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Abstract

We present a novel approach for embedding general metric and nonmetric spaces into low-
dimensional Euclidean spaces. As opposed to traditional multidimensional scaling techniques,
which minimize the distortion of pairwise distances, our embedding algorithm seeks a low-dimensional
representation of the data that preserves the structure (geometry) of the original data. The algorithm
uses a hybrid criterion function that combines the pairwise distortion with what we call the geo-
metric distortion. To assess the geometric distortion, we explore functions that reflect geometric
properties. Our approach is different from the Isomap and LLE algorithms in that the discrepancy in
distributional information is used to guide the embedding. We use clustering algorithms in conjunc-
tion with our embedding algorithm to direct the embedding process and improve its convergence
properties.

We test our method on metric and nonmetric data sets, and in the presence of noise. We demon-
strate that our method preserves the structural properties of embedded data better than traditional
MDS, and that its performance is robust with respect to clustering errors in the original data. Other
results of the paper include accelerated algorithms for optimizing the standard MDS objective func-
tions, and two methods for finding the most appropriate dimension in which to embed a given set
of data.

Keywords: Embedding, multidimensional scaling, PCA, earth-mover’s distance

1. Introduction

Embedding is concerned with mapping a given space into another space, often Euclidean, in order to
study the properties of the original space. This can be especially effective when the original space
is a set of abstract objects (e.g., strings, trees, graphs) related through proximity data, as a low-
dimensional embedding can help in visualizing the abstract space. Embedding can also be applied
when the objects are points in a vector space whose dimensionality is too large for the application
of data analysis algorithms, such as clustering. In such cases, embedding can be used to lower the
dimensionality of the space.
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1.1 Background

In general, embedding techniques fall into two categories: linear and nonlinear. Classical linear
embedding, as embodied by principal component analysis (PCA), reduces dimensionality by pro-
jecting high-dimensional data onto a low-dimensional subspace. The optimal p-dimensional sub-
space is selected by rotating the coordinate axes to coincide with the eigenvectors of the sample
covariance matrix, and keeping the p axes along which the sample has the largest variance. Princi-
pal component analysis directly applies to data that already resides in a real normed space. It can
also be applied to proximity data that has been appropriately preprocessed, under certain spectral
conditions on the matrix of pairwise distances (Cox and Cox, 2001).

Nonlinear embedding techniques, also referred to as multidimensional scaling (MDS) tech-
niques, apply to a broad set of data types. Generally speaking, the goal of MDS is to construct a
low-dimensional map in which the distance between any two objects corresponds to their degree
of dissimilarity. The method maps a given set of samples into a space of desired dimension and
norm. A random mapping (or projection by PCA) can serve as the initial embedding. A stress
function that compares proximity values with distances between points in the host space (usually
a sum-of-squared-errors function) is used to measure the quality of the embedding, and a gradient
descent procedure is applied to improve the embedding until a local minimum of the stress function
is reached. Like PCA, MDS attempts to preserve all pairwise distances as well as possible; but the
restriction to linear projections is removed, and arbitrary embeddings are considered. Many variants
of this general approach are reported in the literature; a broad overview of the field is given by Cox
and Cox (2001).

The MDS method was traditionally used to visualize high-dimensional data in two or three di-
mensions. It has long been employed for data analysis in the social sciences, where the generated
maps tend to have only a few hundred data points, and computational efficiency is not a factor
(Sammon, 1969). Practically, such procedures are not effective for more than few thousand sample
points. More recently, MDS has been turned toward the visualization of large biological and chem-
ical data sets, with thousands or even millions of points (Yona, 1999; Apostol and Szpankowski,
1999). Applying traditional MDS to very large data sets is prohibitively slow, leading several au-
thors to propose approximations and workarounds. Linial et al. (1995) presented a randomized
approach that attempts to bound the distortion. However, the bound is not tight, and in practice this
approach can introduce large distortions, as no objective function is explicitly optimized. A dif-
ferent randomized approach, based on iteratively adjusting the lengths of randomly selected edges,
was proposed by Agrafiotis and Xu (2002). This method has linear time complexity, and is therefore
well-suited to extremely large data sets. Basalaj (1999) proposed an incremental method for large-
scale MDS. It consists of embedding a small subset of objects carefully, then using this skeleton
embedding to determine the positions of the remaining objects.

Recently, a new class of non-linear embedding techniques has emerged: the manifold learning
algorithms, which comprise an active area of research. These algorithms are designed to discover
the structure of high-dimensional data that lies on or near a low-dimensional manifold. There are
several approaches. The Isomap algorithm (Tenenbaum et al., 2000) uses geodesic distances be-
tween points instead of simply taking Euclidean distances, thus “encoding” the manifold structure
of the input space into the distances. The geodesic distances are computed by constructing a sparse
graph in which each node is connected only to its closest neighbors. The geodesic distance be-
tween each pair of nodes is taken to be the length of the shortest path in the graph that connects
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them. These approximate geodesic distances are then used as input to classical MDS. The LLE al-
gorithm (Roweis and Saul, 2000; Saul and Roweis, 2003) uses a collection of local neighborhoods
to guide the embedding. The assumption is that if the neighborhoods are small, they can be ap-
proximated as linear manifolds, and the position of each point can be reconstructed as a weighted
linear combination of its k nearest neighbors. The positions of the points in the lower-dimensional
space are determined by minimizing the reconstruction error in this low-dimensional space (with
fixed weights that were determined in the original high-dimensional space). This is done by solving
an eigenvector problem, as in PCA. Another approach is the eigenmaps method. The goal of this
type of method is to minimize a quadratic form (either the squared Hessian or the squared gradi-
ent) over all functions mapping the manifold into the embedding space (Donoho and Grimes, 2003;
Belkin and Niyogi, 2002). When the continuous function is approximated by a linear operator on
the neighbor graph, the maximization problem becomes a sparse matrix eigenvalue problem and is
readily solved.

The manifold learning methods form a powerful generalization of PCA. Unlike PCA, which is
useful only when the data lies near a low-dimensional plane, these methods are effective for a large
variety of manifolds. By using a collection of local neighborhoods, or by exploiting the spectral
properties of the adjacency graph, they extract information about local manifolds from which the
global geometry of the manifold can be reconstructed. In practice, preserving these local mani-
folds results in non-linear embeddings. The underlying principles of these methods are similar, and
their power stems from the fact that they practically employ alternative representations for the data
points. PCA seeks correlation between features and represents the data best in a sum-of-squared-
errors sense. However, it implicitly assumes the Euclidean metric. On the other hand, the manifold
learning algorithms explore the properties of the adjacency graph to form a new representation, in-
ducing a new metric. For example, the geodesic distance in essence samples the geometry of the
input manifold, and it is that definition to which one can attribute the great success of the Isomap
algorithm. Similarly, the spectral approaches use the proximity data to derive the new representa-
tion that reflects collective properties. This is related to other studies that showed that encoding data
through collective or transitive relations can be very effective for data representation (e.g., embed-
ding) as well as for clustering (Smith, 1993; Wu and Leahy, 1993; Shi and Malik, 1997; Blatt et al.,
1997; Gdalyahu et al., 1999; Dubnov et al., 2002).

The different types of embedding methods are inherently suited to different types of problems.
PCA identifies significant coordinates and linear correlations in the original, high-dimensional data.
It is therefore appropriate for finding a simple, linear, globally applicable rule for extracting infor-
mation from new data points. It is unsuitable when the correlations are nonlinear or when no simple
rule exists. General multidimensional scaling techniques are appropriate when the data is highly
nonmetric and/or sparse. However, MDS is iterative, does not guarantee optimality or uniqueness
of its output, does not generate a rule for interpreting new data, and is typically quite slow compared
with other methods. These deficiencies are only tolerable when weighed against the greater general-
ity and simpler formulation of multidimensional scaling. Finally, manifold-learning techniques are
appropriate when a strong nonlinear relation exists in the original data. In such cases, the methods
described can make use of powerful, noniterative methods, with guaranteed global optimality. They
are less suitable when not enough data is available, or when the data points are inconsistent with a
manifold topology (for instance, lying on a structure with branches and loops), or when the data is
intrinsically nonmetric.
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1.2 Method

