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Abstract

Haussler, Kearns, Seung and Tishby introduced the notion of a shell decomposition of the union
bound as a means of understanding certain empirical phenomena in learning curves such as phase
transitions. Here we use a variant of their ideas to derive an upper bound on the generalization
error of a hypothesis computable from its training error and the histogram of training errors for
the hypotheses in the class. In most cases this new bound is significantly tighter than traditional
bounds computed from the training error and the cardinality of the class. Our results can also be
viewed as providing a rigorous foundation for a model selection algorithm proposed by Scheffer
and Joachims.
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1. Introduction

For an arbitrary finite hypothesis class we consider the hypothesis of minimal training error. We
give a new upper bound on the generalization error of this hypothesis computable from the training
error of the hypothesis and the histogram of the training errors of the other hypotheses in the class.
This new bound is typically much tighter than more traditional upper bounds computed from the
training error and cardinality of the class.

As a simple example, suppose that we observe that all but one empirical error in a hypothe-
sis space is 1/2 and one empirical error is 0. Furthermore, suppose that the sample size is large
enough (relative to the size of the hypothesis class) that with high confidence we have that, for all
hypotheses in the class, the true (generalization) error of a hypothesis is within 1/5 of its training
error. This implies, that with high confidence, hypotheses with training error near 1/2 have true
error in [3/10,7/10]. Intuitively, we would expect the true error of the hypothesis with minimum
empirical error to be very near to 0 rather than simply less than 1/5 because none of the hypothe-
ses which produced an empirical error of 1/2 could have a true error close enough to 0 that there
exists a significant probability of producing 0 empirical error. The bound presented here validates
this intuition. We show that you can ignore hypotheses with training error near 1/2 in calculating
an “effective size” of the class for hypotheses with training error near 0. This new effective class
size allows us to calculate a tighter bound on the difference between training error and true error
for hypotheses with training error near 0. The new bound is proved using a distribution-dependent
application of the union bound similar in spirit to the shell decomposition introduced by Haussler
et al. (1996).
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We actually give two upper bounds on generalization error — an uncomputable bound and a
computable bound. The uncomputable bound is a function of the unknown distribution of true error
rates of the hypotheses in the class. The computable bound is, essentially, the uncomputable bound
with the unknown distribution of true errors replaced by the known histogram of training errors.
Our main contribution is that this replacement is sound, i.e., the computable version remains, with
high confidence, an upper bound on generalization error.

When considering asymptotic properties of learning theory bounds it is important to take limits
in which the cardinality (or VC dimension) of the hypothesis class is allowed to grow with the size
of the sample. In practice, more data typically justifies a larger hypothesis class. For example,
the size of a decision tree is generally proportional the amount of training data available. Here we
analyze the asymptotic properties of our bounds by considering an infinite sequence of hypothesis
classes Hm, one for each sample size m, such that ln |Hm|

m approaches a limit larger than zero. This
kind of asymptotic analysis provides a clear account of the improvement achieved by bounds that
are functions of error rate distributions rather than simply the size (or VC dimension) of the class.

We give a lower bound on generalization error showing that the uncomputable upper bound is
asymptotically as tight as possible — any upper bound on generalization error given as a function
of the unknown distribution of true error rates must asymptotically be greater than or equal to
our uncomputable upper bound. Our lower bound on generalization error also shows that there is
essentially no loss in working with an upper bound computed from the true error distribution rather
than expectations computed from this distribution as used by Scheffer and Joachims (1999).

Asymptotically, the computable bound is simply the uncomputable bound with the unknown
distribution of true errors replaced with the observed histogram of training errors. Unfortunately,
we can show that in limits where ln |Hm|

m converges to a value greater than zero, the histogram of
training errors need not converge to the distribution of true errors — the histogram of training
errors is a “smeared out” version of the distribution of true errors. This smearing loosens the bound
even in the large-sample asymptotic limit. We give a precise asymptotic characterization of this
smearing effect for the case where distinct hypotheses have independent training errors. In spite
of the divergence between these bounds, the computable bound is still significantly tighter than
classical bounds not involving error distributions.

The computable bound can be used for model selection. In the case of model selection we
can assume an infinite sequence of finite model classes H0,H1, ... where each H j is a finite class
with ln |H j| growing linearly in j. To perform model selection we find the hypothesis of minimal
training error in each class and use the computable bound to bound its generalization error. We can
then select, among these, the model with the smallest upper bound on generalization error. Scheffer
and Joachims propose (without formal justification) replacing the distribution of true errors with
the histogram of training errors. Under this replacement, the model selection algorithm based on
our computable upper bound is asymptotically identical to the algorithm proposed by Scheffer and
Joachims.

The shell decomposition is a distribution-dependent use of the union bound. Distribution-
dependent uses of the union bound have been previously exploited in so-called self-bounding al-
gorithms. Freund (1998) defines, for a given learning algorithm and data distribution, a set S of
hypotheses such that with high probability over the sample, the algorithm always returns a hypoth-
esis in that set. Although S is defined in terms of the unknown data distribution, Freund gives a way
of computing a set S′ from the given algorithm and the sample such that, with high confidence, S′

contains S and hence the “effective size” of the hypothesis class is bounded by |S′|. Langford and
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Blum (1999) give a more practical version of this algorithm. Given an algorithm and data distribu-
tion they conceptually define a weighting over the possible executions of the algorithm. Although
the data distribution is unknown, they give a way of computing a lower bound on the weight of the
particular execution of the algorithm generated by the sample at hand. In this paper we consider
distribution dependent union bounds defined independent of any particular learning algorithm.

The bounds given in this paper apply to finite concept classes. Of course more sophisticated
measures of the complexity of a concept class, such as VC dimension or Rademacher complexity,
are possible and can sometimes result in tighter bounds.

However, insight into finite classes remains useful in at least two ways. Finite class analysis is
useful as a pedagogical tool, teaching about directions in which to look for the removal of slack from
these more sophisticated bounds. Indeed, various localized Rademacher complexity results (Bartlett
et al., 2002) and the “peeling” technique (van de Geer, 1999) appear to (roughly) correspond to the
orthogonal combination of shell bounds and earlier Rademacher complexity results. One advantage
of the shell bounds is the KL-divergence form of the bounds which smoothly interpolates between
the linear bounds of the realizable case and the quadratic bounds of the unrealizable case. This
realizable-unrealizable interpolation is orthogonal to the shell principle that concepts with large
empirical error are unlikely to be confused with concepts with low error rate. The shell bound
also supports intuitions that are difficult to achieve in more complex settings. For example, the
simple shell bounds clearly exhibit phase transitions in the learning bound, something which does
not appear to be well-elucidated for localalized Rademacher bounds. In summary, the simplicity
of finite classes (and a shell bound analysis on a finite class) provides a clarity that is difficult to
achieve with more complex structure-exploiting bounds.

Finite class analysis is also useful in a more practical sense. In practice a finite VC dimension
class usually has a finite parameterization. Given that these real parameters are typically represented
as 32 bit floating point numbers, the class becomes finite and the log of the class size is linear in
the number of parameters. Since many of the more sophisticated infinite-class techniques are loose
by large multiplicative constants, a finite class analysis applied to a VC class discretized to a small
number of bits can actually yield tighter bounds as shown in Figure 1.

2. Mathematical Preliminaries

For an arbitrary measure on an arbitrary sample space we use the notation1 ∀δS Φ[S,δ] to mean
that with probability at least 1− δ over the choice of the sample S we have that Φ[S,δ] holds. In
practice S is the training sample of a learning algorithm. Note that ∀x ∀δS Φ[x, S, δ] does not imply
∀δS ∀x Φ[x, S, δ]. If X is a finite set, and for all x∈X we have the assertion ∀δ > 0 ∀δS Φ[S,x,δ] then
by a standard application of the union bound we have the assertion ∀δ > 0 ∀δS ∀x ∈ X Φ[S,x, δ

|X | ].

We call this the quantification rule. If ∀δ > 0 ∀δS Φ[S,δ] and ∀δ > 0 ∀δS Ψ[S, δ] then by a standard
application of the union bound we have ∀δ > 0 ∀δS Φ[S, δ

2 ]∧Ψ[S, δ
2 ]. We call this the conjunction

rule.

The KL-divergence of p from q, denoted D(q||p), is q ln( q
p)+(1−q) ln( 1−q

1−p) with 0ln( 0
p) = 0

and q ln( q
0) = ∞. Let p̂ be the fraction of heads in a sequence S of m tosses of a biased coin where

1. This can be read as “for all but δ sets S, the predicate Φ[S,δ] holds” or “with probability 1−δ over the draw of S, the
predicate Φ[S,δ] holds”.
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Figure 1: A graph comparing the (infinite hypothesis) VC bound to the finite hypothesis Occam’s
razor bound. For all curves we use VC dimension d = 10, bound failure probability, δ =
0.1, and m = 1000 examples. For the VC bound calculation (see Moore, 2004, for details)

the formula is true error ≤ train error +
√

(d ln 2m
d + ln 4

δ)/m. For the Occam’s Razor
Bound (see Langford, 2003, for details) calculation, we use a uniform distribution over
the 2kd discrete classifiers which might be representable when we discretize d parameters
to k = 8,16,32 bits per dimension. The basic formula is: KL(train error||true error) ≤
(kd ln2+ ln 1

δ)/m. This graph is approximatly the same for any similar ratio of d/m with
smaller values favoring the Occam’s Razor Bound.
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the probability of heads is p. We have the following inequality given by Chernoff (1952):

∀q ∈ [p,1] : Pr(p̂ ≥ q) ≤ e−mD(q||p). (1)

This bound can be rewritten as follows:

∀δ > 0 ∀δS D(max(p̂, p)||p) ≤
ln( 1

δ)

m
. (2)

To derive (2) from (1) note that Pr(D(max(p̂, p)||p) ≥
ln( 1

δ )

m ) equals Pr(p̂ ≥ q) where q ≥ p and

D(q||p) =
ln( 1

δ )

m . By (1) we then have that this probability is no larger than e−mD(q||p) = δ. It is just
as easy to derive (1) from (2) so the two statements are equivalent. By duality, i.e., by considering
the problem defined by replacing p by 1− p, we get

∀δ > 0 ∀δS D(min(p̂, p)||p) ≤
ln( 1

δ)

m
. (3)

Conjoining (2) and (3) yields the following corollary of (1):

∀δ > 0 ∀δS D(p̂||p) ≤
ln( 2

δ)

m
. (4)

Using the inequality D(q||p) ≥ 2(q− p)2 one can show that (4) implies the better known form of
the Chernoff bound

∀δ > 0 ∀δS |p− p̂| ≤

√

ln( 2
δ)

2m
. (5)

Using the inequality D(q||p) ≥ (p−q)2

2q , which holds for q ≤ p, we can show that (3) implies the

following:2

∀δ > 0 ∀δS p ≤ p̂+

√

2p̂ ln( 1
δ)

m
+

2ln( 1
δ)

m
. (6)

Note that for small values of p̂ formula (6) gives a tighter upper bound on p than does (5). The
upper bound on p implicit in (4) is somewhat tighter than the minimum of the bounds given by (5)
and (6).

We now consider a formal setting for hypothesis learning. We assume a finite set H of hypothe-
ses and a space X of instances. We assume that each hypothesis represents a function from X to
{0,1} where we write h(x) for the value of the function represented by hypothesis h when applied
to instance x. We also assume a distribution D on pairs 〈x, y〉 with x ∈ X and y ∈ {0,1}. For any
hypothesis h we define the error rate of h, denoted e(h), to be P〈x, y〉∼D(h(x) 6= y). For a given

sample S of m pairs drawn from D we write ê(h) to denote the fraction of the pairs 〈x, y〉 in S such
that h(x) 6= y. Quantifying over h ∈ H in (4) yields the following second corollary of (1):

∀δS ∀h ∈ H D(ê(h)||e(h)) ≤
ln |H |+ ln( 2

δ)

m
. (7)

2. A derivation of this formula can be found in Mansour and McAllester (2000) or McAllester and Schapire (2000). To
see the need for the last term consider the case where p̂ = 0.
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By considering bounds on D(q||p) we can derive the more well known corollary of (7),

∀δS ∀h ∈ H |e(h)− ê(h)| ≤

√

ln |H |+ ln( 2
δ)

2m
. (8)

These two formulas both limit the distance between ê(h) and e(h). In this paper we work with (7)
rather than (8) because it yields an (implicit) upper bound on generalization error that is optimal up
to asymptotic equality.

3. The Upper Bound

Our goal now is to improve on (7). Our first step is to divide the hypotheses in H into m disjoint
sets based on their true error rates. More specifically, for p ∈ [0,1] define ddpee to be max(1,dmpe)

m .
Note that ddpee is of the form k

m where either p = 0 and k = 1 or p > 0 and p ∈ ( k−1
m , k

m ]. In either
case we have ddpee ∈ { 1

m , . . . , m
m} and if ddpee = k

m then p ∈ [ k−1
m , k

m ]. Now we define H ( k
m) to be

the set of h ∈ H such that dde(h)ee = k
m . We define s( k

m) to be ln(max(1, |H ( k
m)|)). We now have

the following lemma.

Lemma 3.1 With high probability over the draw of S, for all hypotheses, the deviation between
the empirical error ê(h), and true error e(h), of every hypothesis is bounded by s(dde(h)ee). More
precisely,

∀δ > 0 ∀δS ∀h ∈ H ,

D(ê(h)||e(h)) ≤
s(dde(h)ee)+ ln( 2m

δ )

m
.

Proof Quantifying over p ∈ { 1
m , . . . , m

m} and h ∈ H (p) in (4) gives ∀δ > 0, ∀δS, ∀p ∈ { 1
m , . . . , m

m},
∀h ∈ H (p),

D(ê(h)||e(h)) ≤
lns(p)+ ln( 2m

δ )

m
.

But this implies the lemma.

Lemma 3.1 imposes a constraint, and hence a bound, on e(h). More specifically, we have the
following where lub {x : Φ[x]} denotes the least upper bound (the maximum) of the set {x : Φ[x]}:

e(h) ≤ lub {q : D(ê(h)||q) ≤
s(ddqee)+ ln( 2m

δ )

m
}. (9)

This is our uncomputable bound. It is uncomputable because the m numbers s( 1
m), . . ., s(m

m) are
unknown. Ignoring this problem, however, we can see that this bound is typically significantly
tighter than (7). More specifically, we can rewrite (7) as

e(h) ≤ lub {q : D(ê(h)||q) ≤
ln |H |+ ln( 2

δ)

m
}. (10)

Since s( k
m)≤ ln |H |, and since lnm

m is small for large m, we have that (9) is never significantly looser
than (10). Now consider a hypothesis h such that the bound on e(h) given by (7), or equivalently,
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(10), is significantly less than 1/2. Assuming m is large, the bound given by (9) must also be
significantly less than 1/2. But for q significantly less than 1/2 we typically have that s(ddqee) is
significantly smaller than ln |H |. For example, suppose H is the set of all decision trees of size
m/10. For large m, a random decision tree of this size has error rate near 1/2. The set of decision
trees with error rate significantly smaller than 1/2 is an exponentially small fraction of the set of
all possible trees. So for q small compared to 1/2 we get that s(ddqee) is significantly smaller than
ln |H|. This makes the bound given by (9) significantly tighter than the bound given by (10).

We now show that the distribution of true errors can be replaced, essentially, by the histogram
of training errors. We first introduce the following definitions:

Ĥ
(

k
m

,δ
)

≡







h ∈ H :

∣

∣

∣

∣

ê(h)−
k
m

∣

∣

∣

∣

≤
1
m

+

√

ln( 16m2

δ )

2m−1







,

ŝ

(

k
m

, δ
)

≡ ln

(

max

(

1, 2

∣

∣

∣

∣

Ĥ
(

k
m

, δ
)∣

∣

∣

∣

))

.

The definition of ŝ
(

k
m , δ

)

is motivated by the following lemma.

Lemma 3.2 With high probability over the draw of S, for all q, s(q) ≤ ŝ(q,2δ). More precisely,
∀δ > 0, ∀δS, ∀q ∈ { 1

m , . . . , m
m},

s(q) ≤ ŝ(q, 2δ).

Before proving Lemma 3.2 we note that by conjoining (9) and Lemma 3.2 we get the following.
This is our main result.

Theorem 3.3 With high probability over the draw of S, for all hypotheses, the deviation between
the empirical error ê(h), and true error e(h), of every hypothesis is bounded by ŝ(ddqee,δ). More
precisely,

∀δ > 0, ∀δS, ∀h ∈ H ,

e(h) ≤ lub

{

q : D(ê(h)||q) ≤
ŝ(ddqee, δ)+ ln( 4m

δ )

m

}

.

As for Lemma 3.1, the bound implicit in Theorem 3.3 is typically significantly tighter than the
bound in (7) or its equivalent form (10). The argument for the improved tightness of Theorem 3.3
over (10) is similar to the argument for (9). More specifically, consider a hypothesis h for which
the bound in (10) is significantly less than 1/2. Since ŝ(ddqee, δ) ≤ ln |H |, the set of values of q
satisfying the condition in Theorem 3.3 must all be significantly less than 1/2. But for large m we

have that
√

ln(16m2/δ)
2m−1 is small. So if q is significantly less than 1/2 then all hypotheses in Ĥ (ddqee,δ)

have empirical error rates significantly less than 1/2. But for most hypothesis classes, e.g., decision
trees, the set of hypotheses with empirical error rates far from 1/2 should be an exponentially small
fraction of the class. Hence we get that ŝ(ddqee, δ) is significantly less than ln |H | and Theorem 3.3
is tighter than (10).

The remainder of this section is a proof of Lemma 3.2. Our departure point for the proof is the
following lemma from McAllester (1999).
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Lemma 3.4 (McAllester 99) For any measure on any hypothesis class we have the following where
Eh f (h) denotes the expectation of f (h) under the given measure on h:

∀δ > 0 ∀δS Ehe(2m−1)(ê(h)−e(h))2
≤

4m
δ

.

Intuitively, this lemma states that with high confidence over the choice of the sample most
hypotheses have empirical error near their true error. This allows us to prove that ŝ(ddqee, δ)
bounds s(ddqee). More specifically, by considering the uniform distribution on H ( k

m), Lemma 3.4
implies

Eh∼H ( k
m)

(

e(2m−1)(ê(h)−e(h))2
)

≤
4m
δ

Prh∼H ( k
m)

(

e(2m−1)(ê(h)−e(h))2
≥

8m
δ

)

≤
1
2

Prh∼H ( k
m)

(

e(2m−1)(ê(h)−e(h))2
≤

8m
δ

)

≥
1
2

∣

∣

∣

∣

∣

∣







h ∈ H (
k
m

) : |ê(h)− e(h)| ≤

√

ln( 8m
δ )

2m−1







∣

∣

∣

∣

∣

∣

≥
1
2
|H (

k
m

)|

∣

∣

∣

∣

∣

∣







h ∈ H (
k
m

) : |ê(h)−
k
m
| ≤

1
m

+

√

ln( 8m
δ )

2m−1







∣

∣

∣

∣

∣

∣

≥
1
2
|H (

k
m

)|

∣

∣

∣

∣

H (
k
m

)

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

Ĥ
(

k
m

, 2mδ
)∣

∣

∣

∣

.

Lemma 3.2 now follows by quantification over q ∈ { 1
m , . . . , m

m}. �

4. Asymptotic Analysis and Phase Transitions

This section and the two that follow give an asymptotic analysis of the bounds presented earlier. The
asymptotic analysis is stated in Theorem 4.1 and Statement 6.1. To develop the asymptotic analysis,
however, a preliminary discussion is needed regarding the phenomenon of phase transitions. The
bounds given in (9) and Theorem 3.3 exhibit phase transitions. More specifically, the bounding
expression can be discontinuous in δ and m, e.g., arbitrarily small changes in δ can cause large
changes in the bound. To see how this happens consider the constraint on the quantity q:

D(ê(h)||q) ≤
s(ddqee)+ ln( 2m

δ )

m
. (11)

The bound given by (9) is the least upper bound of the values of q satisfying (11). Assume that m is
sufficiently large that we can think of s(ddqee)

m as a continuous function of q which we write as s̄(q).
We can then rewrite (11) where λ is a quantity not depending on q and s̄(q) does not depend on δ:

D(ê(h)||q) ≤ s̄(q)+λ. (12)
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For q ≥ ê(h) we know that D(ê(h)||q) is a monotonically increasing function of q. It is reasonable
to assume that for q ≤ 1/2 we also have that s̄(q) is a monotonically increasing function of q.
But even under these conditions it is possible that the feasible values of q, i.e., those satisfying
(12), can be divided into separated regions. Furthermore, increasing λ can cause a new feasible
region to come into existence. When this happens the bound, which is the least upper bound of the
feasible values, can increase discontinuously. At a more intuitive level, consider a large number of
high error concepts and smaller number of lower error concepts. At a certain confidence level the
high error concepts can be ruled out. But as the confidence requirement becomes more stringent
suddenly (and discontinuously) the high error concepts must be considered. A similar discontinuity
can occur in sample size. Phase transitions in shell decomposition bounds are discussed in more
detail by Haussler et al. (1996).

Phase transitions complicate asymptotic analysis. But asymptotic analysis illuminates the nature
of phase transitions. As mentioned in the introduction, in the asymptotic analysis of learning theory
bounds it is important that one does not hold H fixed as the sample size increases. If we hold H
fixed then limm→∞

ln |H |
m = 0. But this is not what one expects for large samples in practice. As the

sample size increases one typically uses larger hypothesis classes. Intuitively, we expect that even
for very large m we have that ln |H |

m is far from zero.
For the asymptotic analysis of the bound in (9) we assume an infinite sequence of hypothesis

classes H1, H2, H3 . . . and an infinite sequence of data distributions D1, D2, D3, . . .. Let sm( k
m)

be s( k
m) defined relative to Hm and Dm. In the asymptotic analysis we assume that the sequence of

functions sm(ddqee)
m , viewed as functions of q ∈ [0,1], converge uniformly to a continuous function

s̄(q). This means that for any ε > 0 there exists a k such that for all m > k we have

∀q ∈ [0,1] |
sm(ddqee)

m
− s̄(q)| ≤ ε.

Given the functions sm(ddpee)
m and their limit function s̄(p), we define the following functions of an

empirical error rate ê:

Bm(ê) ≡ lub

{

q : D(ê||q) ≤
sm(ddqee)+ ln( 2m

δ )

m

}

,

B(ê) ≡ lub {q : D(ê||q) ≤ s̄(q)}.

The function Bm(ê) corresponds directly to the upper bound in (9). The function B(ê) is intended
to be the large m asymptotic limit of Bm(ê). However, phase transitions complicate asymptotic
analysis. The bound B(ê) need not be a continuous function of ê. A value of ê where the bound
B(ê) is discontinuous corresponds to a phase transition in the bound. At a phase transition the
sequence Bm(ê) need not converge. Away from phase transitions, however, we have the following
theorem.

Theorem 4.1 If the bound B(ê) is continuous at the point ê (so we are not at a phase transition), and

the functions (parameterized by m) sm(ddqee)
m , viewed as functions of q ∈ [0,1], converge uniformly to

a continuous function s̄(q), then we have

lim
m→∞

Bm(ê) = B(ê).
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Proof Define the set Fm(ê) as

Fm(ê) ≡

{

q : D(ê||q) ≤
sm(ddqee)+ ln( 2m

δ )

m

}

.

This gives
Bm(ê) = lub Fm(ê).

Similarly, define F(ê, ε) and B(ê, ε) as

F(ê, ε) ≡ {q ∈ [0,1] : D(ê||q) ≤ s̄(q)+ ε}.
B(ê, ε) ≡ lub F(ê, ε).

We first show that the continuity of B(ê) at the point ê implies the continuity of B(ê, ε) at the
point 〈ê, 0〉. We note that there exists a continuous function f (ê, ε) with f (ê, 0) = ê and such that
for any ε sufficiently near 0 we have

D( f (ê, ε)||q) = D(ê||q)− ε.

We then have
B(ê, ε) = B( f (x, ε)).

Since f is continuous, and B(ê) is continuous at the point ê, we get that B(ê, ε) is continuous at the
point 〈ê, 0〉.

We now prove the lemma. The functions of the form
sm(ddqee)+ln 2m

δ
m converge uniformly to the

function s̄(q). This implies that for any ε > 0 there exists a k such that for all m > k we have

F(ê, −ε) ⊆ Fm(ê) ⊆ F(ê, ε).

But this in turn implies that
B(ê, −ε) ≤ Bm(ê) ≤ B(ê, ε). (13)

The lemma now follows from the continuity of the function B(ê, ε) at the point 〈ê, 0〉.

Theorem 4.1 can be interpreted as saying that for large sample sizes, and for values of ê other
than the special phase transition values, the bound has a well defined value independent of the
confidence parameter δ and determined only by a smooth function s̄(q). A similar statement can be
made for the bound in Theorem 3.3 — for large m, and at points other than phase transitions, the
bound is independent of δ and is determined by a smooth limit curve.

For the asymptotic analysis of Theorem 3.3 we assume an infinite sequence H1, H2, H3, . . . of
hypothesis classes and an infinite sequence S1, S2, S3, . . . of samples such that sample Sm has size
m. Let Hm( k

m , δ) and ŝm( k
m , δ) be H ( k

m , δ) and ŝ( k
m , δ) respectively defined relative to hypothesis

class Hm and sample Sm. Let Um( k
m) be the set of hypotheses in Hm having an empirical error of

exactly k
m in the sample Sm. Let um( k

m) be ln(max(1, |Um( k
m)|). In the analysis of Theorem 3.3

we allow that the functions um(ddqee)
m are only locally uniformly convergent to a continuous function

ū(q), i.e., for any q ∈ [0,1] and any ε > 0 there exists an integer k and real number γ > 0 satisfying

∀m > k, ∀p ∈ (q− γ, q+ γ) |
um(ddpee)

m
− ū(p)| ≤ ε.

Locally uniform convergence plays a role in the analysis in Section 6.
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Theorem 4.2 If the functions um(ddqee)
m converge locally uniformly to a continuous function ū(q)

then, for any fixed value of δ, the functions ŝm(ddqee, δ)
m also converge locally uniformly to ū(q). If the

convergence of um(ddqee)
m is uniform, then so is the convergence of ŝm(ddqee, δ)

m .

Proof Consider an arbitrary value q ∈ [0,1] and ε > 0. We construct the desired k and γ. More
specifically, select k sufficiently large and γ sufficiently small that we have the properties

∀m > k, ∀p ∈ (q−2γ, q+2γ)
∣

∣

∣

∣

um(ddpee)
m

− ū(p)

∣

∣

∣

∣

<
ε
3
,

∀p ∈ (q−2γ, q+2γ) | ū(p)− ū(q)| ≤
ε
3
,

1
k

+

√

ln( 16k2

δ )

2k−1
< γ,

lnk
k

≤
ε
3
.

Consider an m > k and p ∈ (q− γ, q+ γ). It now suffices to show that
∣

∣

∣

∣

ŝm(ddpee, δ)

m
− ū(p)

∣

∣

∣

∣

≤ ε.

Because Um(ddpee) is a subset of Hm(ddpee, δ) we have

ŝm(ddpee, δ)

m
≥

um(ddpee)
m

≥ ū(p)−
ε
3
.

We can also upper bound ŝm(ddpee, δ)
m as follows:

|Hm(ddpee,δ)| ≤ ∑
| k

m−p|≤γ

∣

∣

∣

∣

Um

(

k
m

)∣

∣

∣

∣

≤ ∑
| k

m−p|≤γ

eum( k
m )

≤ ∑
| k

m−p|≤γ

em(ū( k
m )+ ε

3 )

≤ ∑
| k

m−p|≤γ

em(ū(p)+ 2ε
3 )

≤ mem(ū(p)+ 2ε
3 )

ŝ(ddpee, δ)

m
≤ ū(p)+

2ε
3

+
lnm
m

≤ ū(p)+ ε.
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A similar argument shows that if um(ddqee)
m converges uniformly to ū(q) then so doesum(ddqee)

m .

Given quantities ŝi(ddqee, δ)
m that converge uniformly to ū(q) the remainder of the analysis is iden-

tical to that for the asymptotic analysis of (9). We define the upper bounds

B̂m(ê) ≡ lub

{

q : D(ê||q) ≤
ŝm(ddqee, δ)+ ln

(

4m
δ
)

m

}

.

B̂(ê) ≡ lub {q : D(ê||q) ≤ ū(q)}.

Again we say that ê is at a phase transition if the function B̂(ê) is discontinuous at the value ê. We
then get the following whose proof is identical to that of Theorem 4.1.

Theorem 4.3 If the bound B̂(ê) is continuous at the point ê (so we are not at a phase transition),

and the functions um(ddqee)
m converge uniformly to ū(q), then we have that

lim
m→∞

B̂m(ê) = B̂(ê).

5. Asymptotic Optimality of (9)

Formula (9) can be viewed as providing an upper bound on e(h) as a function of ê(h) and the
function s. In this section we show that for any curve s and value ê there exists a hypothesis class
and data distribution such that the upper bound in (9) is realized up to asymptotic equality. Up to
asymptotic equality, (9) is the tightest possible bound computable from ê(h) and the m numbers
s( 1

m), . . ., s(m
m).

The classical VC dimensions bounds are nearly optimal over bounds computable from the cho-
sen hypothesis error rate ê(h∗) and the class H . The m numbers s( 1

m), . . ., s(m
m) depend on both H

and the data distribution. Hence the bound in (9) uses information about the distribution and hence
can be tighter than classical VC bounds. A similar statement applies to the bound in Theorem (3.3)
computed from the empirically observable numbers ŝ( 1

m), . . ., ŝ(m
m). In this case, the bound uses

more information from the sample than just ê(h). The optimality theorem given here also differs
from the traditional lower bound results for VC dimension in that here the lower bounds match the
upper bounds up to asymptotic equality.

The departure point for our optimality analysis is the following lemma from Cover and Thomas
(1991).

Lemma 5.1 (Cover and Thomas) If p̂ is the fraction of heads out of m tosses of a coin where the
true probability of heads is p then for q ≥ p we have

Pr(p̂ ≥ q) ≥
1

m+1
e−mD(q||p).

This lower bound on Pr(p̂ ≥ q) is very close to Chernoff’s 1952 upper bound (1). The tightness
of (9) is a direct reflection of the tightness (1). To exploit Lemma 5.1 we need to construct hypothesis
classes and data distributions where distinct hypotheses have independent training errors. More
specifically, we say that a set of hypotheses {h1, . . . , hn} has independent training errors if the
random variables ê(h1), . . ., ê(hn) are independent.
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By an argument similar to the derivation of (3) from (1) we can prove the from Lemma 5.1 that

Pr

(

D(min(p̂, p)||p) ≥
ln( 1

δ)− ln(m+1)

m

)

≥ δ. (14)

Lemma 5.2 Let X be any finite set, S a random variable, and Θ[S,x,δ] a formula such that for every
x ∈ X and δ > 0 we have Pr(Θ[S,x,δ]) ≥ δ, and Pr(∀x ∈ X Θ[S, x, δ]) = ∏x∈X Pr(Θ[S, x, δ]). We

then have ∀δ > 0 ∀δS ∃x ∈ X Θ[S,x,
ln( 1

δ )

|X | ].

Proof
Pr(Θ[S,x,

ln( 1
δ )

|X | ]) ≥
ln( 1

δ )

|X |

Pr(¬Θ[S,x,
ln( 1

δ )

|X | ]) ≤ 1−
ln( 1

δ )

|X |

≤ e−
ln( 1

δ )

|X |

Pr(∀x ∈ X¬Θ[S, x,
ln( 1

δ )

|X | ]) ≤ e− ln( 1
δ ) = δ.

Now define h∗( k
m) to be the hypothesis of minimal training error in the set H ( k

m). Let glb {x :
Φ[x]} denote the greatest lower bound (the minimum) of the set {x : Φ[x]}. We now have the
following lemma.

Lemma 5.3 If the hypotheses in the class H (ddqee) are independent then ∀δ > 0, ∀δS, ∀q ∈
{ 1

m , . . . , m
m},

ê(h∗(q)) ≤ glb
{

ê : D(min(ê, q− 1
m)||q) ≤

s(q)−ln(m+1)−ln(ln( m
δ ))

m

}

.

Proof To prove Lemma 5.3 let q be a fixed rational number of the form k
m . Assuming independent

hypotheses we can applying Lemma 5.2 to (14) to get ∀δ > 0, ∀δS, ∃h ∈ H ( k
m),

D(min(ê(h),e(h))||e(h)) ≥
s(q)− ln(m+1)− ln(ln( 1

δ))

m

Let w be the hypothesis in H (q) satisfying this formula. We now have ê(h∗(q))≤ ê(w) and q− 1
m ≤

e(w) ≤ q. These two conditions imply ∀δ > 0, ∀δS,

D(min(ê(h∗(q)),q− 1
m)||q) ≥

s(q)−ln(m+1)−ln(ln 1
δ )

m .

This implies that

ê(h∗(q)) ≤ glb
{

ê : D(min(ê, q− 1
m)||q) ≤

s(q)−ln(m+1)−ln(ln( 1
δ ))

m .

}

Lemma 5.3 now follows by quantification over q ∈ { 1
m , . . . , m

m}.
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For q ∈ [0,1] we have that Lemma 3.1 implies that

ê(h∗(ddqee)) ≥ glb
{

ê : D
(

ê||ddqee− 1
m

)

≤
s(ddqee)+ln( 2m

δ )
m .

}

We now have upper and lower bounds on the quantity ê(h∗(ddqee)) which agree up to asymptotic
equality — in a large m limit where sm(ddqee)

m converges (pointwise) to a continuous function s̄(q) we
have that the upper and lower bound on ê(h∗(ddqee)) both converge (pointwise) to

ê(h∗(q)) = glb {ê : D(ê||q) ≤ s̄(q)}.

This asymptotic value of ê(h∗(q)) is a continuous function of q. Since q is held fixed in calculating
the bounds on ê(ddqee), phase transitions are not an issue and uniform convergence of the functions
sm(ddqee)

m is not required. Note that for large m and independent hypotheses we get that ê(h∗(q)) is

determined as a function of the true error rate q and s(ddqee)
m .

The following lemma states that any limit function s̄(p) is consistent with the possibility that
hypotheses are independent. This, together with Lemma 5.3 implies that no uniform bound on e(h)
as a function of ê(h) and |H ( 1

m)|, . . ., |H (m
m)| can be asymptotically tighter than (9).

Theorem 5.4 Let s̄(p) be any continuous function of p ∈ [0,1]. There exists an infinite sequence of
hypothesis spaces H1, H2, H3, . . ., and sequence of data distributions D1, D2, D3, . . . such that each
class Hm has independent hypotheses for data distribution Dm and such that sm(ddpee)

m converges
(pointwise) to s̄(p).

Proof First we show that if |Hm( i
m)| = ems̄( i

m ) then the functions sm(ddpee)
m converge (pointwise) to

s̄(p). Assume |Hm( i
m)| = ems̄( i

m ). In this case we have

sm(ddpee)
m

= s̄(ddpee).

Since s̄(p) is continuous, for any fixed value of p we get thatsm(ddpee)
m converges to s̄(p).

Recall that Dm is a probability distribution on pairs 〈x, y〉 with y ∈ {0,1} and x ∈ Xm for some
set Xm. We take Hm to be a disjoint union of sets Hm( k

m) where |Hm( k
m)| is selected as above.

Let f1, . . ., fN be the elements of Hm with N = |Hm|. Let Xm be the set of all N-bit bit strings
and define fi(x) to be the value of ith bit of the bit vector x. Now define the distribution Dm on
pairs 〈x, y〉 by selecting y to be 1 with probability 1/2 and then selecting each bit of x independently
where the ith bit is selected to disagree with y with probability k

m where k is such that fi ∈ Hm( k
m).

6. Relating ŝ and s

In this section we show that in large m limits of the type discussed in Section 4 the histogram of
empirical errors need not converge to the histogram of true errors. So even in the large m asymptotic
limit, the bound given by Theorem 3.3 is significantly weaker than the bound given by (9).

To show that ŝ(ddqee, δ) can be asymptotically different from s(ddqee) we consider the case of
independent hypotheses. More specifically, given a continuous function s̄(p) we construct an infinite
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sequence of hypothesis spaces H1, H2, H3, . . . and an infinite sequence of data distributions D1, D2,
D3, . . . using the construction in the proof of Theorem 5.4. We note that if s̄(p) is differentiable with
bounded derivative then the functions sm(ddpee)

m converge uniformly to s̄(p).
For a given infinite sequence data distributions we generate an infinite sample sequence S1, S2,

S3, . . ., by selecting Sm to consists of m pairs 〈x, y〉 drawn IID from distribution Dm. For a given
sample sequence and h ∈ Hm we define êm(h) and ŝm( k

m , δ) in a manner similar to ê(h) and ŝ( k
m , δ)

but for sample Sm. The main result of this section is the following.

Conjecture 6.1 If each Hm has independent hypotheses under data distribution Dm, and the func-
tions sm(ddpee)

m converge uniformly to a continuous function s̄(p), then for any δ > 0 and p ∈ [0,1],
we have, with probability 1 over the generation of the sample sequence, that

lim
m→∞

ŝm(ddpee,δ)

m
= sup

q∈[0,1]

s̄(q)−D(p||q).

We call this a conjecture rather than a theorem because the proof has not been worked out to a high
level of rigor. Nonetheless, we believe the proof sketch given below can be expanded to a fully
rigorous argument.

Before giving the proof sketch we note that the limiting value of ŝm(ddpee, δ)
m is independent of δ.

This is consistent with Theorem 4.2. Define

¯̂s(p) ≡ sup
q∈[0,1]

s̄(q)−D(p||q).

Note that ¯̂s(p) ≥ s̄(p). This gives an asymptotic version of Lemma 3.2. But since D(p||q) can be
locally approximated as c(p−q)2 (up to its second order Taylor expansion), if s̄(p) is increasing at
the point p then we also get that ¯̂s(p) is strictly larger than s̄(p).

Proof Outline: To prove Statement 6.1 we first define Hm(p, q) for p,q ∈ { 1
m , . . . , m

m} to be
the set of all h ∈ Hm(q) such that êm(h) = p. Intuitively, Hm(p, q) is the set of concepts with true
error rate near q that have empirical error rate p. Ignoring factors that are only polynomial in m,
the probability of a hypothesis with true error rate q having empirical error rate p can be written as
(approximately) e−mD(p||q). So the expected size of Hm(p, q) can be written as |Hm(q)|e−mD(p||q),
or alternatively, (approximately) as ems̄(q)e−mD(p||q) or em(s̄(q)−D(p||q)). More formally, we have, for
any fixed value of p and q,

lim
m→∞

ln(max(1, E(|Hm(ddpee, ddqee)|)))
m

= max(0, s̄(q)−D(p||q)).

We now show that the expectation can be eliminated from the above limit. First, consider
distinct values of p and q such that s̄(q)−D(p||q) > 0. Since p and q are distinct, the probability
that a fixed hypothesis in Hm(ddqee) is in Hm(ddpee, ddqee) declines exponentially in m. Since
s̄(q)−D(p||q) > 0 the expected size of Hm(ddpee, ddqee) grows exponentially in m. Since the

hypotheses are independent, the distribution of possible values of |Hm(ddpee, ddqee)| becomes
essentially a Poisson mass distribution with an expected number of arrivals growing exponentially
in m. The probability that |Hm(ddpee, ddqee)| deviates from its expectation by as much as a factor
of 2 declines exponentially in m. We say that a sample sequence is safe after k if for all m > k we
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have that |Hm(ddpee, ddqee)| is within a factor of 2 of its expectation. Since the probability of being
unsafe at m declines exponentially in m, for any δ there exists a k such that with probability at least
1− δ the sample sequence is safe after k. So for any δ > 0 we have that with probability at least
1−δ the sequence is safe after some k. But since this holds for all δ > 0, with probability 1 such a
k must exist:

lim
m→∞

ln(max(1, |Hm(ddpee, ddqee)|))
m

= s̄(q)−D(p||q).

We now define
sm(ddpee, ddqee) ≡ ln(max(1, |Hm(ddpee, ddqee)|)).

It is also possible to show for p = q we have that with probability 1 we have that sm(ddpee, ddqee)
m

approaches s̄(p) and that for distinct p and q with s̄(q)−D(p||q) ≤ 0 we have thatsm(ddqee, ddqee)
m

approaches 0. Putting these together yields that, with probability 1, we have

lim
m→∞

sm(ddpee, ddqee)
m

= max(0, s̄(q)−D(p||q)). (15)

Define Um( k
m) and um( k

m) as in Section 4. We now have the following equality:

Um(p) = ∪q∈{ 1
m , ..., m

m}Hm(p, q).

We now show that with probability 1, um(p)
m approaches ¯̂s(p). First, consider a p ∈ [0,1] such

that ¯̂s(p) > 0. Let Since s̄(q)− D(q||p) is a continuous function, and [0,1] is a compact set,
supq∈[0,1] s̄(q)−D(p||q) must be realized at some value q∗ ∈ [0,1]. Let q∗ be such that s̄(q∗)−
D(p||q∗) equals ¯̂s(p). We have that um(ddpee) ≥ sm(ddpee, ddq∗ee). This, together with (15),
implies that

liminf
m→∞

um(ddpee)
m

≥ ¯̂s(p).

The sample sequence is “safe” at m and k
m if |Hm(ddpee, dd k

mee)| does not exceed twice the expec-

tation of |Hm(ddpee, ddq∗ee)|. Assuming uniform convergence of sm(ddpee)
m , the probability of not

being safe at m and k
m declines exponentially in m at a rate at least as fast as the rate of decline of

the probability of not being safe at m and ddq∗ee. By the union bound this implies that for a given m
the probability that there exists an unsafe k

m also declines exponentially. We say that the sequence
is safe after N if it is safe for all m and k

m with m > N. The probability of not being being safe after
N also declines exponentially with N. By an argument similar to that given above, this implies that
with probability 1 over the choice of the sequence there exists a N such that the sequence is safe
after N. But if we are safe at m then |Um(ddpee)| ≤ 2mE|Hm(p, ddq∗ee)|. This implies that

limsup
m→∞

um(ddpee)
m

≤ ¯̂s(p).

Putting the two bounds together we get

lim
m→∞

um(ddpee)
m

= ¯̂s(p).
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The above argument establishes (to some level of rigor) pointwise convergence of um(ddpee)
m to

¯̂s(p). It is also possible to establish a convergence rate that is a continuous function of p. This
implies that the convergence of um(ddpee)

m can be made locally uniform. Theorem 4.2 then implies
the desired result. �

7. Improvements

Theorem 3.3 has been improved in various ways (Langford, 2002):

• Removing the discretization of true errors,

• Using one-sided bounds,

• Using nonuniform union bounds over discrete values of the form k
m ,

• Tightening the Chernoff bound using direct calculation of Binomial coefficients, and

• Improving Lemma 3.4.

These improvements allow the removal of all but one ln(m) terms from the statement of the bound.
However, they do not improve the asymptotic equations given by Theorem 4.1 and Statement 6.1.

A practical difficulty with the bound in Theorem 3.3 is that it is usually impossible to enumer-
ate the elements of an exponentially large hypothesis class and hence impractical to compute the
histogram of training errors for the hypotheses in the class. In practice the values of s( k

m) might be
estimated using some form of Monte-Carlo Markov chain sampling over the hypotheses. For certain
hypothesis spaces it might also be possible to directly calculate the empirical error distribution with-
out evaluating every hypothesis. For example, this can be done with “partition rules” which, given a
fixed partition of the input space, make predictions which are constant on each partition. If there are
n elements in the partition then there are 2n partition rules. For a fixed partition, the histogram of
empirical errors for the 2n partition rules can be computed in polynomial time. Note that the class
of decision trees is a union of partition rules where the structure of a tree defines a partition and
the labels at the leaves of the tree define a particular partition rule relative to that partition. Taking
advantage of this, it is suprisingly easy to compute a shell bound for small decision trees (Langford,
2002).

8. Discussion and Conclusion

Traditional PAC bounds are stated in terms of the training error and class size or VC dimension. The
computable bound given here is sometimes much tighter because it exploits the additional informa-
tion in the histogram of training errors. The uncomputable bound uses the additional (unavailable)
information in the distribution of true errors. Any distribution of true errors can be realized in a
case with independent hypotheses. We have shown that in such cases this uncomputable bound is
asymptotically equal to actual generalization error. Hence this is the tightest possible bound, up
to asymptotic equality, over all bounds expressed as functions of ê(h∗) and the distribution of true
errors. We have also shown that the use of the histogram of empirical errors results in a bound that,
while still tighter than traditional bounds, is looser than the uncomputable bound even in the large
sample asymptotic limit.
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One of the goals of learning theory is to give generalization guarantees that are predictive of
actual generalization error. It is well known that the actual generalization error can exhibit phase
transitions — as the sample size increases the expected generalization error can jump essentially
discontinuously in sample size. So accurate true error bounds should also exhibit phase transitions.
Shell bounds exhibit these phase transitions while other bounds such as VC dimension results do
not.

The phase transitions can also be interpreted as a statement about the bound as a function of the
confidence parameter δ. As the value of δ is varied the bound may shift essentially discontinuously.
To put this another way, let h∗ be the hypothesis of minimal training error on a large sample. Near a
phase transition in true generalization error (as opposed to a phase transition in the bound) we may
have that with probability 1−δ the true error of h∗ is near its training error but with probability δ/2,
say, the true error of h∗ can be far from its training error. More traditional bounds do not exhibit this
kind of sensitivity to δ. Bounds that exhibit phase transitions seem to bring the theoretical analysis
of generalization closer to the actual phenomenon.
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