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Abstract

We consider the problem of reinforcement learning in a controlled Markov environment with multi-
ple objective functions of the long-term average reward type. The environment is initially unknown,
and furthermore may be affected by the actions of other agents, actions that are observed but can-
not be predicted beforehand. We capture this situation using a stochastic game model, where the
learning agent is facing an adversary whose policy is arbitrary and unknown, and where the reward
function is vector-valued. State recurrence conditions are imposed throughout. In our basic prob-
lem formulation, a desired target set is specified in the vector reward space, and the objective of the
learning agent is to approach the target set, in the sense that the long-term average reward vector
will belong to this set. We devise appropriate learning algorithms, that essentially use multiple re-
inforcement learning algorithms for the standard scalar reward problem, which are combined using
the geometric insight from the theory of approachability for vector-valued stochastic games. We
then address the more general and optimization-related problem, where a nested class of possible
target sets is prescribed, and the goal of the learning agent is to approach the smallest possible target
set (which will generally depend on the unknown system parameters). A particular case which falls
into this framework is that of stochastic games with average reward constraints, and further spe-
cialization provides a reinforcement learning algorithm for constrained Markov decision processes.
Some basic examples are provided to illustrate these results.

1. Introduction

Agents that operate in the real world often need to consider several performance criteria simultane-
ously. In this paper we address the problem of RL (Reinforcement Learning) in a dynamic environ-
ment, where the controlling agent’s goals are formulated in terms of multiple objective functions,
each one corresponding to a long-term average reward functional. Furthermore, we deviate from the
strictly Markovian environment model by allowing the presence of additional agents whose policies
may be arbitrary. Our goal then is to formulate performance objectives that are meaningful in such
a setting, and develop learning algorithms that attain these objectives.

Multi-criterion decision making is a well established research area with a wide range of solu-
tion concepts and methods (for an overview see, for example, Steuer, 1986; Ehrgott and Gandibleux,
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2002). Most basic to multi-criterion optimization is the concept of efficient (or Pareto optimal) solu-
tions, namely those solutions that cannot be improved upon in all coordinates (with strict improve-
ment is at least one coordinate) by another solution. Unfortunately efficient solutions are essentially
non-unique, and various methods have been developed to single out one “optimal” solution” — for
example, by forming appropriate scalar combinations of the different objective functions. Another
formulation of multi-criterion optimization which leads to a well-defined solution is the constrained
optimization problem, where one criterion is optimized subject to explicit constraints on the oth-
ers. In the context of Markov decision problems (MDPs), several papers have developed dynamic
programming algorithms to compute efficient solutions (see White, 1982; Henig, 1983; Carraway
et al., 1990), while constrained MDPs have received more extensive attention — see Altman (1999)
and references therein. Constrained Stochastic Games were considered by Shimkin (1994) and Alt-
man and Shwartz (2000). Learning schemes for constrained MDPs were devised by Pozniyak et al.
(1999), based on the theory of stochastic learning automata. A Q-learning approach to constrained
MDPs was considered by Gábor et al. (1998).

In the present paper, we shall use the notion of a target set as the basic concept which specifies
the controller’s goals with respect to its multiple objective functions. This set specifies the range in
which the vector of objective functions is required to reside. More precisely, since each objective
function is in the form of a long-range average reward, the controller’s objective is to ensure that
the average-reward vector converges to the given target set. Note that in its basic form the target
set concept does not correspond to an optimization problem but rather to constraint satisfaction.
However, the optimization aspect may be added by looking for target sets that are minimal in some
sense; indeed, we will employ this approach in the latter part of the paper to obtain a learning
algorithm for constrained stochastic games (and, in particular, constrained MDPs).

As the target set concept is basic to our problem formulation, it is worth taking some time to
highlight its relevance and utility in dynamic decision problems. In various engineering applica-
tions, performance requirements are given in the form of bounds on variables of interest, that need
to hold under varying system conditions (parameters) and external disturbances. A temperature
regulator, for example, may be required to keep the temperature with a certain range (say ±1oC)
of the nominal operating point. The corresponding target set is then simply the interval [T ,T ]. In
communication networks which provide quality of service (QoS) guarantees, such as certain service
classes of ATM networks, a user may be given guarantees in terms of a Minimal Cell Rate (MCR),
which lower bounds the available bandwidth, and a Cell Loss Ratio (CLR) that upper bounds the
allowed fraction of lost cells (e.g., ATM Forum Technical Committee, 1999). The controller’s goal
is to keep BW≥MCR and LR≤CLR0, where BW is the available bandwidth and LR is the fraction
of lost cells. This translates to a target set T of the form T = [MCR,∞)× [0,CLR], which resides in
the two-dimensional objective space IR2. A more elaborate service guarantee may ensure a certain
loss ratio up to a given cell rate, and allow for a higher one when the cell rate is higher; the corre-
sponding target set can still be easily constructed in IR2, although it will no longer be rectangular
due to the coupling between the two criterions. We note that regulating mechanisms are equally
prevalent in biological systems, where such quantities as temperature, pressure and concentration
need to be maintained within certain bounds.

We observe, in passing, that goal setting and their attainment play a central role in prominent
descriptive models of human decision making. Simon‘s theory of satisfying decisions suggests that
actual decision makers are rarely optimizers, but rather accept “good enough” alternatives that meet
previously determined aspiration levels (Simon, 1996). Kahaneman and Tversky‘s prospect theory
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(Kahaneman and Tversky, 1979) evaluates gain or loss relative to a preset reference point, which
can also be interpreted as an aspiration level for the decision maker.

A second challenging ingredient in our problem formulation is that of the arbitrarily varying en-
vironment. The decision problem is considered from the viewpoint of a particular controlling agent,
whose environment may be affected by other, noncooperative, agents. We make no assumptions
regarding the choices of these other agents, and allow them to choose their actions arbitrarily. Such
agents may also represent non-stationary moves of Nature, or account for non-Markovian dynamics
over a partially-observed state. For modelling simplicity we collect all the additional agents as a
single one, the adversary, whose actions may affect both the state transitions and obtained rewards.
The model then reduces to a two-person stochastic game with vector-valued rewards. The adver-
sary is free to choose its actions according to any control policy, subject only to causality limitations
(both agents are assumed to fully observe the state and action sequences). Accordingly, we shall
require that the controlling agent will achieve the required goal (convergence of the average reward
vector to the target set) for any policy of the adversary.

The proposed problem formulation is inspired by the theory of approachability, introduced by
Blackwell (1956) in the context of repeated matrix games with vector payoffs. This theory provides
geometric conditions, and matching control policies, for a set in the reward space to be approachable
by a player, in the sense that the average reward vector approaches this target set for any policy of the
adversary. Essentially, Blackwell approaching strategies are based on reviewing the current average
reward vector, and whenever it is outside the target set, the reward is “steered” in the direction of
the target set. More precisely, the controlling agent computes the direction of closest distance from
current reward vector to the target set, and plays his maximin policy in the matrix game obtained by
projecting the vector-valued reward function along this direction. Among its many extensions and
applications, approachability theory has been extended to stochastic (Markov) games by Shimkin
and Shwartz (1993) under appropriate state recurrence conditions; these conditions are enforced
throughout the present paper. The relevant results are reviewed in Section 3.1 and some new results
are provided in Section 3.2. In this paper we add the learning aspect, and consider the problem of
learning approaching policies on-line. Accordingly, we refer below to the controlling agent as the
learning agent.

It will be useful at this point to illustrate some of the geometric ideas behind Blackwell‘s ap-
proaching policies via a simple example. Note that this example is strictly illustrative. Consider
first a scalar temperature regulation problem, where the performance objective of interest is to reg-
ulate the long-term average temperature, and guarantee that it is in some prescribed interval [T ,T ].
The agent may activate a cooler or a heater at will, although when activated it must remain so for
a certain period of time. When the cooler is activated the temperature drops to a range [a,b], with
b < T , and when the heater is on the temperature reaches a range [c,d], with c > T . The precise
temperature reached in the allocated range varies due to environmental influence. Given this uncer-
tainty, the simplest way to regulate the average temperature would be to keep note of the current
average temperature (over the time interval between the initial and present time), and then activate
the cooler whenever the current average increases above T , and the heater whenever it decreases
below T : see Figure 1 for an illustration. In between these levels, any (reasonable) activation rule
may be used. It should be noted that the proposed policy is not stationary in the usual sense, since
it depends on the current average temperature, which is not part of a standard definition of a state
for this system. We also note the similarity with the common ”bang-bang” (or threshold) feedback
policy for temperature regulation: the goal there is of course to regulate the instantaneous temper-
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ature, which is accordingly used as the feedback variable. It is not possible (due to the assumed
relationships between the temperature intervals) to maintain the instantaneous temperature in the
specified interval.

TT T Temperature

Heating policy Cooling policy

Figure 1: The single dimensional temperature regulation example. If the temperature is higher than
T the control policy is to cool, and if the temperature is lower than T the control policy is
to heat.

This one-dimensional example already contains one of the key elements of the approaching
policies. Namely, the average reward vector is “steered” in the direction of the target set by using
direction dependent sub-policies. While each sub-policy may itself be stationary, the overall ap-
proaching policy is not. Except for the special case when the adversary is trivial (so that the model
reduces to a single-controller one), the use of such non-stationary policies is essential, in the sense
that target sets that are approachable with general polices need not be so with stationary policies.

Consider next a multi-objective version of the temperature regulation problem. The controller’s
first objective, as before, is to maintain the average temperature in a certain range. One can consider
other criteria of interest such as the average humidity, frequency of switching between policies,
average energy consumption and so on. This problem may be characterized as a multi-criterion
problem, in which the objective of the controller is to have the average reward in some target set.
Suppose that the additional variable of interest is the average humidity. In a controlled environment
such as a greenhouse, the allowed level of humidity depends on the temperature. An illustrative
target set is shown in Figure 2. A steering policy now relies on more elaborated geometry. In place
of the two directions (left/right) of the one-dimensional case, we now face a continuous range of
possible directions, each associated with a possibly different steering policy. For the purpose of the
proposed learning algorithm, it will be useful to consider only a finite number of steering directions
(and associated policies). We will show that this can always be done, with negligible effect on the
attainable performance.

The analytical basis for this work relies on three elements: the theory of approachability for
vector-valued dynamic games; RL algorithms for (scalar) average reward problems; and stochastic
game models. As approachability was already introduced above, we next briefly address the other
two topics.

Reinforcement Learning has emerged in the last decade as a unifying discipline for learning and
adaptive control. Comprehensive overviews may be found in Bertsekas and Tsitsiklis (1995); Sutton
and Barto (1998), and Kaelbling et al. (1996). It should be mentioned that reinforcement learning
has come to encompass a wide range of learning methods, which surpasses the restricted sense of
adapting actions directly in response to a (scalar) reinforcement signal; our method belongs in this
wider class. RL for average reward Markov Decision Processes (MDPs) was suggested by Schwartz
(1993) and Mahadevan (1996) and later analyzed in Abounadi et al. (2002). The analysis for the
average reward criterion is considerably more difficult than the discounted case, as the dynamic
programming operator is no longer a contraction. Several methods exist for average reward RL,
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Temperature

Humidity

Target

Figure 2: The two dimensional temperature-humidity example. The steering directions, which
point to the closest point in the set, are denoted by arrows.

including Q-learning (Abounadi et al., 2002), the E3 algorithm (Kearns and Singh, 1998), and actor-
critic schemes (Sutton and Barto, 1998). RL for multi-objective problems was considered, to the
best of our knowledge, only by Gábor et al. (1998). This paper considers discounted constrained
MDPs, that is, the objective is to find a maximizing policy for the discounted reward problem,
given that some additional discounted constraints are satisfied. The algorithm of Gábor et al. (1998)
searches for the best deterministic policy. In general, however, the optimal policy for constrained
MDPs is not deterministic (e.g., Altman, 1999).