The algorithm presented in this paper is in the class of nonlinear embedding techniques. However,
unlike the manifold learning methods, our focus is on the higher-order structure of the data. The
aforementioned approaches optimize an objective function that is a function of the individual pair-
wise distances or their derivatives. However, collective aspects of the embedding are not explicitly
considered, even when local neighborhoods are used. This problem is addressed in this paper.

In a recent study by Roth et al. (2002), the authors point out that high-dimensional PCA, applied
to dissimilarity data that has been shifted by an additive constant, automatically preserves some
clustering properties of the original data. Specifically, they show that the optimal partition of the
original data points into k clusters (using a particular cost function, which they define) is identical
to the optimal partition of the embedded data points, using the standard k-means cost function.
However, a subsequent reduction in the embedding dimension is often desirable, and the clustering
properties are not preserved (or even considered) in this second stage.

Our interest in embedding algorithms emerges from our even stronger interest in studying high-
order organization in complex spaces. In a typical application one is interested in exploratory data
analysis, discovering patterns and “functional” meaningful clusters in the data. Embedding is often
used to visualize complex data in a low-dimensional space, in the hope that it will be easier to
discover structure or statistical regularities in the reduced data. Thus, optimal embedding should
consider not only the distortion in pairwise distances that is introduced by the embedding, but also
the geometric distortion, i.e., the disagreement on the intrinsic structure of the data. Finding the
optimal embedding thus becomes a problem of optimizing a complex criterion function that seeks
to jointly improve both aspects of an embedding. Our approach tackles the problem from this
perspective and attempts to preserve these patterns by implicitly encoding the cluster structure into
the cost function. Here we present for the first time such a criterion function and describe the means
to optimize it.

Another new element of our paper is a method to deduce the right dimension for the data.
Existing methods for dimensionality reduction are looking for elbows in the residual variance graph
to determine the right dimensionality, however, the exact definition is subjective and qualitative.
Here we introduce two quantitative methods to deduce the right dimension.

The paper is organized as follows. We first describe the two commonly-used MDS objective
functions, the SAMMON and SSTRESS functions, and present improved algorithms for optimiz-
ing them. Next, we present a hierarchical method for efficiently embedding data sets that consist
of many subsets or clusters of related objects. We then present the main element of this paper, a
new type of MDS called distributional scaling, which directly addresses the problem of structure
preservation during the embedding process. Distributional scaling strives to maintain the distribu-
tion of dissimilarities, as well as the individual dissimilarities themselves, thereby using higher-
order information to create a more informative map. Next, we describe two distinct methods for
ascertaining the best dimension in which to embed a given data set. Finally, we test the perfor-
mance of distributional MDS on a large number of synthetic data sets. By using this new form of
scaling, we demonstrate that we are able to remove undesirable artifacts from embeddings produced
by traditional MDS.

402



DISTRIBUTIONAL SCALING

2. Theory

We start with some basic definitions and a review of classical metric and nonmetric MDS. We
then introduce hierarchical MDS and Distributional MDS, and discuss the measures that we use to
evaluate similarity between probability distributions. We conclude this section with a method to
choose the embedding dimension.

2.1 Definition and Mathematical Preliminaries

Throughout this paper we will be interested in optimizing embeddings of sets of objects in Euclidean
space. An embedding of n objects in p-dimensional Euclidean space is a set of image points xi ∈R p,
where i = 1, . . . ,n. We take Sp

n to be the set of all such embeddings.
We primarily will be interested not in the image points themselves, but in the distances between

them. Let Ωn be the set of symmetric n× n matrices with zeros along the diagonal. For each
embedding X of n objects, we can define the distance matrix D(X) ∈ Ωn, with matrix elements
Di j = ||xi − x j||. Since the interpoint distances are invariant under Euclidean transformations of
the entire configuration of points (that is, translations, rotations, and reflections), D is many-to-one.
We denote by Dp

n the image of Sp
n under the mapping D. This is the space of all possible distance

matrices arising from p-dimensional embeddings of n points.
Formally, the optimization problem is defined as follow: we are given a set of n objects and their

dissimilarities. Denote by ∆i j the dissimilarity of objects i and j. The goal is to find a configuration
of image points x1,x2, ...,xn such that the n(n− 1)/2 distances Di j between image points are as
close as possible to the corresponding original dissimilarities ∆i j.

2.2 Metric MDS

The simplest case is metric MDS, where the dissimilarity data is quantitative. We are given n
objects, together with a target dissimilarity matrix ∆ ∈ Ωn. The goal is to find an embedding X such
that the distance matrix D(X) matches ∆ as closely as possible. This is formulated as a weighted
least-squares optimization problem: given (∆,W ) ∈ Ωn × Ωn, where W = (wi j) is a symmetric
matrix of weights, minimize

H (X) = ∑
i< j

wi j

(

f (Di j(X))−g(∆i j)
)2

(1)

over all X ∈ Sp
n . The functions f and g determine exactly how errors are penalized. Two common

choices for these functions are considered here. The stress, or SAMMON, objective function is
defined by f (x) = g(x) = x. The squared stress, or SSTRESS, function is defined by f (x) = g(x) =
x2.

SAMMON : H (X) = ∑
i< j

wi j

(

Di j −∆i j

)2
,

SSTRESS : H (X) = ∑
i< j

wi j

(

D2
i j −∆2

i j

)2
.

The SAMMON and SSTRESS objective functions have somewhat different advantages. While the
former seems more natural, being the square of the Euclidean metric in Ωn, and may produce more
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aesthetically pleasing embeddings, the latter is more tractable from a computational standpoint, and
seemingly less plagued by nonglobal minima (Malone and Trosset, 2000).

The weights contained in the weight matrix W are arbitrary. They can be used to exclude
missing proximity data, or to account for data with varying confidence levels. In practice, however,
the weights are often defined in terms of ∆. Three choices of this type are:

w−1
i j = ∑

m<n
g(∆mn)

2 ,

w−1
i j = g(∆i j) ∑

m<n
g(∆mn) ,

w−1
i j =

1
2

n(n−1)g(∆i j)
2 .

All three choices normalize the metric stress function, in the sense that H (0) = 1. We refer to the
first one as global weighting, the second as intermediate (or semilocal) weighting, and the third as
local weighting. Unless otherwise specified, the global weighting scheme is used in this paper.

The numerical optimization of the metric stress function is not entirely trivial. The determinis-
tic algorithms (gradient descent) that are typically applied to solve this problem converge to local
minima, which may not be globally optimal. It is possible to use stochastic techniques, like simu-
lated annealing (Klein and Dubes, 1989), to reduce or eliminate the probability of being trapped in
a nonglobal minimum, albeit at the cost of increased computation time. Recently, Klock and Buh-
mann (1997) have demonstrated that so-called deterministic annealing can be used to avoid poor
minima without sacrificing too much efficiency, thus combining the merits of the stochastic and
deterministic approaches. Such globalization strategies are outside the scope of the present study.
Instead, we have developed an efficient method for finding local minima that takes advantage of
special features of the SSTRESS and SAMMON objective functions. This algorithm is described in
detail in Appendix A.

2.3 Nonmetric MDS

A generalization of the metric problem is nonmetric MDS, which is appropriate when the dissim-
ilarity data is not quantitative, but merely ordered. In this case, we minimize an objective function
like Eq. (1) over X , while also allowing g to vary over all increasing functions. As with metric
MDS, the Euclidean distances will be transformed by a known function f (x), which we will restrict
to be x or x2, in the SAMMON and SSTRESS cases respectively.

Note that, if we were to use Eq. (1) with fixed weights, the objective function would be trivially
minimized by taking g to zero and shrinking the configuration X to a single point. Instead we use
global weighting, as described above. This sets the overall weight to an appropriate functional of g,
producing a scale-invariant objective function:

Hnm(X ,g) =
∑i< j

(

f (Di j(X))−g(∆i j)
)2

∑i< j g(∆i j)2 . (2)

Our algorithm for optimizing metric MDS can be extended to cover the nonmetric case as well.
Appendix B discusses the necessary modifications.
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2.4 Hierarchical MDS

In many cases the data is naturally organized in classes that have subclasses, that are composed of
subsubclasses, and so on. Such a hierarchical classification can be obtained either externally or by
applying data analysis techniques, such as clustering.

When the points to be embedded are pre-grouped into clusters, it is natural to treat the measured
dissimilarities between clusters differently from those within a particular cluster. The task of finding
a good global embedding splits into two subtasks: (a) finding a good embedding for each individual
cluster, and (b) ensuring that these embedded clusters are well-placed with respect to each other.
For a cluster that can be further divided into subclusters, step (a) can be performed recursively. For
clusters that cannot be further divided, step (a) is carried out with ordinary metric or nonmetric
MDS, or with the distributional scaling technique we will introduce in a subsequent section. We
refer to this procedure as hierarchical MDS.

It remains to specify the details of step (b), the placement of embedded clusters with respect to
each other. This is done by searching for a transformation that will minimize the overall stress, now
considering all intercluster distances, as well as the intracluster distances that are already optimized.
Clearly, clusters should be allowed to undergo arbitrary Euclidean transformations, as these do not
increase their internal stress. The Euclidean transformations of R p are parametrized by a p-vector X
and an orthogonal p× p matrix M, and act on an arbitrary point y as EX,M(y) = M ·y+X. We choose
to allow, more generally, all affine transformations. The affine transformations are parametrized in
the same way, except that M need not be orthogonal. The space of affine transformations is a
linear subspace of the full search space, thus simplifying the search. Moreover, the space of affine
transformations is connected, unlike the space of Euclidean transformations.

Formally, we are given a partitioning of the target points into K clusters, and an initial embed-
ding that was carried out for each cluster individually. Let {yi} be the initial coordinates of the
points in cluster A. We stipulate that the final coordinates {xi} are generated by affine transforma-
tions of these single-cluster embeddings, where each cluster is transformed independently. That is,
the final coordinates of point i ∈ A are given by

xi = XA +MA ·yi

for some affine transformation (XA,MA). Our final embedding is generated by minimizing the
overall metric stress, allowing only the (X,M) pairs to vary, while the base coordinates yi are held
fixed. That is, individual clusters can be rotated and translated with respect to each other, and
stretched in a small number of ways; but they cannot be split into two or otherwise fundamentally
reshaped.

Restricting the allowed configurations in this way reduces the number of degrees of freedom
enormously. For instance, an arbitrary two-dimensional embedding of 100 points requires 200
parameters for its description, while an arbitrary affine transformation of a known two-dimensional
embedding requires only 6. This reduction helps us in two ways. First, optimization within a
subspace usually converges much faster simply because the search space is smaller. Second, we may
be able to streamline the evaluation of the objective function H once we have fixed the coordinates
yi. For SSTRESS, this can be done exactly, by rewriting the stress function in terms of the XA and
MA variables. Specifically, when the final coordinates xi are restricted to affine images of a known
base embedding yi, the SSTRESS function becomes

H = ∑
i, j

wi j
(

||xi −x j||2 −∆2
i j

)2
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= ∑
A,B

∑
i∈A, j∈B

wi j
(

||XA −XB +MA ·yi −MB ·y j||2 −∆2
i j

)2

= ∑
A,B

∑
α,β

∑
i∈A, j∈B

wi j

(

(MT
A MA)αβ(yi)α(yi)β + . . .+ ||XA −XB||2 −∆2

i j

)2

= ∑
A,B

∑
α,β,γ,δ

P(AB)
αβγδ(M

T
A MA)αβ(M

T
A MA)γδ + . . .+W (AB) , (3)

where many terms are omitted for brevity. Partial sums over i j have been performed wherever
possible, leading to parameters that can be computed in advance, such as

P(AB)
αβγδ = ∑

i∈A, j∈B

wi j(yi)α(yi)β(yi)γ(yi)δ ,

W (AB) = ∑
i∈A, j∈B

wi j∆4
i j ,

and so on. The rewritten SSTRESS function is a complicated expression, but it contains a relatively
small number of terms. Specifically, for an embedding problem in p dimensions, involving K
clusters with N points each, the new expression is a sum over O(K2 p4) terms, while the original
metric stress function has O(K2N2) terms. The upshot is that for large clusters, with N � p2 points
apiece, using Eq. (3) can save computational labor.

Most importantly, hierarchical MDS proved most effective for highly frustrated data, or when
embedding high dimensional data in low dimension. In such cases direct embedding of the complete
data set tends to diminish any high-order structure that exists in the data, while hierarchical MDS
preserves more of the structure.

2.5 Introducing Distributional MDS

Metric MDS, as defined in the previous sections, works well in many cases. When the metric stress
of an embedding is sufficiently low, one knows that all embedded edges are close to their target
lengths, and hence the input data is well-represented by the final map. However, cases arise in
which no embedding has an acceptably low level of stress.1 In such cases, the precise quantitative
structure of the input data is impossible to maintain, and the metric stress alone does not distinguish
between qualitatively good and bad maps.

An illustrative example, which will serve as our motivation for introducing a new type of multi-
dimensional scaling, is shown in Figure 1. It depicts an embedding of 600 points in two dimensions,
generated by applying metric SSTRESS to synthetic, random proximity data.2 The points were orig-
inally sampled from three clusters, such that the distances between clusters tend to be greater than
those within clusters, as described in the figure caption. However, as seen in the figure, the process
of embedding splits the central cluster into two well-separated subclusters. This is purely an arti-
fact of the metric scaling process, as there is no inherent difference between the points in the two
subclusters. Moreover, the partitioning into subclusters is not robust, but differs from run to run

1. The amount of acceptable stress will vary from application to application and also depends on the demands of the
user.

2. Note that this data is nonmetric, since the triangle inequality does not hold, and that it is represented only by its
proximity matrix. This kind of data arises naturally in cases where the objects are abstract or difficult to map to a
vector space (e.g., strings, graphs, biological macromolecules, DNA and protein sequences).
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Figure 1: Structural artifact generated by metric SSTRESS. Three 200-point clusters (A, B, and
C) were embedded in two dimensions using metric MDS and a synthetic dissimilarity
matrix ∆. The central cluster (A) has been split into two apparent subclusters by the
embedding process. To generate ∆, each target dissimilarity ∆i j was drawn from one of
three chi distributions. If i and j are in the same cluster, ∆i j ∼ χ2(1.0). If i j connects
cluster A to cluster B or C, then ∆i j ∼ χ2(1.5). Finally, if i j connects clusters B and C,
then ∆i j ∼ χ2(2.0).

when random starting configurations are used. Similar results can be obtained with the SAMMON

criterion function, and with nonmetric MDS. This is a dramatic type of artifact, which we would
like to automatically diagnose and avoid.

Our goal is to produce embeddings that preserve some notion of structure over the input space.
The concept of geometry might not be clearly defined for the input space, and since the data set may
be non-Euclidean or even nonmetric, it is hard to speak in general terms about the structure of the
data. In our study we focus on the clustering properties of the data. The cluster structure reflects the
existence of inherent order and the presence of groups and subgroups that usually can be mapped to
specific subcategories of the data (for example, functional, topological, or demographic, depending
on the data set). It is this notion of order that we would like to preserve. Thus, in our case, the
definition of similar structures relies on the clustering profile of the data.
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One way to characterize the underlying cluster structure of data is by studying the distribution
of distances between and within clusters.3 Although similar distributions do not guarantee that the
embedding will have the same clustering profile, it reduces the search space to embeddings that are
more likely to have the same structure. The simple example of Figure 1 demonstrates this point.
Figure 2 shows histograms of the set of interpoint distances, both before and after the embedding
process. From these graphs it is clear that the embedding has qualitatively altered the information
present: although the target distances form a unimodal distribution, the post-embedding curve is
distinctly bimodal. There is evidence that this kind of artifact is also prevalent in real applications
of metric MDS (Yona, 1999).

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

target
distributional MDS

metric MDS

Figure 2: Distribution of interpoint distances within a split cluster. The three curves represent
the distributions of the target distances ∆i j (see the caption to Figure 1), the embedded
distances Di j from metric SSTRESS, and the embedded distances Di j from our proposed
distributional scaling. The two-dimensional embeddings from metric and distributional
MDS are shown in Figure 1 and Figure 3, respectively.

To correct for artifacts of this type, and more generally to preserve the structural information
we have just discussed, we propose a modified objective function that penalizes discrepancies like
that shown in Figure 2. This new objective function can be used whenever cluster assignments are
known, or can be estimated. For each pair of clusters, A and B, we define ρAB to be the (weighted,
normalized) distribution of embedded distances between the points in cluster A and those in cluster
B:

ρAB(x) =
∑i∈A ∑ j∈B wi jδ(x−Di j)

∑i∈A ∑ j∈B wi j
. (4)

Here δ(x) is the Dirac delta function, which describes a point mass of weight 1 localized at the
origin. Similarly, we denote by ρ̃AB the distribution of the A–B target distances (the elements of ∆).
Our proposed new objective function has the general form

Hd(X) = (1−α)H (X)+α ∑
A≤B

WABD[ρAB, ρ̃AB] , (5)

3. Preserving just the cluster assignments, as is done by Roth et al. (2002), might miss higher order structure over
clusters. Moreover, the method proposed by Roth is algorithm-dependent (tailored to the k-means algorithm).
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where D [p,q] is some measure of the dissimilarity between two distributions, the WAB are relative
weights of the target distributions, and α determines the balance between the original metric com-
ponent of the stress and this new, distribution-related, component. We call the optimization of this
type of objective function distributional MDS.

One could use any number of other measures to represent the data structure and its geometry.
For example, cluster diameters, or the first and second moments of the sample points in each cluster,
could be used in addition to the distributions of pairwise distances. The objective function could
be modified to include these (or other, data-specific) order parameters. Rather than attempting
to include all possible choices, we chose the single-parameter form of Hd given above. For the
dissimilarity measure D, we will use the earth-mover’s distance, a metric which is motivated and
described in Section 2.6.

The weights WAB are assigned based on the information content of the distributions. Specifically,
we use the entropy

SAB = S[ρ̃AB] ≡−
∫

dx ρ̃AB(x) log2 ρ̃AB(x)

as a measure for the information content of the target distribution, and we set WAB = 2−SAB . Thus, the
lower the entropy of a distribution, the more significant the contribution of that term to the objective
function. Our motivation for this choice of weights is heuristic: high-entropy distributions are more
likely to arise by chance, while low-entropy distributions are more likely to reflect a true pattern
in the data. With robustness to classification errors in mind (see below), this weighting scheme
attempts to minimize the sensitivity of the model to noise by emphasizing the low-entropy target
distributions.

It is important to note that the availability of cluster information is by no means a hurdle or
a limiting factor of this algorithm. One can use any sensible clustering algorithm (e.g., k-means),
applied to the original data or to its metric embedding, to suggest a preliminary classification. If the
data is sufficiently ordered, this clustering profile can provide a rough snapshot of the geometry, the
quality of which depends on the clustering algorithm and the data set.4 This clustering profile can
then be used to guide the embedding process, even if it is not completely accurate. Since the distri-
butions between all pairs of clusters are considered, the algorithm avoids embeddings that grossly
distort the cluster structure, even when the higher-order structure of the data is misrepresented (e.g.,
when a real cluster is split into two by a clustering algorithm).

To demonstrate, we return to the previous example, supposing now that the true cluster as-
signments are unknown. