exp(−βz)

β
. (7)
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In general, Ψ is interpreted as the generic function which gives the total function E , and we refer to
the minimization of E in (5) as the “minimum psi principle generated by Ψ”.

Based on an argument similar to that of the classical PCA, we observe that the minimizer (µ̃, Γ̃)
of E(µ,Γ) satisfies the stationary equations

µ̃ =
n

∑
t=1

pt(µ̃, Γ̃)xt , (8)

Γ̃ = eigen(S(µ̃, Γ̃)), (9)

where

pt(µ,Γ) =
ψ(z(xt ,µ,Γ))

∑n
s=1 ψ(z(xs,µ,Γ))

,

S(µ,Γ) =
n

∑
t=1

pt(µ,Γ)(xt −µ)(xt −µ)T, (10)

with ψ(z) = (∂/∂z)Ψ(z). Thus, the equilibrium point (µ̃, Γ̃) is expressed by the weighted mean
and the covariance matrix, where the weight function pt depends upon µ̃ and Γ̃, except for the
case of ψ(z) = 1, which yields the classical procedure. In effect, (8) is determined only up to the
addition of a vector in the subspace associated with Γ̃. Thus µ∗ = µ̃ + γ is also a solution of (8)
if γ ∈ Im(Γ̃) ≡ {Γ̃c|c ∈ Rk}, because µ∗ + Im(Γ̃) = µ̃ + Im(Γ̃). However, (9) is independent of the
choice of possible solutions, so we adopt the expression (8) for convenience.

In PCA research, centralization of input data by a vector other than a sample mean has not
been considered. In the present paper, we investigate the problem of centralization and explore the
usefulness of a method using a vector such as (8). In conventional robust statistics, the estimation
of location has been studied extensively. (See, for example, Huber, 1981.) Our estimator µ̃ can be
viewed as one of several variants for robust estimation. However, our main objective concerning µ̃
is not the location estimation itself, but rather the data centralization for the extraction of principal
components. Thus, µ̃ is naturally linked to Γ̃ in the optimization of E(µ,Γ).

For a batch of data {xt : 1 ≤ t ≤ n}, we propose a fixed-point algorithm. See Hyvarinen and Oja
(1997) for the related discussion on a fixed-point algorithm for ICA. This algorithm alternates two
steps associated with the stationary equations (8) and (9) in the following:

Step 1: Given (µ1,Γ1), calculate

p(1)
t =

ψ(z(xt ,µ1,Γ1))

∑n
s=1 ψ(z(xs,µ1,Γ1))

.

Step 2: Using the estimated {p(1)
t } in step 1, perform the same task as in the classical PCA:

µ2 =
n

∑
t=1

p(1)
t xt and

Γ2 = eigen(S(1)), (11)

where S(1) is a weighted matrix defined by ∑ p(1)
t (xt − µ2)(xt − µ2)

T. In this way, the algorithm
alternates between two steps, and we refer to this as the reweighted matrix (RM) algorithm.
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Assuming hereafter that the generic function Ψ(z) is strictly concave in z, we have

E(µ2,Γ2)−E(µ1,Γ1) <
∑n

t=1 ψ(z(xt ,µ1,Γ1))

n
{

n

∑
t=1

p(1)
t z(xt ,µ2,Γ2)−

n

∑
t=1

p(1)
t z(xt ,µ1,Γ1)}

because, by assumption, Ψ(z2)−Ψ(z1) < ψ(z1)(z2 − z1) for z1 < z2. In step 2, the procedure is
equivalent to minimization of

∑ p(1)
t z(xt ,µ,Γ)

with respect to (µ,Γ). Therefore, we conclude that the RM algorithm generated by {(µ j,Γ j) : j ≥ 1}
is responsible for the strict decrease of the objective function

E(µ1,Γ1) > · · · > E(µ j,Γ j) > · · · .

This desirable property is mathematically the same as that of the EM algorithm. The possible region
of (µ,Γ) that the algorithm works in is X ×Op,k, where X is the convex hull of data and Op,k is the
space of p× k orthonormal matrices. We can easily check a condition for the convergence to the
solution of the equations such that a set

{(µ,Γ) ∈ X ×Op,k : E(µ,Γ) ≤ c}

is compact for any fixed c ≤ E(µ1,Γ1). This is referred to as the regularity condition of Wu (1983),
found in §3.4.2 of McLachlan and Krishnan (1997), and this condition implies that the sequence
{(µ j,Γ j) : j ≥ 1} is convergent to a set of solutions of equations (8) and (9). However, even when
this regularity condition holds, the computational complexity with high dimensional data may be
prohibitive since each iteration requires the solution of (11).

2.1 Stability of On-line Gradient Algorithm

We next discuss the on-line gradient algorithm. The gradient vector of the objective function is the
sum of

G(µ,Γ)(xt) = ψ(z(xt ,µ,Γ))G1(µ,Γ)(xt)

over t = 1,2, · · ·, where

G1(µ,Γ)(x) =

[

x−µ
(x−µ)(x−µ)TΓ−Γ LT [yyT]

]

with y = ΓT(x−µ), where the operator LT [·] sets all of the elements above the diagonal of its matrix
argument to zero. Hence, the on-line gradient algorithm is given by

[

µt+1
Γt+1

]

=

[

µt
Γt

]

+ rtG(µt ,Γt)(xt) (12)

for t = 1,2, · · · with a learning rate rt . If we apply the classical procedure this algorithm reduces
to the Oja algorithm (1982). See §8 in Haykin (1999) for the related algorithmic developments
in PCA. The gradient algorithm (12) is different from the Oja algorithm only with respect to the
factor ψ(z), which depends on the t-step (µt ,Γt) and the t-th example xt through z = z(xt ,µt ,Γt)
defined in (3). In the classical procedure, the µ-part of the algorithm (12) reduces to the usual
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centralization and has no connection to Γ. However, in the case of a non-constant weight function
ψ(z), the µ-part is essentially connected not only to µ itself, but also to Γ through the z-variable.
For the case of non-constant ψ(z), we confine ourselves to the Xu-Yuille rule, which is generated
by ψ1(z) = β/(1 + eβ(z−η)). Xu and Yuille implemented the on-line algorithm in the same fashion
as (12) for the Γ-part, but the centralizing mean µ̄ was used for the µ-part. We will make a simple
comparison between the two methods for the µ-part in a subsequent discussion.

The on-line gradient algorithm does not satisfy the property of uniform decrease of the objective
function possessed by the reweighted algorithm as shown above. We first discuss the asymptotic
convergence of (12) for the case of k = 1, Γ = γ. See §8.4 in Haykin (1999) for the proof for the
classical procedure. The on-line gradient algorithm (12) is a special case of the generic stochastic
approximation algorithm

[

µt+1
γt+1

]

=

[

µt
γt

]

+ rth(γt ,µt ,xt), (13)

where

h(γ,µ,x) = ψ(z(x,µ,γ))
[

x−µ
(x−µ)(x−µ)Tγ−{γT(x−µ)(x−µ)Tγ}γ

]

.

If ψ(z) ≡ 1, then (13) leads to the classical PCA. It is assumed that ψ is a finite function, so the
convergence is proved using an argument similar to that used in the case of classical PCA.

Take the expectation of h(γt ,µt ,xt) over x, and then in the limit we have

h̄(γ∞,µ∞) = lim
t→∞

E[h(γt ,µt ,xt)]

=

[

m(γ∞,µ∞)−κ(γ∞,µ∞)µ∞
R(γ∞,µ∞)γ∞ −{γT

∞R(γ∞,µ∞)γ∞}γ∞

]

,

where
κ(γ,µ) = E{ψ(z(x,µ,γ))}, m(γ,µ) = E{ψ(z(x,µ,γ))x}

and
R(γ,µ) = E[ψ(z(x,µ,γ))(x−µ)(x−µ)T].

Thus, our differential equation is

d
dt

[

µt
γt

]

= h̄(γt)

=

[

m(γt ,µt)−κ(γt ,µt)µt
R(γt ,µ∞)γt −{γT

t R(γt ,µ∞)γt}γt

]

. (14)

In the µ-part, we observe that µt behaves asymptotically as e−κ∞ta + m∞/κ∞, which implies that
m∞/κ∞ is the stable-point, where κ∞ = κ(γ∞,µ∞) and m∞ = m(γ∞,µ∞). Therefore, we consider only

d
dt

γt = R(γt ,µ∞)γt −{γtR(γt ,µ∞)γt}γt .

We expand γt in terms of the set of eigenvectors {qk(∞) : k = 1, · · · , p} of R(γ∞,µ∞) with the domi-
nant eigenvector q1(∞) as follows:

γt = ∑θk(t)qk(∞),
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Let us decompose h̄(γ) into h̄1(γ,γ∞)+ h̄2(γ,γ∞), where

h̄1(γ,γ∞) = R(γ∞,µ∞)γ−{γTR(γ∞,µ∞)γ}γ
h̄2(γ,γ∞) = {R(γ,µ∞)−R(γ∞,µ∞)}γ (15)

−[γT{R(γ,µ∞)−R(γ∞,µ∞)}γ]γ.

Then the equilibrium condition h̄1(γ∞,γ∞) = 0 implies that γ∞ reduces to one of k eigenvectors of
R(γ∞,µ∞); h̄2(γ∞,γ∞) = 0 holds identically. The differential equation

d
dt

γt = h̄1(γt ,γ∞)

has an asymptotically stable point q1(∞) through the same discussion established in §8.4 in Haykin
(1999). Hence the differential equation (14) leads to stable convergence to q1(∞).

Secondly, we observe that the case of k principal component vectors also satisfies the stable
convergence, noting that our differential equation is

d
dt

Γt = R(Γt ,µ∞)Γt −LT [ΓT
t R(Γt ,µ∞)Γt ]Γt ,

where
R(Γ,µ) = E{ψ(z(x,µ,Γ))(x−µ)(x−µ)T}.

In effect, the RM algorithm is applicable to on-line data by solving the eigen problem for batch
data with a new observation incorporated in each step. The computational burden is quite heavy
relative to the on-line gradient algorithm, but we will pursue more rapid convergence property in a
simulation study.

In the statistical literature another type of PCA methods has been proposed by minimizing

1
n

n

∑
t=1

Ψ(d(xt ,µ,V ))

with respect to (µ,V ), where d is Mahalanobis squared distance, that is,

d(xt ,µ,V ) =
1
2
(xt −µ)TV−1(xt −µ).

See Campbell(1980), Devlin et al. (1981), Caussinus and Ruiz (1990), and Croux and Haesbroeck
(2000). The use of the nonlinear generic function Ψ is the same, but the essential difference is that
our method aims at estimating the principal component vectors rather than estimating the scatter
matrix V . One advantage of our method is that it does not need all the information of V . In fact only
the first k dominant eigenvalues and the corresponding eigenvectors are needed in the algorithm,
which is easily implemented by the singular-value decomposition algorithm even if the data set is
of high dimension.

3. Robustness of the Proposed Principal Component Vectors

Data analysts have frequently found that the classical PCA breaks down in the presence of outliers.
It can happen that a single outlier changes the principal component subspace into the orthogonal
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complement. As a result, the PCA fails to capture an important feature of the bulk of the data,
which will be observed from a simple simulation study in Section 5. In the statistical literature, the
robustification of the classical likelihood-based procedures has been discussed and well established:
see Huber (1981) for some notions on robustness. Such contamination is typically expressed by the
ε -contamination model,

(1− ε)N(µ,V )(x)+ εδξ(x),

with the point-mass distribution δξ as discussed in the Introduction. In the expression, ε is unde-
tectably small; nevertheless, the likelihood procedure based on the density function of N(µ,V ) may
sometimes break down for an extreme vector ξ. We next explore which first principal component
vector or principal subspace is robust against outliers in our class. First, we consider the case of the
first principal component vector, or k = 1. In Higuchi and Eguchi (1998), the influence function of
the Xu and Yuille rule defined by Ψ1 in (6) is given by

IFΨ1(ξ) = −ψ1(z(ξ,µ,γ1))γ̃
T
1 (ξ−µ)

p

∑
j=2

λ̂ j γ̃T
j (ξ−µ)

λ̃ j(λ̂ j − λ̂1)
γ̃ j,

where (λ̂ j, γ̂ j) is the pair of the j-th dominant eigenvalue and its associated eigenvector of S defined

at (4) and (λ̃ j, γ̃ j) is that of S(µ,Γ) defined at (10), and

ψ1(z) =
∂Ψ1(z)

∂z
=

β
1+ exp{β(z−η)} . (16)

The influence function assesses the effect on the principal component subspace of the contami-
nation of the data {xt |1 ≤ t ≤ n} by the outlier ξ.

Secondly, we discuss a general case of k principal component vectors Γ = (γ1, . . . ,γk). We
consider the matrix

P = ΓΓT.

The matrix P is the projection operator onto the subspace spanned by the eigenvectors γI , see Tanaka
(1988). Our estimator P̃ = Γ̃Γ̃T has the influence function

IFΨ1(ξ; P̃) = −ψ1(z(ξ, µ̃, Γ̃))∑
λ̂ j γ̃I

T(ξ− µ̃)(ξ− µ̃)Tγ̃ j

λ̃ j(λ̂ j − λ̂I)
(γ̃I γ̃

T
j + γ̃ j γ̃

T
I ), (17)

where the summation is taken over {(I, j) : I = 1, · · · ,k, j = 1, · · · , p, I 6= j}, and we will also use
this summation convention in a subsequent discussion.

The formula is valid for the minimum psi principle for a general Ψ, see Kamiya and Eguchi
(2001) for a detailed discussion, as well as a discussion of relative efficiency under a Gaussian
distribution. The influence function, as a function of ξ, assesses the smoothness of the principal
component subspace around the supposed distribution N(µ,V ). The boundedness of the influence
function in ξ qualitatively guarantees robustness for the target principal component subspace.

In PCA, µ needs to be estimated in order to centralize the data before extracting the principal
component subspace. This is usually estimated as ∑xt/n, which can be expressed in the form of a
functional

∫

xdF(x) with F = Fn (empirical distribution). This usual estimation is Fisher consistent
since

∫

xdF(x) = µ when F = N(µ,V ), but is quite sensitive to the outlier ξ, since the functional
evaluated at F is (1− ε)µ+ εξ, and so the influence function is ξ−µ. In contrast, we will show that
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our PCA procedure automatically leads to a robust centralization of data. We typically observe an
unbounded case for the usual principal component subspace, and a bounded case for Xu and Yuille’s
principal component subspace.

The boundedness of IFΨ conditional on

‖Γ̃T(ξ− µ̃)‖2 ≤ d2 (18)

with a positive constant d guarantees robustness against any outliers ξ satisfying (18) in the con-
tamination model, cf. Higuchi and Eguchi (1998) for the justification for this robustness. Using the
formula (17) with general Ψ, we find a sufficient condition for the robustness

sup
z>0

√
zψ(z) < ∞ (19)

with ψ(z) = ∂Ψ(z)/∂z. The proof is given as follows. First, we obtain

‖IFΨ(ξ; P̃)‖ ≤ ψ(z(ξ, µ̃, Γ̃))∑
∣

∣

∣

∣

∣

λ̂ j γ̃I
T(ξ− µ̃)(ξ− µ̃)Tγ̃ j

λ̃ j(λ̂ j − λ̂I)

∣

∣

∣

∣

∣

‖γ̃I γ̃
T
j + γ̃ j γ̃

T
I ‖

≤ d ∑
∣

∣

∣

∣

∣

λ̂ j‖γ̃I γ̃
T
j + γ̃ j γ̃

T
I ‖

λ̃ j(λ̂ j − λ̂I)

∣

∣

∣

∣

∣

|(ξ− µ̃)Tγ̃ j|ψ(z(ξ, µ̃, Γ̃))

from the assumption of (18). Since

z(ξ, µ̃, Γ̃) =
1
2

p

∑
j=k+1

{γ̃T
j (ξ− µ̃)}2 ≥ 1

2
{γ̃T

j (ξ− µ̃)}2

for any j, k +1 ≤ j ≤ p by the definition of z at (3), we obtain

‖IFΨ(ξ; P̃)‖ ≤ ∑
∣

∣

∣

∣

∣

λ̂ j‖γ̃I γ̃
T
j + γ̃ j γ̃

T
I ‖

λ̃ j(λ̂ j − λ̂I)

∣

∣

∣

∣

∣

(

d
√

2
√

z(ξ, µ̃, Γ̃)ψ(z(ξ, µ̃, Γ̃))+d2ψ(z(ξ, µ̃, Γ̃))

)

.

Finally, we conclude that

‖IFΨ(ξ; P̃)‖ ≤C

(

d
√

2sup
z>0

√
zψ(z)+d2 sup

z>0
ψ(z)

)

for any outlier ξ in Rp satisfying (18), where

C = ∑
∣

∣

∣

∣

∣

λ̂ j‖γ̃I γ̃
T
j + γ̃ j γ̃

T
I ‖

λ̃ j(λ̂ j − λ̂I)

∣

∣

∣

∣

∣

.

Therefore, the condition (19) for Ψ leads to the boundedness of the influence function IFΨ condi-
tional on the condition (18).
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Fig. 1. Graphs of       for several tuning parameters.ϕ
Figure 1: Graphs of φ for several tuning parameters.
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4. Adaptive Selection for Tuning Parameters

Let α be a parameter in the generic function Ψ which defines our objective function (5). In this
section, we focus on the role of the tuning parameter α. The performance of PCA by the proposed
method generated by Ψα depends on the value of the tuning parameter α. As shown in (6) and (7),
the generic function Ψ1 involves tuning parameters β and η, and Ψ2 involves β.

Thus, generic functions control the sensitivity to outliers by these tuning parameters. See Fig-
ure 1 for the graphs of the derivatives ψ1 and ψ2 of Ψ1 and Ψ2 for several tuning parameters.

The generic function Ψ1 where η → ∞ or β → 0 yields the classical PCA. If we exactly assume
Gaussian distribution, or ε = 0 in (1), then the classical PCA or ψ(z) ≡ 1, is recommended as the
standard method. See Kamiya and Eguchi (2001) for a detailed discussion. This suggests that under
the situation in which ε 6= 0, there exists an optimal selection for tuning parameters giving a generic
function other than ψ(z) ≡ 1.

We propose herein a method of determining tuning parameters as in (6) and (7), based on K-fold
cross-validation. See Subsection 7.10 in Hastie et al. (2001) for the detailed discussion. Throughout
the section, we focus on batch data.

Let F(x) be a data distribution which is assumed to generate input data x. Then, we adopt a
generalization error function for assessing the performance of a given µ̂ and Γ̂ using

L(θ̂,F) =
∫

· · ·
∫

Ψ0(z(x, µ̂, Γ̂))dF(x)

where

Ψ0(z) = log
1

1+ exp{−β0(z ·η0)}
with α0 = (β0,η0) = (50,10). This choice of the error function is intended to achieve mild robust-
ness to outliers. This is because we cannot obtain a sensible result if the error function itself is
sensitive to outliers. The empirical error function is

Lemp(θ̂) =
1
n

n

∑
t=1

Ψ0(z(xt , µ̂, Γ̂))

for given data {x1, . . . ,xn} and would be unchanged by data contamination if (µ̂, Γ̂) is a robust
estimator. The choice of β0 is universal, but that of η0 should be adaptive. For example, the median
of ‖xI − µ̄‖ with the usual centralizing vector µ̄ as a default value. Given a class of estimatorŝθα
by the generic function Ψα with the tuning parameter α, for example α = (β,η) in (6) or (7), we
attempt to estimate the expected loss function, or the risk function associated with an estimator θ̂α,
which is essentially

R(θ̂α,F) = EF{L(θ̂α,F)},
where EF denotes the mathematical expectation when input data x1, · · · ,xn follow from the under-
lying distribution F .

Here we provide a method of selecting α∗ which generates θ̂α∗ with good performance. We use
K-fold validation to get a estimator of the generalization error L(θ̂α,F). Here, we divide the data set

D = {x1, . . . ,xn} into K subsets {Dk = {x(k)
1 , . . . ,x(k)

nk } : k = 1, · · · ,K} and so D =
⋃K

k=1 Dk. Define

CV (α) =
1
K

K

∑
k=1

L(k)
emp(θ̂

(−k)
α ),
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where θ̂(−k)
α is the estimator based on the data set

⋃

k′ 6=k Dk′ and

L(k)
emp(θ) =

1
nk

nk

∑
I=1

L(x(k)
I ,θ).

In this way, the estimator θ̂α and Dk are statistically independent, which implies elimination of the
bias in the empirical error Lemp(θ̂α). In this formulation, we now define the optimal α∗ by

α∗ = argmin
α

CV (α).

We will explore the performance of this selection method for synthetic data situations.

5. Simulation Study

We explore the robustness of our class of principal component subspaces in numerical experiments,
focusing on the classical rule (ψ(z) = 1), the Xu-Yuille rule and the Gaussian kernel rule defined in
(7). For our simulation study, we consider the following three types of outlier distributions H in the
ε-contamination model defined by (1):

(i) Deterministic contamination: a sum of point-mass distributions at x = ξ j for j = 1, · · · ,M.

(ii) Structural contamination: the same Gaussian distribution N(µ1,V1), but with the structure in
µ1 and V1 being quite different from with that in µ and V , that is to say, ‖µ1−µ‖ or tr(V1−V )2

is substantially large.

(iii) Distributional contamination: the same structure as in (µ,V ) but the distribution is totally
different from the Gaussian distribution N(µ,V ).

First, we investigate the case in which ε is undetectably small, for example we take ε = 0.03.
We have performed a numerical study for the behavior of our procedure for seven-dimensional
data in the following setting: µ = (0, · · · ,0)T,V = diag(5,2,3,1,0.5,0.5,0.5). As for (i), ξ1 =
(0,0,0,0,0,0,b), ξ2 = (0,0,0,0,0,b,0) with a probability 0.5 for each.
In (ii) the distribution H is a Gaussian distribution with

µ1 = (1, · · · ,1)T,V1 = diag(0.5,2,3,1,0.5,0.5,0.5).

In (iii) the outlier, ξ has a distribution H of Cauchy-type of which the location-scatter structure
is the same as (µ,V ), that is, all the components of V− 1

2 (ξ− µ) are independently and identically
distributed according to a standard Cauchy distribution with density function 1/(π(1+ x2)).

We observe in a series of simulations in the above setting that the classical procedure (ψ(z) = 1)
breaks down for a batch of data with most observations from N(µ,V ) and a few outliers from H. The
first principal component vector extracted only from the 98 simulated vectors is completely changed
into the space of minor components after mixing with two outliers. In our experience, PCA has
never been weakly perturbed by outlier contamination under the situation of setting (i) with a small
b. Whether the classical PCA resists or completely breaks down against outliers is determined by
b. If b ranges from 14 to 16, the breakdown occurs with about 50 percent proportion. If input data
are simulated by setting (iii), then the classical PCA tends to break down with a higher frequency of
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Figure 2: The plot of inner product of the PC vectors with/without outliers against β and η.

occurrence than for setting (ii). In almost all of the cases of setting (iii), the PCA breaks down. Thus,
we observe that the distributional contamination is more severe than the structural contamination
for the classical PCA.

We confine ourselves to a typical case of input vectors from the structural contamination. We
obtained 270 input vectors of 200-dimension from N(µ,V ), where

µ = (0, · · · ,0)T, V = diag(10,9,8,7,6,5,4,3,2,1,0.5, · · · ,0.5),

and 30 outliers from N(µ1,V1), where

µ1 = (1, · · · ,1)T, V1 = diag(1,9,8,7,6,5,4,3,2,1,1,1, · · · ,1),

and observed that the inner product of the first principal component vectors based on the data of 270
vectors and on the data added to 30 outliers is 0.678 when using the classical PCA. On the other
hand the inner product is 0.999 using procedure defined by (16) with β = 0.5 and η = 130. The RM
algorithm is started with the initial vector γ = (1/

√
200, · · · ,1/

√
200)T and µ = (0, · · · ,0), which

assigns less weight to the 30 outliers after 10 iterations.
In this procedure, we heuristically choose the tuning parameters β and η. We observe in Figure 2

that the performance is not so sensitive to the choice of β if η < 145. In the subsequent simulation,
we will investigate the data-adaptive selection for tuning parameters using the 10-fold CV method
in Section 4.

Secondly, we investigate the case in which ε is fairly large. Hence, we take ε = 0.5, which can
be viewed as the worst case in our context. We focus on the case of structural contamination with
the same setting as that with ε = 0.03. The situation is really an extreme case, and is beyond the
usual context of outlier detection. Thus, we have several simulations involving this situation as the
first step, as seen in Figure 3. A typical result gives 0.101 as the inner product between the first
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Figure 3: The plot of 50 observations and 50 outliers in the minor subspace.

principal component vectors with and without 50 outliers by the classical procedure. Alternatively
our procedure gives 0.833, so we see that the procedure can detect a more sensible direction vector
than the classical procedure. The proposed procedure detects the heterogeneity of structure, as
indicated in Figure 4. If we have more information on the contamination or outlying structure,
then we can build a shaper model for the outlier distribution. For example, we might suggest a
two component Gaussian mixture model and estimate the structure in a more complete situation via
the EM algorithm. However, to expect exact information on the outliers is often unrealistic in the
present situation.

We apply the RM algorithm to on-line input vectors for comparison with the gradient learning
algorithm. For the simulation study, we assume a specific form of model (ii) with ε = 0.1 and
Gaussian density with µ = 0, µ1 = (30,0,0,0,30)T, V = diag(9,7,5,3,1), and V1 = diag(1,1,3,3,5).
Thus, the true principal component vector of V is (1,0,0,0,0) in the simulation design. We observe
that the RM algorithm is stable and attains rapid convergence from these on-line input vectors.
However, the computational burden is much heavier than the on-line gradient algorithm, as shown
in Figure 5.

We next investigate the numerical performance of the 10-fold CV method discussed in Section
4 under the model of the structural contamination as follows: 45 input vectors are simulated from
a Gaussian density N(0,diag(9,7,5,3,1)) and five outliers from N((0,0,0,0,10),diag(9,7,5,3,1)).
We observe that the 10-fold CV method has detected the optimal tuning parameter η = 46, as shown
in Figures 6 (1) and (2), while the PCA is much less sensitive to β than to η, so we fix the optimal
tuning parameter as β = 1.
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Figure 4: The plot of the weight function of ψ over 50 data with 50 outliers.

We propose a robust procedure for centralization of the data in (12). In the neural networks liter-
ature, such a variant for centralizing data has been ignored until now. Using the usual centralization
is correct if all of the data are generated from Gaussian distribution. This is because the mean vector
and covariance matrix are orthonormal as parameters, so that any influence on the principal vectors
is independent of that on the mean vector. However, if the data in the mean vector are structured,
this sometimes has a significant impact on the PCA. Here we consider a simple simulation study for
investigating the difference between two procedures defined by adopting the weighted sample mean
vector µ̂ in the RM algorithm and the sample mean vector µ̄ in classical PCA as the centralizer.
We generate 180 observations from a Gaussian density N(0,V ) with V = diag(9,7,5,3,1) and 20
outliers from N((0,0,20,0,0)T,V ). Figure 7 shows the two-dimensional score plot produced by the
classical PCA based on only the 180 observations without any outliers, where the horizontal axis
is taken as taken exactly as the first principal component vector. We observe that the first principal
component vector by µ̂-centralization yields a proper direction.

6. Discussion

We have discussed a class of procedures for PCA based on the generic functions Ψ. The derivative
ψ gives a weight expressing the degree of confidence for each input vector being an outlier. The
robust procedure for the PCA gives less weights to input vectors having long residual vectors when
projected onto the principal component subspace. We emphasis that the µ-portion is defined to be
a weighted mean with the same weights as in the Γ-portion while the usual PCA employs the naive
centralization with constant weights.
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Fig. 5. The inner products of the true vector (1,0,0,0) and the PC vectors by
RM, Xu-Yuille gradient, the classical gradient and classical matrix algorithms.Figure 5: The inner products of the true vector (1,0,0,0) and the PC vectors by RM, Xu-Yuille

gradient, the classical gradient and classical matrix algorithms.

Our major point is the adaptive selection of a set of tuning parameters which control the degree
of robustification. In empirical studies, we observe that the robustness performance is sensitive to
the selection of tuning parameters. K-fold cross validation properly gives the adaptive selection for
tuning parameters in accordance with data. However the selection method is done only for batch
data but it cannot be applied to on-line data, which we must post as a future research. The RM
algorithm needs the evaluation of eigenvalues and eigenvectors of the full matrix. In this respect it
requires heavy computational burdens, whereas the convergence is stable and rapid relative to the
gradient algorithm. The RM algorithm must be improved when the dimension of the input vector is
considerably high. There is room for improvement in solving the k-dominant eigenvectors from a
computational point of view.

Another interesting issue would be the breakdown point of the method proposed in the present
paper as a global measure of robustness. In the previous literature the breakdown point has been
considered as estimation of covariance (scatter) matrix other than estimation of principal component
vector. However our method does not directly fit the theory since the method is not only a function
of covariance matrix. We will need more discussion for this problem to be challenged as a future
problem.
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