Stochastic Games (SGs) present a flexible model of dynamic conflict situations, with extensive
theory and various applications in economics, operations research, and more. For recent overviews
see Filar and Vrieze (1996) and Mertens (2002). In particular, existence of a state-independent value
and stationary optimal policies is established for average-reward stochastic games under appropriate
recurrence conditions, which are assumed in this paper. Stochastic games provide a natural general-
ization of the single-controller Markov decision problem to the multi-agent setting, and are highly
relevant to various RL applications, starting with board games. The naive learning approach ig-
nores possible non-stationarity of the opponent and simply applies standard RL algorithms as used
for MDPs. This approach has shown some notable success (Baxter et al., 1998), but provides no
performance guarantees. The seminal work of Tesauro (1996) is a notable example of an algorithm
that learns under the assumption that the opponent play is stationary and adversarial, but provides
no performance guarantees. Learning algorithms for zero-sum stochastic games with discounted
rewards have been introduced by Littman (1994) and shown to converge to the max-min optimal
policies (Littman and Szepesvári, 1999). Corresponding algorithms for the average reward problem
have emerged only recently, and include model-based learning (Brafman and Tennenholtz, 2002),
and Q-learning (Mannor and Shimkin, 2002).

Our main results are as follows. We present two learning algorithms for approaching a pre-
scribed target set. The first (Multiple Directions Reinforcement Learning) algorithm is based on dis-
cretizing the set of possible steering directions, using a (dense) grid of direction vectors, and main-
taining a learning algorithm for the stochastic games induced by each grid direction; the (scalar)
reward function for each game is obtained by projecting the vector reward function on the corre-
sponding direction. The second (Current Direction Reinforcement Learning) algorithm focuses on a
single direction at a time, which is frozen for a long enough period so that both learning and steering
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are assured. Both algorithms are efficient, in the sense that they approach (to required accuracy) any
target set that is approachable by steering policies when the model is known.

Equipped with the two basic algorithms, we consider the important extension to variable target
sets. Here the target set to be approached is not fixed a-priori. Indeed, the target set of interest
may depend on the model parameters, which are initially unknown. Our starting point here will be
a nested family of target sets, with the goal of the learning agent naturally defined as approaching
the smallest possible set in this family (note that approaching a smaller set automatically implies
that any larger set in the nested family is also approached). We present a suitable learning algorithm
which combines the basic algorithms with an on-line estimate of the minimally approachable target
set. We will then show that this framework can be specialized to give a solution to the important
problems of constrained SGs and MDPs.

We shall also briefly consider an alternative algorithm for approaching a (fixed) target set, which
is based on the adversarial multi-armed bandit problem (e.g., Auer et al., 2002). This algorithm is
suitable for the case where there is only a small set of sub-strategies that the controlling agent may
alternate between. The idea here is to treat each of the possible strategies as an arm, and make sure
that after enough rounds the reward is as high as that of the best arm (policy). Again, we show that
the algorithm attains the same performance as in the known model case.

The paper is organized as follows. In Section 2 we describe the stochastic game model and for-
mulate the control objective. In Section 3 we recall basic results from approachability theory, and
prove that it suffices to use finitely many steering directions in order to approach a target set with a
given precision. We also discuss RL for scalar-valued SGs and define two notions of optimality that
will be used in the sequel. The next two sections describe the Multiple Directions RL algorithm and
the Current Direction RL algorithm, while the bandit-based algorithm is described in Section 6. The
extension to variable target sets is discussed in Section 7, which also discusses constrained prob-
lems. In Section 8 we briefly discuss the specialization of the previous results to (single-controller)
MDPs with multiple objectives. Two examples are described in Section 9, followed by concluding
remarks. An appendix contains a refined algorithm and its convergence proof.

2. Multi-Criterion Stochastic Games

In this section we present the multi-criterion SG model. We describe the learning agent’s objective
and define a related scalar projected games which will be useful in the sequel.

2.1 Model Definition

We consider a two-person average reward SG, with a vector-valued reward function. We refer to
the players as P1 (the learning agent) and P2 (the arbitrary adversary). The game is defined by the
following elements:

1. S , a finite state space.

2. A and B , finite sets of actions for P1 and P2, respectively. To streamline our notation it is
assumed that P1 and P2 have the same action sets available in each state.

3. P = P(s′|s,a,b), the state transition function.

4. m : S ×A ×B → IRk, a vector-valued reward function.
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At each time epoch n ≥ 0, both players observe the current state sn, and then P1 and P2 simul-
taneously choose actions an and bn, respectively. As a result P1 receives the reward vector mn =
m(sn,an,bn) and the next state is determined according to the transition probability P(·|sn,an,bn).
More generally, we allow the actual reward mn to be random, in which case m(sn,an,bn) denotes
its mean and we assume the reward is bounded.1 We further assume that both players observe the
previous rewards and actions (however, in some of the learning algorithms below, the assumption
that P1 observes P2’s action may be relaxed). A policy π ∈ Π for P1 is a mapping which assigns to
each possible observed history a mixed action in ∆(A), namely a probability vector over P1’s action
set A . A policy σ ∈ Σ for P2 is defined similarly. A policy of either player is called stationary if the
mixed action it prescribes depends only on the current state sn. The set of stationary policies of P1
is denoted by F , and that of P2 by G. Let m̂n denote the average reward by time n:

m̂n
4
=

1
n

n−1

∑
τ=0

mτ .

Note that we do not define a reward for P2. Since we allow P2 to use an arbitrary policy, such
reward function, even if it exists, is irrelevant to our formulation.

The following recurrence assumption will be employed. Let state s∗ denote a specific reference
state to which a return is guaranteed. We define the renewal time of state s∗ as

τ 4
= min{n > 0 : sn = s∗} . (1)

Assumption 1 (Recurrence) There exist a state s∗ ∈ S and a finite constant N such that

IEs
π,σ(τ2) < N for all π ∈ Π, σ ∈ Σ and s ∈ S ,

where IEs
πσ is the expectation operator when starting from state s0 = s with policies π and σ for P1

and P2, respectively.

For finite state and action spaces this assumption is satisfied if state s∗ is accessible from all other
states under any pair of stationary deterministic policies (Shimkin and Shwartz, 1993). We note that
Assumption 1 holds if the game is irreducible (as defined in Hoffman and Karp, 1966) or ergodic
(as defined in Kearns and Singh, 1998).

Remark 1 Assumption 1 may be relaxed in a similar manner to Mannor and Shimkin (2000). There,
it is assumed that state s∗ is reachable, that is, either player has a policy that guarantees a return
to s∗. The approachability result that is obtained under this related assumption is somewhat more
complicated, and we adhere here to Assumption 1 for simplicity.

Remark 2 In the absence of any recurrence conditions, tight approachability conditions and cor-
responding policies are extremely hard to obtain. This may be attributed to the dependence of the
minimax value of such games (with scalar reward) on the initial state. Still, non-tight sufficient con-
ditions and corresponding learning algorithms may be obtained by requiring the approachability
conditions below to hold for all initial states. Again, we shall not pursue this direction here.

1. Bounded reward is required essentially only for the SPRL algorithm from Section 6. This assumption can be relaxed
for the algorithms of Sections 5,4, and 7 to requiring bounded second moments. The result in the appendix is also
proved using the weaker assumption of bounded second moment.
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2.2 P1’s Objective

P1’s task is to approach a target set T , namely to ensure convergence of the average reward vector to
this set irrespectively of P2’s actions. Formally, let T ⊂ IRk denote the target set. In the following, d

is the Euclidean distance in IRk. The set-to-point distance between a point x and a set T is d(x,T )
4
=

infy∈T d(x,y). We let Ps
π,σ denote the probability measure on the states and rewards sequences when

P1 plays the policy π, P2 plays policy σ, and the initial state is s.

Definition 3 A policy π∗ of P1 approaches a set T ⊂ IRk (from initial state s) if

lim
n→∞

d(m̂n,T ) = 0 Ps
π∗,σ-a.s., for every σ ∈ Σ .

A policy σ∗ ∈ Σ of P2 excludes a set T (from initial state s) if for some δ > 0,

liminf
n→∞

d(m̂n,T ) > δ Ps
π,σ∗-a.s. for every π ∈ Π ,

where a.s. stands for almost surely.

The policy π∗ (σ∗) will be called an approaching (excluding) policy for P1 (P2). A set is approach-
able if there exists an approaching policy from all states. Noting that approaching a set and its
topological closure are the same, we shall henceforth suppose that the set T is closed.

Remark 4 The original definition of approachability by Blackwell (1956) required uniformity of
convergence with respect to P2’s policy. Some of our results do hold uniformly with respect to
P2’s policy and some do not. Specifically, the rate of convergence in the algorithms described in
Sections 5 and 6 is uniform with respect to P2’s policy. The convergence rate of the algorithm
described in Section 4 is not uniform unless further assumptions are made. The issue of uniformity
of convergence was not pursued here.

Remark 5 While the main focus in this paper is on the long-term average criterion, the target
set concept does allow some consideration of instantaneous quantities. For example, recall the
temperature regulation problems presented in the Introduction. Suppose that the instantaneous
temperature (in addition to its average) is required to stay in some different range [Tmin,Tmax]. We
can add a component to the reward vector, which indicates deviation from the required range: i.e., it
takes the value ’1’ if the instantaneous temperature is outside this range, and ’0’ otherwise. We can
now define the target set so that the long-term average of this component is required to approach 0,
thereby assuring that the temperature stays in the required range save for a negligible fraction of
times. Thus, both instantaneous quantities and their time averages can be considered in a unified
framework.

2.3 The Projected Scalar Game

Let u be a unit vector in the reward space IRk. We often consider the projected game in direction u

as the zero-sum stochastic game with the same dynamic as above, and scalar rewards rn
4
= mn · u.

Here “·” stands for the standard inner product in IRk. Denote this game by Γs(u), where s is the
initial state. The scalar stochastic game Γs(u), has a value, denoted vΓs(u), if

vΓs(u) = sup
π

inf
σ

liminf
n→∞

IEs
πσ(m̂n ·u)

= inf
σ

sup
π

limsup
n→∞

IEs
πσ(m̂n ·u) . (2)
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The value is known to exist for any game with finite state and action spaces (Mertens and Neyman,
1981). Furthermore, under Assumption 1 the value is independent of the initial state and can be
achieved in stationary policies (Filar and Vrieze, 1996). We henceforth simply write Γ(u) for the
average reward zero-sum game which reward is rn = mn ·u, and denote its value by vΓ(u).

3. Preliminaries

In this section we recall the basic results of approachability theory for SGs. In Subsection 3.2
we extend approachability theory by considering approximate approachability. A target set is said
to be approximately approachable if for every ε > 0 there exists a policy such that the distance
between the average vector-valued reward vector and the target set is asymptotically less than ε.
We prove that it suffices to consider finitely many steering directions in order to approximately
approach a target set. We discuss relevant types of optimality of RL algorithms in scalar games in
Subsection 3.3.

3.1 Approachability for Stochastic Games

We recall the basic results from Shimkin and Shwartz (1993) regarding approachability for known
stochastic games, which generalize Blackwell‘s conditions for repeated matrix games. Let

φ(π,σ)
4
=

IEs∗
π,σ(∑τ−1

n=0 mn)

IEs∗
π,σ(τ)

denote the average per-cycle reward vector, which is the expected total reward over the cycle that
starts and ends in the reference state, divided by the expected duration of that cycle. For any x 6∈ T ,
denote by Cx a closest point in T to x, and let ux be the unit vector in the direction of Cx − x, which
points from x to the goal set T . The following theorem requires, geometrically, that there exists a
policy π(x) such that the set of all possible (vector-valued) expected rewards is on the other side
of the hyperplane supported by Cx in direction ux. See Figure 3 for an illustration, the polygon
represents the set of all possible rewards when π(x) is used.

Theorem 6 (Shimkin and Shwartz, 1993) Let Assumption 1 hold. Suppose that for every point
x 6∈ T there exists a policy π(x) such that

(φ(π(x),σ)−Cx) ·ux ≥ 0 , ∀σ ∈ Σ . (3)

Then T is approachable by P1. An approaching policy is given as follows: If sn = s∗ and m̂n 6∈ T ,
play π(m̂n) until the next visit to state s∗; otherwise, play arbitrarily until the next return to s∗.

Intuitively, the condition in Equation (3) means that P1 can ensure, irrespectively of P2’s policy,
that the average per-cycle reward will be on the other side (relative to x) of the hyperplane that
passes through Cx and is perpendicular to the line segment that points from x to Cx. Note that this
hyperplane actually separates T and x when T is convex. We shall refer to the direction ux as the
steering direction from point x, and to the policy π(x) as the directional steering policy from x. The
approaching policy uses the following rule: between successive visits to the reference state, a fixed
(possibly stationary) policy is used. When in the reference state, the current average reward vector
m̂n is inspected. If this vector is not in T , then the steering policy that satisfies Equation (3) with
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x

Figure 3: An illustration of the approachability condition. The location of the current average re-
ward is x. The closest point to x in the target set is Cx. The polygon represents the set of all
possible expected reward when π(x) is played. It can be observed that π(x) ensures that
P1’s reward will be on the other side of the hyperplane perpendicular to the line segment
between Cx and x.

x = m̂n is selected for the next cycle. As a consequence the average reward is “steered” towards T ,
and eventually converges to it.

Recalling the definition of the projected game in direction u and its value vΓ(u), the condition
in Equation (3) may be equivalently stated as vΓ(ux) ≥ Cx · ux. Furthermore, the policy π(x) can
always be chosen as the stationary policy which is optimal for P1 in the projected game Γ(ux). In
particular, the directional steering policy π(x) depends only on the corresponding steering direction
ux.

For convex target sets, the condition of the last theorem turns out to be both sufficient and
necessary. Moreover, this condition may be expressed in a simpler form, which may be considered
as a generalization of the minimax theorem for scalar games (Blackwell, 1956). Given a stationary

policy g ∈ G for P2, let Φ(F,g)
4
= co({φ( f ,g)} f∈F), where co is the convex hull operator. The

Euclidean unit sphere in IRk is denoted by IBk.

Theorem 7 (Shimkin and Shwartz, 1993) Let Assumption 1 hold. Let T be a closed convex set in
IRk.

(i) T is approachable if and only if Φ(F,g)∩T 6= /0 for every stationary policy g ∈ G.

(ii) If T is not approachable then it is excludable by P2. In fact, any stationary policy g that
violates (i) is an excluding policy.

(iii) T is approachable if and only if vΓ(u) ≥ infm∈T u ·m for every u ∈ IBk.
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3.2 Approachability with a Finite Set of Steering Directions

Standard approaching policies, as outlined above, may involve an infinite number of steering di-
rections. The corresponding set of directional steering policies may turn out to be infinite as well.
For the purpose of our learning scheme, we shall require an approaching policy which relies on a
finite set of steering directions and policies. In this section we establish appropriate extensions of
the results surveyed above. We prove that using a finitely many steering directions to approach a
target set can indeed be done, possibly requiring to slightly expand the target set. Specifically, we
establish that if the condition in Equation (3) is satisfied for the set T , then for any ε > 0 there exists
a finite partition {U1,U2, . . . ,UJ} of the unit sphere IBk, and a corresponding set {π1,π2, . . . ,πJ} of
policies for P1, such that the required separation condition in Equation (3) may be satisfied within
ε precision for any u ∈U j by using the policy π j. In the following, let M be an upper bound on the
magnitude of the expected one-stage reward vector, so that ‖m(s,a,b)‖ < M for all (s,a,b) (‖ · ‖
denotes the Euclidean norm).

Proposition 8 Let Assumption 1 hold and suppose that the target set T ⊂ IRk satisfies the condition
in Equation (3). Fix ε > 0. Let U = {u1,u2, . . . ,uJ} be a set of unit vectors which are the centers of
open balls of radius ε/2M that cover the unit sphere IBk. Let π j be the (stationary) policy which is
optimal in the projected game Γ(u j). Then for any x 6∈ T , if the unit vector ux is closest to u j in U,
then

(φ(π j,σ)−Cx) ·ux ≥−ε , ∀σ ∈ Σ . (4)

The cardinality J may be chosen so that J ≤C(2M/ε)k, where C is a constant that depends only on
the dimension k.

Proof Let U = {u1, . . . ,uJ} be the prescribed set of unit vectors. A standard sphere packing argu-
ment shows that J need not be larger than the stated upper bound (see, e.g., Anthony and Bartlett,
1999). Let π j be an optimal policy for the projected game Γ(u j). By assumption, Equation (3)
holds for any x 6∈ T and associated unit vector ux. Let u j be the closest vector to ux in U . Rewriting
Equation (3) we have that

ux ·Cx ≤ inf
σ
{φ(π(x),σ) ·ux}

≤ sup
π

inf
σ
{φ(π,σ) ·ux}

= sup
π

inf
σ

{

φ(π,σ) · (u j +(ux −u j))
}

.

By construction, ‖u j − ux‖ < ε/2M so that for every pair σ ∈ Σ and π ∈ Π we have that ‖φ(π,σ) ·
(ui −ux)‖ ≤ ε/2.

ux ·Cx ≤ sup
π

inf
σ

{

φ(π,σ) ·u j
}

+ ε/2

= inf
σ

{

φ(π j,σ) ·u j
}

+ ε/2

≤ inf
σ

{

φ(π j,σ) ·ux
}

+ ε .

The optimality of π j in Γ(u j) was used in the first equality and the bound on ‖u j − ux‖ was used
again in the last inequality.

For a set T ⊂ IRk we define its ε-expansion, T ε, as T ε 4
= {x ∈ IRk : d(x,T ) ≤ ε}. It is now easy

to verify that Equation (4) suffices for approaching T ε, which leads to the following result.
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Theorem 9 Let Assumption 1 hold and suppose that T satisfies Equation (3). For any ε > 0 let
{u1, . . . ,uJ} be the unit vectors in Proposition 8, with corresponding directional steering polices
{π1,π2, . . . ,πJ}. Then the following policy approaches T ε, the ε-expansion of T : If sn = s∗ and
m̂n 6∈ T ε, then choose j so that um̂n is closest to u j (in Euclidean norm) and play π j until the next
visit to state s∗; otherwise, play arbitrarily.

Proof We aim to show that the stated policy satisfies the requirements of Theorem 6 with respect to
T ε. That is, for every x 6∈ T ε the policy π j which is optimal for the u j which is closest to x satisfies

(φ(π j,σ)−Cε
x) ·u

ε
x ≥ 0 , ∀σ ∈ Σ , (5)

where Cε
x is the closest point in T ε to x and uε

x is the unit vector from x to Cε
x . We first claim

that Cx = Cε
x + εuε

x, and hence ux = uε
x. Indeed, if this is not true then there is a point z in T such

that d(z,x) < d(Cε
x + εuε

x,x) = d(Cε
x ,x)+ ε. Let u′ denote the unit vector from x to z, we have that

zε = z−εu′ is in T ε. It follows that d(zε,x) = d(z,x)−ε, combining this with the above, we get that
d(zε,x) < d(Cε

x ,x) which contradicts the assumption that Cε
x is a closest point to x in T ε.

Next, observe that by Proposition 8 we have that

(φ(π j,σ)−Cx) ·ux ≥−ε , ∀σ ∈ Σ ,

but since Cx = Cε
x + εuε

x and ux = uε
x, (5) follows.

Remark 10 It follows immediately from the last theorem that the set T itself (rather than its ε-
expansion) is approachable with a finite number of steering directions if T −ε, the ε shrinkage of T
satisfies Equation (3). Equivalently, T is required to satisfy Equation (3) with the 0 on the right-hand
side replaced by ε.

For convex target sets the sufficient condition Equation (3) for approachability is also neces-
sary. This implies that every ε-expansion is approachable using a finite number of directions as per
Theorem 9. The following corollary is an immediate result of the above theorem and Theorem 7.

Corollary 11 Let Assumption 1 hold. A convex target set T is approachable if and only if for every
ε > 0 the set T ε can be approached by considering a finite number of directions as in Theorem 9.

3.3 Reinforcement Learning in Scalar Games

In this subsection we review RL for zero-sum stochastic games with scalar rewards. We define two
notions of approximate optimality in these games that will be useful in the sequel. The first type
of optimality is optimality of the expected reward in finite time and the second type is asymptotic
optimality of the learned policy. In both cases, the reference level for optimal performance is the
value of the game. The first type of optimality requires that the average reward is not much less than
the value of the game. The second type of optimality requires that the learned policy asymptotically
achieves an expected reward which is not much worse than the value of the game. We note that
a more ambitious goal may be to consider the Bayes envelope as in Mannor and Shimkin (2003)
instead of the value, but this is not pursued here.

Consider a scalar zero-sum stochastic game. Denote the scalar reward at time n by rn and the
value by v (which is defined as in Equation (2)). Similarly to the vector-valued case, r̂n denotes
the average reward by time n. Our first notion of optimality is in expectation, after finitely many
epochs.
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Definition 12 A learning algorithm π is ε-optimal in expectation from state s if there exists a deter-
ministic finite time N(ε) such that the expected average reward by time N(ε) satisfies

IEs
π,σr̂N(ε) ≥ v− ε , (6)

for every policy σ of P2.

There are several algorithms that are ε-optimal in expectation. For example, by carefully choos-
ing the parameters of the R–MAX algorithm of Brafman and Tennenholtz (2002) the optimality
requirement in Equation (6) is satisfied. Indeed, Brafman and Tennenholtz (2002) suggested a
model-based learning policy π of P1 that satisfies that for every ε,δ > 0 there exists a time N(ε,δ)
such that the expected average reward satisfies at time N(ε,δ) with probability at least 1−δ

IEπ,σr̂N(ε,δ) ≥ v− ε ,

for every policy σ of P2. By proper choice of parameters, the R–MAX algorithm yields an ε-optimal
in expectation algorithm. This can be done by running the R–MAX algorithm with ε′ = ε/2 and
δ′ = ε/2M, where M is a bound on the expected immediate reward. Another algorithm that is ε-
optimal in expectation is the Q-learning algorithm of Mannor and Shimkin (2002). An additional
assumption that is required there is that P2 plays every action infinitely often (the analysis follows
Kearns and Singh, 1999).

The next definition concerns the optimality of the learned policy and is of asymptotic nature. It
implies that the learned policy of P1 is almost optimal in the limit. Formally, a policy of P1 is a
mapping from all possible histories to the set of mixed actions of P1. Let πn denote the policy of P1
from time n onwards (in the definition below this policy depends on the entire history up to time n,
and the time axis is moved back n steps so that πn starts at t = 0).

Definition 13 A learning policy π of P1 is asymptotically ε-optimal in a scalar game if, for every
policy σ of P2, πn satisfies

liminf
n→∞

IEs∗
πn,σ ∑τ−1

t=0 rt

IEs∗
πn,στ

≥ v− ε Pπ,σ-a.s. (7)

The renewal time τ is as defined in Equation (1).

It should be noted that the requirement in Equation (7) is on the policy πn and not on the actual
reward obtained. Intuitively, the condition means that after enough time P1 cannot be surprised
anymore, namely no policy of P2 can decrease his (per cycle) payoff below the value of the game.

RL for average reward zero-sum stochastic games was devised along similar lines as RL for av-
erage reward Markov decision processes. A Q-learning based algorithm which combines the ideas
of Littman (1994); Littman and Szepesvári (1999) with those of Abounadi et al. (2002) was devised
by Mannor and Shimkin (2002). An additional assumption that was needed for the convergence
analysis there is that all actions of both players are used infinitely often in order to satisfy Equa-
tion (7). A model-based algorithm that is ε-optimal asymptotically can be suggested. By assuming
that all actions are played infinitely often a model of the stochastic game may be calculated and an
ε-optimal policy played, similarly to the R-MAX algorithm of Brafman and Tennenholtz (2002).
It should be noted that P2 may refrain from playing certain actions. Consequently, P1 may never
observe these actions and never learn the exact model of the game. This implies that unless we
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impose some restrictions on P2’s policy, the policy learned by P1 may be suboptimal. However,
P1 can only benefit if P2 does not play certain actions, since in that case P2’s play is constrained.
The topic of learning to play optimally in SGs when no restrictions are made on P2 calls for further
study.

In the special case of MDPs there are several algorithms that are ε-optimal in expectation (e.g.,
Kearns and Singh, 1998, 1999). Algorithms that are asymptotically optimal include ε-greedy Q-
learning (Singh et al., 2000) and actor-critic (Konda and Tsitsiklis, 2001).

4. The Multiple Directions Algorithm

In this section we introduce and prove the convergence of the MDRL (Multiple-Directions Rein-
forcement Learning) algorithm. We consider the model of Section 2, but here we assume that P1,
the learning agent, does not know the model parameters, namely the state transition probabilities
and reward functions. A policy of P1 that does not rely on prior knowledge of these parameters will
be referred to as a learning policy.

The proposed learning algorithm relies on the construction of the previous section of approach-
ing policies with a finite number of steering directions. The main idea is to apply a (scalar) learning
algorithm for each of the projected games Γ(u j) corresponding to these directions. Recall that each
such game is a standard zero-sum stochastic game with average reward. The required learning al-
gorithm for game Γ(u) should secure an average reward that is not less than the value vΓ(u) of that
game.

We now describe the MDRL algorithm that approximately approaches any target set T that
satisfies Equation (3). The parameters of the algorithm are ε and M, where ε is the approximation
level and M is a known bound on the norm of the expected reward per step. The goal of the algorithm
is to approach T ε, the ε expansion of T . There are J learning algorithms that are run in parallel,
denoted by π1, . . .πJ . Each of the J algorithms is responsible for learning to steer the reward in
a different direction. Each of the J algorithms is assumed to be an asymptotically ε/2-optimal
learning algorithm. The MDRL is described in Figure 4 and is given here as a meta-algorithm (the
scalar RL algorithms πi are not specified).

The algorithm is based on the idea of changing the control policy on arrivals to the reference
state s∗. When arriving to s∗, the learning agent checks if the average reward vector is outside the set
T ε. In that case, it switches to an appropriate policy that is intended to “steer” the average reward
vector towards the target set. The steering policy (π j) is chosen so that the steered direction (u j)
is close to the exact direction towards T . The intuition behind the algorithm and the proof is that
instead of steering in the current direction into T , a “close” direction, quantized out of a finite set
is used. By employing the same quantized directions often enough, the decision maker eventually
learns how to steer in those directions. Once the steering policy in each of the quantized directions
is learned, the decision maker can almost steer in the desired direction at every return to s∗, by
choosing a close enough quantized steering direction.

Theorem 14 Suppose that Assumption 1 holds and that the target set satisfies Equation (3). Then
the MDRL algorithm approaches T ε.

Proof Using the construction of Theorem 9 there are finitely many directions u1, . . . ,uJ that induce
J projected SGs. At every return to state s∗, one of the J projected games is played and algorithm
πi is run. If the i-th game is not played infinitely often then there exists τi after which the i-th
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Input: Target set T ; desired approximation level ε; a bound M on the expected
one step reward; a recurrent state s∗.

0. Divide the unit vector ball IBk as in Proposition 8 for approaching the ε/2
expansion of T . Let u1, . . .uJ be the chosen directions there (J = C(4M/ε)k).
Initialize J different ε/2-optimal asymptotically scalar algorithms, π1, . . . ,πJ .
Set n = 0.

1. If sn 6= s∗ play arbitrarily until sn = s∗.
2. (sn = s∗) If m̂n ∈ T ε goto step 1. Else let i = argmin1≤i≤J ‖ui −um̂n‖2.
3. While sn 6= s∗ play according to πi, the reward πi receives is ui ·mn.
4. When sn = s∗ goto step 2.

Figure 4: The MDRL algorithm.

algorithm is not played. Let τ1 be the maximum of all the times τi for i-s that were played finitely
often. Let I ⊆ {1, . . . ,J} be the indices of algorithms that are played infinitely often. Since each
πi is eventually almost optimal it follows that after some finite time τ′(ε/2)i each of the algorithms
almost achieves the maximal reward, that is for t > τ′(ε/2)i (7) holds with ε/2 instead of ε. Let
τ2 = maxi∈I τ′(ε/2)i. Let τ3 = max{τ1,τ2}. From time τ3 onward P1’s play is ε/2 optimal. Thus, we
can apply Theorem 9 so that T ε is approached starting from τ3. Fix δ > 0. Let τ4 be a large enough
time such that the effect of the first τ3 time epochs is not more δ in norm, i.e., | 1

τ4 ∑τ3−1
n=0 mn| < δ.

Since δ is arbitrary, by Theorem 9 the result follows.

Remark 15 In the algorithm below, when π j is not played, its learning pauses and the process
history during that time is ignored. Note however that some “off-policy” algorithms (such as Q-
learning) can learn the optimal policy even while playing a different policy. In that case, a more
efficient version of the MDRL may be suggested, in which learning is performed by all learning
policies π j continuously and concurrently.

5. The Current Direction Learning Algorithm

In this section we introduce and prove the convergence of the CDRL (Current Direction Reinforce-
ment Learning) algorithm. P1’s goal is the same as in Section 4 - to approach a given target set T .
P1 does not know the model parameters and aims to ensure the convergence of the average reward
vector to this set irrespectively of P2’s actions.

Instead of using several fixed steering directions while employing a scalar learning algorithm
for each of these directions separately, a single learning algorithm is used with the reward function
changing over time. The idea is to learn to play a scalar game whose reward is the projected average
reward on the direction towards the target set. Once a direction is fixed, the policy is to steer in that
direction towards the target set for a while. After a long enough time, the direction is replaced by
the new steering direction into the target set, and a new scalar learning algorithm is initiated.

We now describe the CDRL algorithm for approaching any target set T that satisfies Equa-
tion (3). The CDRL is described in Figure 5 and is given here as a meta-algorithm. The algorithm
is based on the idea of changing the control policy after a long enough time. Whenever a switch
occurs the new policy is intended to “steer” the average reward vector towards the target set.
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Input: Target set T ; Required precision ε; ε-optimal learning algorithm;
N(ε) from Definition 12.

0. Set m̂0 arbitrarily; n = 0.
1. Repeat forever:
2. If m̂n ∈ T ε play arbitrarily for N(ε) steps; n := n+N(ε).
3. Else let u = um̂n .
4. Play an ε-optimal in expectation learning algorithm with reward at time n

given by rn = u ·mn and parameter ε. Play the algorithm for N(ε) time
epochs; n := n+N(ε).

Figure 5: The CDRL algorithm.

Theorem 16 Fix ε > 0. Suppose that for every u ∈ IBk there exists an ε-optimal in expectation
algorithm for each projected SG, Γ(u). Assume that the target set satisfies Equation (3). Then T ε is
approached using the CDRL algorithm.

Proof (outline) The proof follows similarly to the more general Theorem 26 that is provided in the
appendix. Consider the time epochs τi = iN(ε), i = 1,2, . . .. If m̂τi 6∈ T ε it follows that

IE

(

( 1
N(ε)

τi+1−1

∑
n=τi

(mn −Cm̂τi
)
)

·um̂τi

∣

∣

∣
Fτi

)

≥−ε ,

where Ft is the sigma algebra generated until time t. Consequently,

IE

(

( 1
N(ε)

τi+1−1

∑
n=τi

(mn −Cε
m̂τi

)
)

·um̂τi

∣

∣

∣
Fτi

)

≥ 0 ,

where Cε
x is the closest point to x in T ε. A similar argument to that of Theorem 26 can be used to

show that d(m̂τi ,T
ε) → 0 (a.s.). The result for all t follows by the boundedness of the immediate

reward.

Remark 17 The CDRL algorithm was described above in extreme generality. There are several
possible refinements and improvements which depend on the specific scalar algorithm used and
on the domain of the problem. Specifically, knowledge is not assumed to be preserved from one
activation of the scalar algorithm to the other. One may be interested to transfer knowledge between
activations. This is especially natural for model-based algorithm in the spirit of Brafman and
Tennenholtz (2002), where estimation of the model is performed.

Remark 18 A variant of the CDRL algorithm in which the precision level ε is decreased with time
is described in the Appendix. It is shown there that ε can be slowly reduced to 0 so that the target
set T itself, rather than its ε-expansion, is approached.

6. Policy Mixing

Up to now we did not impose any restrictions on the directional steering policies that P1 can employ.
Suppose now that P1 may choose between a finite and given set of policies π1, . . . ,πJ . For simplicity
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we may restrict the policy changes to occur in renewal epochs to some reference state s∗. To motivate
this problem, one may consider an agent who has a few pre-programmed control policies. These
policies may have been found useful for different tasks in this environment or are just intelligent
guesses of reasonable policies. The agent wants to mix the policies in such a way so that the target
set is approached. The idea is to mix between the prescribed policies so that when steering in a
direction u the best policy among the J available policies is used. To choose the best such policy,
a Multi-Armed Bandit (MAB) algorithm is employed. We describe an algorithm in the spirit of
CDRL which we call SPRL (Specified Policies Reinforcement Learning).

If P1 knew the model parameters, P1 could choose the policy that is best in Equation (3) in the
current steering direction (out of the set of given policies). In that case it follows from Theorem 6
that the set T is approachable if for every point x 6∈ T there exists a policy πi, 1 ≤ i ≤ J, such that

(φ(πi,σ)−Cx) ·ux ≥ 0 , ∀σ ∈ Σ . (8)

In that case we say that T is approachable with π1, . . . ,πJ .
We set out to show that if T is approachable with π1, . . . ,πJ when the model is known then it is

approachable with π1, . . . ,πJ when the model is unknown. The following algorithm resembles the
CDRL algorithm in that every once in a while P1 changes the steering direction to best approach
T . In order to steer in the current direction we use appropriate algorithms for the adversarial MAB
problem, such as the Exp3.1 algorithm of Auer et al. (2002), as a policy selection mechanism. Recall
that in the adversarial MAB problem a decision maker is repeatedly required to decide between J
arms. When choosing arm i at time epoch n a reward of ri

n is obtained. The decision maker tries to
make sure that its cumulative reward is close to the one obtained at the best arm. We assume that a
MAB arm selection algorithm, π, is defined by the following operations:

1. InitMAB(J) - Initialize the parameters of MAB with J arms.

2. GetArmMAB() - Returns the arm a that MAB wants to sample next.

3. U pdateMAB(i,r) - Informs MAB the latest reward r of arm i.

The dynamics of every algorithm for the MAB problem are described as follows. First, each MAB
algorithm is initialized. At every time epoch n, GetArmMAB is used for picking an arm in and a
reward rn = rin

n is obtained. U pdateMAB(in,rn) is used to update the algorithm with the knowledge
of the obtained reward. In the adversarial MAB formulation, there are two players - P1 and P2. P1
chooses which arm to play and simultaneously (not knowing P1’s choice) P2 chooses how much
reward to give to P1 for every possible choice of P1. The basic requirement from a MAB algorithm
is that for every ε > 0 there exists N(ε) such that

IEπ,σ
1

N(ε)

N(ε)−1

∑
n=0

rn ≥ max
1≤ j≤J

N(ε)−1

∑
n=0

r j
n − ε for every policy σ of P2, (9)

where the expectation is taken over both player’s policies, as the resulting policy (for both players)
may be stochastic. Equation (9) means that the expected average reward by time N(ε) is almost as
high as the average reward that would have been obtained if P1 would have known the reward of
each arm in advance. Note that it is assumed that P2 decides on P1’s reward for every action (arm)
chosen at every time epoch. The Exp3.1 algorithm satisfies Equation (9). Moreover, N(ε) depends
only on ε, J and a bound on the immediate reward.
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To state the SPRL algorithm we shall require the concept of ε-mixing time (see Brafman and
Tennenholtz, 2002). The ε-mixing time K is a (large enough) number so that for every 1 ≤ i ≤ J,
every policy σ of P2, and every initial state s,

IEs
πi,σ

1
K

K−1

∑
n=0

rn ≥ inf
σ′

IEs∗
πi,σ′ ∑τ−1

t=0 rt

IEs∗
πi,σ′τ

− ε ,

where τ is the stopping time defined in Equation (1). Having an ε-mixing time implies that the
expected reward starting from any initial state is at least as high (up to ε) as the worst case average
reward starting from s∗. It follows by Lemma 3.4 from Shimkin and Shwartz (1993) that when
Assumption 1 holds then there exists K0 such that the expected return time to s∗ from every state
and every pair of policies is bounded by some K0. By choosing K ≥ K0M/ε the above condition
is satisfied (M is a bound on the expected one stage reward). The basic requirement of the SPRL
algorithm is that K, or an upper bound on it, is provided.

Input: Required precision ε; set of policies π1, . . . ,πJ; ε/2-mixing time K;
a recurrent state s∗.

0. n = 0; play arbitrarily until sn = s∗.
1. Repeat forever
2. If m̂n ∈ T ε play arbitrarily for K steps.
3. Else let u = um̂n .
4. InitMAB(J).
5. Repeat N(ε/2) times:
6. i = GetArmMAB.
7. Play πi for K epochs, let the total reward over the K epochs be mtot ,

set r = mtot ·u; n := n+N(ε/2).
8. U pdateMAB(i,r).

Figure 6: The SPRL algorithm - switching between a given small set of policies.

Theorem 19 Suppose that T is approachable with π1, . . .πJ when the model is known. Then the
SPRL algorithm described in Figure 6 approaches T ε.

Proof The proof is based on showing that by using the SPRL algorithm Equation (3) holds for the
expanded target set T ε. Consider the reward in the epochs τi = iKN (i = 1,2, . . .), for N = N(ε/2).
We claim that the vector valued reward at those points satisfies Blackwell‘s condition. By using the
SPRL algorithm it follows that either m̂τi ∈ T ε or that

IE

(

(∑τi+1−1
n=τi mn

KN
−Cm̂τi

)

·um̂τi

∣

∣

∣
Fτi

)

≥−ε a.s. , (10)

where Cm̂τi
is the closest point to m̂τi in T and Fn is the sigma algebra up to time n. Fix i and let

rn
4
= (mn −Cm̂τi

) · um̂τi
for τi ≤ n ≤ τi+1 − 1. By our choice of playing an ε/2 MAB algorithm it
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follows that

IE
sτi
π,σ

(

1
KN

τi+1−1

∑
n=τi

rn

)

= IE
sτi
π,σ

(

1
N

N−1

∑̀
=0

1
K

τi+(`+1)K−1

∑
n=τi+`K

rn

)

≥ max
1≤ j≤J

1
N

N−1

∑̀
=0

1
K

IE
sτi+`K
π j,σ

(

τi+(`+1)K−1

∑
n=τi+`K

rn

)

− ε/2 . (11)

Since K is an ε/2-mixing time we have that for every 1 ≤ j ≤ J and 1 ≤ ` < N,

IE
sτi+`K
π j,σ

1
K

τi+(`+1)K−1

∑
n=τi+`K

rn ≥ inf
σ′

IEs∗
π j,σ′ ∑τ−1

t=0 rt

IEs∗
πi,σ′τ

− ε/2 .

Since this holds for every 1 ≤ j ≤ J, we substitute this in Equation (11) to obtain

IE
sτi
π,σ

(

1
KN

τi+1−1

∑
n=τi

rn

)

≥ max
1≤ j≤J

inf
σ′

IEs∗
π j,σ′ ∑τ−1

t=0 rt

IEs∗
πi,σ′τ

− ε .

Using the definitions of rn and Cm̂τi
, Equation (10) follows. The rest of the proof follows almost

exactly as Theorem 16 and is therefore omitted.
Several comments are in order.

Remark 20 We note that even if πi are learning policies rather than a-priori fixed ones the algo-
rithm still works. The only thing that matters in this case is that the strategies converge after some
finite stochastic time. This suggests the following algorithm. Learn the optimal policy for several
directions, and use the SPRL algorithm for mixing the learned strategies.

Remark 21 It is possible to obtain Theorem 19 with ε = 0. This can be done by a limiting pro-
cedure similar to Theorem 26 with the additional complication that both the ε-mixing time and the
time required by the MAB algorithm increase. It can be shown that for certain MAB algorithms
N(ε) ∼ 1

ε2 and that the behavior of the mixing time as a function of ε is K(ε) ∼ 1
ε . The total time is

approximately O( 1
ε3 ), and the technique of Theorem 26 may be employed.

7. On-line Selection of Target Sets

In many problems of interest the target set that we wish to approach may itself depend on the
unknown model parameters, so that it cannot be explicitly prescribed a-priori to the learning agent.
The simplest and most common instance of this situation is the simple maximization of a scalar
objective function: this corresponds to a target set of the form [a,∞), with a required to be as large
as possible. We generalize this situation to the multi-objective case by considering a nested family
of possible target sets, and assume that the agent’s task it to approach the minimal target set, namely
the smallest possible one for the actual model at hand. The major difficulty in applying the steering
approach now is that the required steering direction is not known, as it may be different for each set
in the given family. We address this difficulty by maintaining an estimate of the smallest set that
can be approached, which is used as a target for steering, and updating this estimate according to
observations. In the latter part of this section we apply these results to solve the problem of learning
optimal policies in constrained stochastic games. Throughout this section we assume that all target
sets are convex.
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7.1 Nested Target Sets

Consider an increasing class of convex sets {Tα}α∈L , indexed by the ordered set of indices L such
that α < β implies Tα ⊆ Tβ. For simplicity, we may consider L = IR and assume that {Tα} is
continuous.2 The objective is to approach the smallest possible set in this class, that is to approach
the smallest possible Tα. Recall that the third part of Theorem 7 claims that a convex target set
is approachable if and only if for every u ∈ IBk, vΓ(u) ≥ infm∈T u ·m. Consider a direction u, and
let v(u) = vΓ(u) denote the value of the game in this direction. Let α(u,v(u)) denote the smallest
(or infimal) value α for which v(u) ≥ infm∈Tα u ·m. (Note that we define α(u,v(u)) for any value
v(u), since below we shall use an estimate to vΓ(u) rather than the exact value). Then, according to
Theorem 7 the set Tα may be approachable only if α ≥ α(u,vΓ(α)), and the smallest approachable
set is

T ∗ =
⋂

u∈IBk

Tα(u,vΓ(u)) = Tα∗ ,

where α∗ = supu∈IB α(u,vΓ(u)). See Figure 7 for a geometric illustration of the problem.

Tα1

Tα2

Tα3

vΓ(u)

u

Figure 7: A two dimensional Illustration of nested sets. In the illustration α1 < α2 < α3 so that
Tα1 ⊂ Tα2 ⊂ Tα3 . For the direction u the value of the projected game Γ(u) is such that
α(u,vΓ(u)) = α2. As a result a target Tα set may be approachable if α ≥ α2. In this case
Tα3 may be approachable, but Tα1 is not approachable.

We now suggest a modification of the MDRL algorithm for approximately approaching T ∗.
Recall that the MDRL algorithm is based on switching between a grid of J steering directions
u1, . . . ,uJ . For each direction u j an asymptotically ε-optimal learning algorithm π j is applied. In

2. Continuity here is induced by the metric, implying that the distance between sets is small when the indices are close.
Formally, we require that if αk → α then supx∈Tα∪Tαk

infy∈Tα∩Tαk
d(x,y) → 0.

344



MULTI-CRITERION REINFORCEMENT LEARNING

the original MDRL algorithm some directions may be encountered finitely many times so that the
learned directional steering policy may be suboptimal. Since T is not prescribed and should be
estimated on-line, we will impose exploration in each of the J steering directions. Fix a direction
u j. Let ṽ(u j)n be the estimate by time n of vΓ(u j). We require that the estimate is not too pessimistic.
That is,

liminf
n→∞

ṽ(u j)n ≥ vΓ(u j)− ε Pπ j,σ − a.s , (12)

where π j is the learning policy when steering in direction u j, σ is P2’s policy, and Equation (12)
holds for all σ. We also require that for every π j,

lim
n→∞

ṽ(u j)n exists Pπ j,σ − a.s. (13)

This requirement is not essential, but simplifies the analysis and is fulfilled by all the learning
algorithms we are aware of. We also assume that the estimate of the value is not too optimistic and
matches P2’s policy in the following sense:

liminf
n→∞

(

IEs∗
πn,σ ∑τ−1

t=0 rt

IEs∗
πn,στ

− ṽ(u j)n

)

≥−ε Pπ j,σ-a.s , (14)

for every policy σ of P2 (τ is the renewal time from Equation (1)). Intuitively, Equation (14) means
that P1’s policy guarantees an expected reward which is not much worse than the estimated value
ṽ(u j)n. Without Equation (14), the target set may not be estimated correctly, and the steering di-
rection may be wrong. All three assumptions Equation (12)-(14) are satisfied by Q-learning for
average reward games of Mannor and Shimkin (2002) under mild additional assumptions on P2’s
play (the assumption there was that every action is either played a non vanishing fraction of the
times or finitely many times, but the fraction of times may not alternate between 0 and something
bigger than 0). The above requirements may also be seen to be satisfied by model-based learning
algorithms under the assumption that all actions by P2 are played infinitely often. We note that
ṽ(u j)n in Equation (12) may be larger than the true value vΓ(u j). The reason for that is that ṽ(u j) is
an estimate which is based on the observations. If P2 refrains from playing certain actions (which
are worst-case in Γ(u j)) then P1 cannot, and need not, take these action into consideration.

In Figure 8 we describe a modified version of the MDRL algorithm. Essentially we add to the
MDRL algorithm a small probability of exploration on each return to the reference state s∗. Ex-
ploration is made uniformly over the J available directions. For each direction ui (all directions
are chosen comparatively often due to the exploration) an index is maintained for the value of the
projected game. This index represents the current estimate of α(u,vΓ(u)). The goal is to approach
an “almost” minimal set. The steps of the algorithm are very similar to the MDRL algorithm from
Figure 4. The differences are the persistent exploration that is performed continually (step 2 of the
algorithm) and the fact that the estimated target set replaces the true (unknown) target set. Explo-
ration is made when either m̂n is inside the estimated target set (and therefore the decision maker
does not need to steer in any direction), or with some small probability when returning to s∗. The
latter exploration is needed in order to guarantee that the estimate of the target set is eventually con-
sistent. The estimate of the target set is based on estimating the index that each of the J projected
games and taking the maximal index to be the current estimate of the index of the target set. We
wish to approach the set Tα with minimal index that is approachable. The estimate of the index by
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time n is denoted by indmaxn and equals

indmaxn
4
= max

1≤i≤J
α(ui, ṽ(ui)n).

We take the maximal index (over the J available directions), because if α < α(ui, ṽ(ui)n) for some i
it implies that, according to the current estimate, Tα is not approachable for α < α(ui, ṽ(ui)n). The
estimate of the target set by time n is

T̃n = Tindmaxn . (15)

For every ε > 0 define the maximal index indmax(ε) 4
= max1≤i≤J α(ui,vΓ(ui)− ε). The target

set P1 tries to approach is Tindmax(ε). The modified MDRL algorithm from Figure 8 approaches the
set T ε

indmax(ε), which is the ε-expansion of Tindmax(ε).

Input: Desired approximation level ε; a set class {Tα}α∈L ; a bound M on the
expected one step reward; a bound N on the expected renewal time to s∗.

0. Divide the unit vector ball IBk as in Proposition 8 for approaching the ε/3
expansion of any target set. Let U = u1, . . . ,uJ be the chosen directions.
Initialize J different asymptotically ε/3-optimal scalar algorithms, π1, . . . ,πJ

that satisfy Equation (14).
1. Choose a random direction ui ∈U and play πi until sn = s∗.
2. (sn = s∗) If m̂n ∈ T̃n goto step 1.

Else with probability δ = ε/(3MN) goto 1.

3. Let u = m̂n−C(T̃n,m̂n)
‖m̂n−C(T̃n)‖

. (C(T,x) denotes the closest point in T to x.)

4. Let i = argmin1≤i≤J ‖u−ui‖.
5. While sn 6= s∗ play according to πi, the reward πi receives is ui ·mn.
6. When sn = s∗ goto step 2.

Figure 8: The modified MDRL for unprescribed target sets.

The following Theorem claims that T ε
indmax(ε) is approached using the modified MDRL. Since

we assume that the class {Tα} is continuous in α, by taking ε small enough we can practically get
as close as we wish to T .

Theorem 22 Suppose that Assumption 1 holds and that the target set satisfies Equation (3). Further
assume that each scalar learning algorithm satisfies Eqs. (12), (13), and (14), where Equation (12)
and Equation (14) are satisfied with ε/3 instead of ε. Then T ε

indmax(ε) is approached using the
modified MDRL algorithm from Figure 8.

Proof (outline) Exploration is persistent in all directions. By the definition of the algorithm, ex-
ploration cannot cause more that ε/3 drift away from the target set. Since each algorithm satisfies
Equation (14) and since the estimate ṽ(u j)n converges to a limit by Equation (13) it follows that from
some (random) time on P2’s expected reward when steering in direction j is up to ε/3 as high as
limn→∞ ṽ(u j)n. By Equation (12) and Equation (13) the limit of ṽ(u j)n is not less than vΓ(u j)−ε/3.
It follows that from some (random) time on the estimate of T̃n almost does not change (more specif-
ically, we assume that Equation (13) holds so that ṽ(u j)n converges. From some random time on,
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all the J estimates ṽ(u j)n converge. By the continuity of Tα in α, it follows that the set T̃n converges
to some, random, T̃∞). After that time - the same analysis as in Theorem 14 may be performed.

There is a special case in which there is no need to perform the exploration for estimating ṽ(ui)n.
This is the case where the sets in the target set class are balls around a target point. Namely, if there
is some point x0 such that for every α in L there is a number γ such that Tα is a ball with radius
γ around x0. The steering directions is always towards x0 and is the same for all the candidate
target sets. Consequently, the MDRL algorithm does not require any changes, and exploration is
not required.

7.2 Constrained Stochastic Games

A specific case of interest is the case of constrained optimization which has been extensively ex-
plored for MDPs (see Altman, 1999, and references therein). In this setup the decision maker
obtains in every time step both reward and additional variables. The objective of the decision maker
is to maximize its average reward r̂n given that some additional average variables ĉ1

n, . . . , ĉ
k
n satisfy

the constraints ĉi
n ≤ c̄i, i = 1, . . . ,k. The policy of P2 remains unconstrained and arbitrary. The

immediate reward vector in this game is comprised of one coordinate which is the actual scalar
reward and the remaining k coordinates that are the constraints. The maximization of the reward is
performed on a sample path, so the average reward should be optimal almost surely. For zero-sum
stochastic games where P1 tries to maximize the average reward subject to the constraints it was
shown by Shimkin (1994) that under Assumption 1, and provided that the constraints can be satis-
fied by some policy, there exists a value v. This implies that P1 can guarantee that liminfn→∞ r̂n ≥ v
and limsupn→∞ ĉn ≤ c̄ (with the last inequality a vector inequality) almost surely. It was also shown
there that P1 cannot guarantee a reward higher than v while satisfying the constraints.

We now show that the constrained optimization problem may be solved by the framework of the
nested target sets. Let the candidate set class {Tα} be defined in the reward-constraints space:

Tα = {(r,c1 . . . ,ck) : r ≥−α,c1 ≤ c̄1, . . . ,ck ≤ c̄k} ⊆ IRk+1 .

The α belongs to the index set L = IR. It obviously holds that if α < β then Tα ⊂ Tβ and that Tα
is convex for all α. Continuity of the class {Tα} holds as well. Using the MDRL algorithm with
persistent exploration we can find the minimal set to be approached. Since we only use a finite grid
of directions as in the MDRL algorithm, the guaranteed reward is v−ε, with constrains satisfied up
to ε. But since ε is arbitrary we can effectively get as close as we want to the value. We summarize
the results in the following proposition.

Proposition 23 Assume that some policy satisfies limsupn→∞ ĉn ≤ c̄. Suppose that the modified
MDRL algorithm is used for finding the optimal policy in a constrained SG, and that the assumptions
of Theorem 22 are satisfied. Then liminfn→∞ r̂n ≥ v− ε and limsupn→∞ ĉn ≤ c̄ + εe where the last
inequality is in vector notations, and e is a vector of ones.

We now describe more explicitly the estimation of the target set for the constrained optimiza-
tion problem. We denote the first coordinate of a unit vector in IBk+1 by ur and the rest of the k
coordinates by uc. Suppose that at time n we are given an estimate indmaxn of the value v. By the
geometry of the problem it follows that for any point (r,c), the closest point in T̃n is (r′,c′1,c

′
2, . . . ,c

′
k)

where r′ = max{r, indmaxn} and c′i = min{ci,ci}. Because of the special structure of the target set
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and its convexity, the set of directions which may possibly be steering directions (in the k + 1 unit
ball) is given by

SD = {(ur,c1, . . . ,ck) ∈ IBk+1 : ur ≥ 0,c1 ≤ 0, . . . ,ck ≤ 0}. (16)

To observe that this is the set of possible steering directions, we first note that ur ≥ 0 since there is
no point in trying to reduce the reward. Indeed, it is easily seen that otherwise infm∈Tα u ·m = −∞
for all α, so that α(u,v(u)) =−∞. Second, if a constraint is satisfied then the steering direction will
not attempt to violate it. It therefore suffices to consider steering directions, u1, . . . ,uJ , that belong
to SD. We now show how to estimate the index of the target set given current estimates of the value
for each of the projected games.

Proposition 24 Given directions u1, . . . ,uJ and estimates ṽ(u j), 1 ≤ j ≤ J, the estimated index of
the target set T̃n is given by

indmaxn = − min
1≤ j≤J,ur

j>0

ṽ(u j)n −uc
j · ( c̄1, . . . , c̄k)

ur
j

,

Proof By the geometry of the problem each direction u j and corresponding estimate of the value
ṽ(u j) define a “half space” which must intersect with the estimated target set (by Theorem 7). This
half space is given by: {(r,c) ∈ IR× IRk : (r,c) · (ur

j,u
c
j) ≥ ṽ(u j)}. The target set is of the form

{(r,c) : r ≥ rmax(u),c ≤ c̄}, where rmax(u) the maximal scalar reward which can be achieved by
a specific steering direction u while satisfying the constraints, for an illustration see Figure 9. It
follows that rmax is in fact the index α in the construction of the candidate target set class. Since
ur ≥ 0 and uc ≤ 0 it follows that

(ur,uc) · (rmax(u), c̄1, . . . , c̄k) = ṽ(u) ,

so that (assuming ur 6= 0)

rmax(u) =
ṽ(u)−uc · ( c̄1, . . . , c̄k)

ur .

Overall, the maximal reward that can be achieved is

rmax = inf
{u∈IBk+1:ur>0,uc≤0}

rmax(u) . (17)

The result follows by considering finitely many directions and recalling that the index is minus rmax.

The last two propositions imply that we can solve constrained SGs, and in particular, constrained
MDPs. To the best of our knowledge this is the first RL algorithm that solves constrained SGs.
Regarding constrained MDPs, we note that one can envision a model-based algorithm (in the spirit
of the E3 algorithm of Kearns and Singh, 1998), however such an algorithm would work only for
small problems. Our algorithm may be applied in a model-free setup, as long as underlying model-
free scalar RL algorithms can be used. We also comment that the Q-learning style algorithm of
Gábor et al. (1998) searches for the optimal deterministic policy, while the optimal one may be
stochastic. An example for the solution of constrained MDPs is provided in Section 9.2.
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rr1

c

vΓ(u)

r2

c

r3u

Figure 9: A two dimensional Illustration of finding the value for a constrained game. The x axis is
the reward and the y axis is the constraint. The value of the game projected on direction
u is vΓ(u) which implies that the achievable reward is at most r2, and possibly less. An
average reward of r1 is not achievable since the set {(r,c) : r ≥ r1,c ≤ c} does not satisfy
Theorem 6 for the direction u.

Remark 25 For general target sets it is possible to devise a similar algorithm to the above where
the target set is estimated on-line. For example, one can estimate the game parameters and derive a
candidate for the target set based on that estimate. We note that as long as the estimate is consistent
(i.e., the final estimate is the actual set to be approached) then schemes which are based on MDRL
or CDRL will approach the target set. For example, one may consider approaching the convex
Bayes envelope (Mannor and Shimkin, 2003) to arrive at a optimal on-line algorithm for stochastic
games. For convex sets there is a particularly interesting possibility of learning the support function
(Rockafellar, 1970). Recall that a convex set T can be written as

T =
⋂

u∈IBk

{x : u · x ≥ fT (u)} ,

where the function fT (u) : IBk → IR is the support function of T , which is defined as fT (u)
4
=

infy∈T u · y. The steering direction can be characterized as the maximizer of fT (u)−u · x (Mannor,
2002). Now, if fT (u) can be learned somehow then instead of the true unknown steering direction
an approximate steering direction which the maximizer of the f̃T (u)− u · x, where f̃T is the esti-
mate of fT , can be used. This approach may prove useful when the support function has a simple
representation.

349



MANNOR AND SHIMKIN

8. Multi-Criterion MDPs

In this section we briefly discuss multi-criterion MDPs. These models may be regarded as a special
case of the stochastic game model that was considered so far, with P2 eliminated from the problem.
We shall thus only outline the main distinctive features of the MDP case.

Both the MDRL algorithm from Section 4 and the CDRL algorithm from Section 5 remain
essentially the same. Their constituent scalar learning algorithms are now learning algorithms for
average-reward MDPs. These algorithms are generally simpler than algorithms for the game prob-
lem. Examples of optimal or ε-optimal algorithms are Q-Learning with persistent exploration (Bert-
sekas and Tsitsiklis, 1995), actor-critic schemes (Sutton and Barto, 1998), the E 3 algorithm (Kearns
and Singh, 1998), and others. Additionally, it should be noted that the steering policies learned and
used within the MDRL algorithm may now be deterministic stationary policies, which simplifies
the implementation of this algorithm.

Working with a finite number of specified policies as in Section 6 is particularly simple. In
this case all that P1 needs to do is to estimate the average reward vector that each policy yields.
P1 can attain every point in the convex hull of the average per policy reward vectors by mixing the
strategies appropriately. In the absence of an adversary, the problem of approaching a set in a known
model becomes much simpler. In this case, if a set is approachable then it may be approached using
a stationary (possibly mixed) policy. Indeed, any point in the feasible set of state-action frequencies
may be achieved by such a stationary policy (Derman, 1970). Thus, alternative learning schemes
that do not rely on the steering approach may be applicable to this problem.

9. Examples

Two brief examples will be used to illustrate the above framework and algorithms. In Subsection 9.1
we show what sample paths of the MDRL algorithm look like for the two dimensional temperature-
humidity problem from the introduction. In Subsection 9.2 we solve on-line a queuing problem
which is modelled as a constrained MDP.

9.1 The Two-Dimensional Temperature-Humidity Problem

Recall the humidity-temperature example from the introduction. Suppose that the system is mod-
elled in such a way that first P1 chooses a temperature-humidity curve by, say, deciding if to activate
heater/cooler or humidifier/dehumidifier a-priori. Then Nature (modelled as P2) chooses the exact
location on the temperature-humidity curve by choosing the weather that affect the conditions in
the greenhouse. Essentially, P1 chooses the set where the immediate rewards lie in and P2 chooses
the exact location of the reward in that set. In Figure 10(a) we show the target set T and three
different temperature-humidity curves (these curves are representative curves). Geometrically, P1
chooses the curves where the reward belongs to (each defined by a certain policy of P1 - f0, f1, f2),
and P2 chooses the exact location. Additional zero mean with unit variance noise was added to
each reward entry. It so happens that there is no stationary policy for P1 which guarantees that the
average reward is in T , regardless of P2’s actions. We implemented an MDRL algorithm with a
“dense” grid of only nine directions. In each direction a version of Littman‘s Q-learning (Littman,
1994), adapted for average cost games, was used (Mannor and Shimkin, 2002). P2’s policy was
adversarial, and it tried to get the average reward away from the target set. Three sample paths of
the average reward for 100,000 epochs that were generated by the MDRL algorithm are shown in
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Figure 10(b). Each sample path starts at ’S’ and finishes at ’E’. It can be seen that the learning
algorithm pushes towards the target set so that the path is mostly on the edge of the target set. Note
that in this example a small number of directions was quite enough for approaching the target set.
Since the convergence was so fast it made no sense to use the CDRL algorithm, though we would
expect it to work well in this case.
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(a) Problem dynamics for three different strategies
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Figure 10: (a) Greenhouse problem dynamics. (b) Three sample paths from ’S’ to ’E’.

9.2 Constrained Optimization of a Queue

In this section we consider the model of a queue with varying service rate. Suppose that there is a
queue of buffer length L. Messages arrive to the queue at a rate of µ. P1 controls the service rate
which means that if the queue is not empty then a message leaves the queue with probability an. The
state of the system is the number of messages in the queue S = {0,1,2, . . . ,L}. The state transition
probability satisfies

P(sn+1|sn,a) =































(1−µ)a if L ≥ sn ≥ 1 and sn+1 = sn −1,
µa+(1−µ)(1−a) if L > sn ≥ 1 and sn+1 = sn,
µ+(1−µ)(1−a) if sn+1 = sn = L,
µ(1−a) L−1 ≥ if sn ≥ 0 and sn+1 = sn +1,
1−µ(1−a) if sn+1 = sn = 0,
0 otherwise.

The reward of P1 is a function of the number of vacant places in the queue. For simplicity we
assumed that rn = c(L− sn) where c is a positive constant. P1’s objective is to maximize the reward
it obtains. This is equivalent to minimizing the average queue length. P1 may affect the state
transitions through change of the service rate an ∈ {aL,aH}. The service constraint of P1 is to have
the average service rate ân lower than some pre-specified constant c0. The optimization problem we
have is

max r̂n
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Figure 11: A sample path (a) and rmax estimation (b) for a run of the modified MDRL for the
constrained queue problem, c0 = 0.75. Note that rmax converged to 4.02.

s.t. ân ≤ c0 .

Note that the maximum should be attained per sample path and may be achieved by a stationary
policy (e.g., Altman, 1999). Moreover, it can be shown that there exists an optimal policy with at
most one randomization. We used the modified MDRL algorithm for solving the above problem
for different values of c0. The parameters of the problems were µ = 0.5, L = 9, c = 0.5, δ = 0.01
(exploration rate in stage 2 of the modified MDRL algorithm from Figure 8), aL = 0.5, aH = 0.8,
and the number of steering directions was 10. For three values of c0 we show in Figures 11-13 the
sample path (average reward and average constraint) on the left side and the estimation of rmax over
time as per Equation (17) on the right side. The final estimate of the target set is also drawn for
each sample path. The average vector-valued reward typically converges to the corner of the target
set and pretty much stays there with random fluctuations caused by the exploration. The estimation
of rmax is quite stable and tends to converge. As expected, the reward increases as the constraint
becomes less stringent.

10. Conclusion

We have presented learning algorithms that address the problem of multi-objective decision making
in a dynamic environment, which may contain arbitrarily varying elements, focusing on the long-
term average reward vector. The proposed algorithms learn to approach a prescribed target set in
multi-dimensional performance space, provided this set satisfies a certain geometric condition with
respect to the dynamic game model. For convex sets, this sufficient condition is also necessary.
The algorithms we suggested essentially rely on the theory of approachability for stochastic games,
and are based on the idea of steering the average reward vector towards the target set. We then
extended the algorithms to the case of a target set which is not prescribed but rather may depend on
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Figure 12: A sample path (a) and rmax estimation (b) for a run of the modified MDRL for the
constrained queue problem, c0 = 0.65. Note that rmax converged to 3.92.
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Figure 13: A sample path (a) and rmax estimation (b) for a run of the modified MDRL for the
constrained queue problem, c0 = 0.55. Note that rmax converged to 3.45.

the parameters of the game. This was done by requiring an order relation between candidate target
sets or by assuming that the set can be learned consistently. Specifically, we showed that optimal
learning policies in constrained MDPs and constrained games may be learned using the proposed
schemes. It should be noted that the proposed schemes are in fact algorithmic frameworks, or meta-
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algorithms, in which one can plug-in different scalar learning algorithms, provided they satisfy
the required convergence properties. All results are developed under the single-state recurrence
assumption (Assumption 1), with possible relaxations outlined in Remarks 1 and 2.

Several issues call for further study. First, the algorithmic framework we presented can undoubt-
edly be improved in terms of convergence speed and memory complexity. For example, a reduction
of the number of steering directions used in the MDRL algorithm is of practical interest for both
convergence speed (less things to learn) and memory requirement (less policies to store in memory).
In some cases, especially when the requirements embodied by the target set T are not stringent, this
number may be quite small compared to the conservative estimate used above. A possible refine-
ment of the MDRL algorithm is to eliminate directions that are not required, perhaps doing so
on-line. Second, specific algorithms may be devised for the special problems of constrained MDPs
and constrained SGs which are simpler and with improved convergence rates. Third, the perfor-
mance criteria considered here were solely based on the long-term average reward. It should be of
practical interest to extend this framework to an appropriately windowed or discounted criterion,
that gives more emphasis to recent rewards. Finally, it should be challenging to apply the proposed
framework and algorithms to realistic learning problems. An interesting application class is related
to communication networks, with their multiple QoS requirements and averaged performance crite-
ria. We note that the average reward is the criterion of interest is such applications, and that the high
rate of data makes our algorithms particularly useful (see Brown, 2001). Such applications would
undoubtedly require further attention to issues of computational complexity and convergence rates.

Acknowledgments

This research was supported by the fund for the promotion of research at the Technion. We are
indebted to three anonymous referees for thoughtful remarks and for significantly improving the
presentation of this work. S.M. would like to thank Yishay Mansour, Eyal Even-Dar, and Ishai
Menache for helpful discussions.

Appendix A.

In this appendix we discuss a generalization of the CDRL algorithm and prove that it approaches
T rather than the ε expansion of T . Recall that in the CDRL algorithm (see Figure 5) an accuracy
parameter ε was provided. The algorithm progressed in blocks where in each block a direction
is fixed for a duration of N(ε). In this N(ε) duration the vector-valued reward is steered towards
the target set T using an ε-optimal in expectation learning algorithm. The following algorithm is
a modification of the CDRL algorithm where we slowly take ε to 0. As before, we denote by
N(ε) the time required for the learning algorithm to achieve an ε optimal reward in expectation (see
Definition 12).

Theorem 26 Suppose that for every ε > 0 there exists an ε-optimal in expectation algorithm for
each projected SG. Suppose further that N(ε) has polynomial dependence in 1/ε, and assume that
the target set satisfies Equation (3). Then T is approached using the modified CDRL algorithm.

Proof We note that we cannot use Theorem 6 or any of its extensions from Mannor and Shimkin
(2000) since a stopping time (in which steering strategies are switched) which is uniformly bounded
is not provided. We therefore use a direct argument. It suffices to prove that T η is approached for
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Input: Target set T ; ε-optimal learning algorithm with polynomial dependency N.
0. Set m̂0 arbitrarily; i = 1; n = 0.
1. Repeat forever:
2. Set εi = 1

i .
3. If m̂n ∈ T play arbitrarily for N(εi) steps; n := n+N(εi).
4. Else let ui = um̂n .
5. Play an εi-optimal in expectation learning algorithm with reward at time n

given by rn = ui ·mn and parameter εi. Play the algorithm for N(εi) time
epochs; n := n+N(εi).

6. Set i = i+1.

Figure 14: The modified CDRL algorithm.

every η > 0 (Mannor and Shimkin, 2000). Fix η > 0.
Let τ0 = 0 and define τi = τi−1 + N(εi) for i > 0. Let the polynomial dependence of the execution
time of each stage of the algorithm be denoted by N(εi) = Ci`. It follows that τi = C ∑i

j=1 j` =

O(i`+1).
By the definition of the algorithm either m̂τi ∈ T η or each algorithm produces an average reward
which is higher than the value of the projected game (minus ε). This implies that the expected
progress in direction ui is positive:

IE(∑τi+1−1
t=τi

mt |Fτi)

τi+1 − τi
·ui ≥ vΓ(ui)− εi , (18)

where Ft is the sigma algebra generated by all observations up to time t. Let i be large enough so
that εi < η. Let di denote the distance from m̂τi to T η, i.e., di = d(m̂τi ,T

η). We begin by showing
that di → 0 almost surely, and then show that d(m̂n,T η) → 0 for all n.

Consider the square of the distance, d2
i . Let yi denote the closest point in T η to m̂τi , for an

illustration see Figure 15. Equation (18) implies that for i large enough (so that εi < η),

IE
((∑τi+1−1

t=τi
mt |Fτi)

τi+1 − τi
− yi

)

·ui ≥ 0. (19)

It follows that

IE(d2
i+1|Fτi) = IE(‖m̂τi+1 − yi+1‖

2
2 |Fτi)

≤ IE(‖m̂τi+1 − yi‖
2
2 |Fτi)

= IE(‖m̂τi+1 − m̂τi + m̂τi − yi‖
2
2 |Fτi)

= ‖m̂τi − yi‖
2
2 + IE(‖m̂τi+1 − m̂τi‖

2
2 |Fτi)+

IE(2(m̂τi − yi) · (m̂τi+1 − m̂τi) |Fτi), (20)

where the last equality is just the result of simple algebraic manipulation. The first element in
Equation (20) is simply d2

i . To bound the second element in Equation (20) note that

∥

∥

∥
m̂τi+1 − m̂τi

∥

∥

∥

2

2
=

∥

∥

∥

1
τi+1

τi+1−1

∑
t=τi

mt +(
1

τi+1
−

1
τi

)
τi−1

∑
t=0

mt

∥

∥

∥

2

2
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m̂τim̂τi+1

yi+1

1

τi+1−τi

∑τi+1−1

t=τi
mt

yi

Figure 15: Illustration of one step of the algorithm. The closest point in T to m̂τi is yi and similarly
the closest point to m̂τi+1 is yi+1. Between “switching times” the reward obtained by P1
lies on the other side of the hyperplane perpendicular to the segment (yi, m̂τi).

≤
C1

(i+1)2`+2

∥

∥

∥

τi+1−1

∑
t=τi

mt

∥

∥

∥

2

2
+C2

( i`+1 − (i+1)`+1

(i+1)`+1i`+1 i`+1
)2∥
∥

∥
m̂τi

∥

∥

∥

2

2

≤ C3
1
i2

( 1
τi+1 − τi

)2∥
∥

∥

τi+1−1

∑
t=τi

mt

∥

∥

∥

2

2
+C4

1
i2

∥

∥

∥
m̂τi

∥

∥

∥

2

2
,

where we used the fact that ‖a + b‖2
2 ≤ 2‖a‖2

2 + 2‖b‖2
2 for the first inequality and C1,C2,C3,C4 are

constants independents of i. Taking the expectation conditioned on Fτi we can bound IE(‖m̂τi+1 −
m̂τi‖

2
2 |Fτi) by C

i2 . Note that the second term is deterministic (conditioned on Fτi and vanishes from
some point on.

The third element of Equation(20) is more tricky. Since

m̂τi+1 − m̂τi =
1

τi+1

τi+1−1

∑
t=0

mt −
1
τi

τi−1

∑
t=0

mt

= (
1

τi+1
−

1
τi

)
τi−1

∑
t=0

mt +
1

τi+1

τi+1−1

∑
t=τi

mt

=
τi − τi+1

τi+1
m̂τi +

1
τi+1

τi+1−1

∑
t=τi

mt ,

we have that

(m̂τi − yi) · (m̂τi+1 − m̂τi) = (m̂τi − yi) · (m̂τi+1 −
τi − τi+1

τi+1
yi +

τi − τi+1

τi+1
yi − m̂τi)

= (m̂τi − yi) ·
(τi − τi+1

τi+1
m̂τi −

τi − τi+1

τi+1
yi +

τi − τi+1

τi+1
yi +

1
τi+1

τi+1−1

∑
t=τi

mt

)

=
τi − τi+1

τi+1
(m̂τi − yi) · (m̂τi − yi)
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+
τi − τi+1

τi+1
(m̂τi − yi) · (

1
τi+1 − τi

τi+1−1

∑
t=τi

mt − yi).

Since τi = Ci`+1 the fraction τi+1−τi
τi+1

= O(1/i). The first term is therefore approximately −d2
i

C
i . We

get the following inequality:

IE(d2
i+1|Fτi) ≤ (1−

C′

i
)d2

i +
C′′

i2
+C′′′IE

(

2
(m̂τi − yi) · (∑

τi+1−1
t=τi

mt − yi)

i+1

∣

∣

∣
Fτi

)

, (21)

where C′, C′′, and C′′′ are positive constants. Now according to Equation (19) the last term in (21)
is negative in expectation. We therefore have that IE(d2

i+1|Fτi) ≤ (1− C1
i )d2

i + C2
i2 . Using Lemma 27

we have that d2
i → 0 almost surely. To conclude the proof one should show that d(m̂n,T η) → 0 for

all n. Let i denote the maximal τi smaller than n. By the triangle inequality,

d(m̂n,T
η) ≤ d(m̂τi ,T

η)+‖m̂τi − m̂n‖2 .

The first term converges to 0 by the above. To bound the second term note that

‖m̂τi − m̂n‖2 =
∥

∥

∥

1
n

n−1

∑
t=0

mt −
1
τi

τi−1

∑
t=0

mt

∥

∥

∥

2

=
∥

∥

∥

1
n

n−1

∑
t=τi

mt +
τi −n

nτi

τi−1

∑
t=0

mt

∥

∥

∥

2

≤
1
n

∥

∥

∥

n−1

∑
t=τi

mt

∥

∥

∥

2
+

n− τi

nτi

∥

∥

∥

τi−1

∑
t=0

mt

∥

∥

∥

2

=
n− τi

n
1

n− τi

∥

∥

∥

n−1

∑
t=τi

mt

∥

∥

∥

2
+

n− τi

n
1
τi

∥

∥

∥

τi−1

∑
t=0

mt

∥

∥

∥

2
, (22)

where the inequality is due to the triangle inequality. By our construction of τi it follows that
limn→∞

n−τi
n = 0. Since the random vector reward mt has finite expectation and bounded second

moment (uniformly in t, since there are finitely many states and actions) it follows that 1
τi
‖∑τi−1

t=0 mt‖2

is asymptotically contained in some ball of finite radius with probability one.3 Consequently, the
second term in Equation (22) converges to 0 almost surely. The first term in Equation (22) converges
to 0 as well by a standard probabilistic argument.4

Lemma 27 Assume et is a non-negative random variable, measurable according to the sigma al-
gebra Ft (Ft ⊂ Ft+1) and that

IE(et+1|Ft) ≤ (1−dt)et + cd2
t . (23)

Further assume that ∑∞
t=1 dt = ∞, dt ≥ 0, and that dt → 0. Then et → 0 P-a.s.

3. To see that, take the centralized version of that random variable which converges to 0, almost surely by an appropriate
version of the strong law of large numbers. Note that the center may not converge, but is guaranteed to be in some
bounded region.

4. The result follows by Chebyshev’s inequality on the centralized version of ∑n−1
t=τi

mt and the Borel-Cantelli Lemma,

noticing that ∑n−1
t=τi

mt is multiplied by a deterministic series that converges to 0.
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Proof First note that by taking the expectation of Equation (23) we get

IEet+1 ≤ (1−dt)IEet + cd2
t .

According to Bertsekas and Tsitsiklis (1995, page 117) it follows that IEet → 0. Since et is non-
negative it suffices to show that et converges. Fix ε > 0, let

V ε
t

4
= max{ε,et}.

Since dt → 0 there exists T (ε) such that cdt < ε for t > T . Restrict attention to t > T (ε). If et < ε
then

IE(V ε
t+1|Ft) ≤ (1−dt)ε+ cd2

t ≤ ε ≤V ε
t .

If et > ε we have
IE(V ε

t+1|Ft) ≤ (1−dt)et +dtet ≤V ε
t .

V ε
t is a super-martingale, by a standard convergence argument we get V ε

t →V ε
∞.

By definition V ε
t ≥ ε and therefore IEV ε

t ≥ ε. Since IE [max(X ,Y )] ≤ IEX + IEY it follows that
IEV ε

t ≤ IEet + ε. So that IEV ε
∞ = ε. Now we have a positive random variable, with expectation ε

which is not smaller than ε with probability 1. It follows that V ε
∞ = ε.

To summarize, we have shown that for every ε > 0 with probability 1,

limsup
t→∞

et ≤ limsup
t→∞

V ε
t = lim

t→∞
V ε

t = ε .

Since ε is arbitrary and et non-negative it follows that et → 0 almost surely.
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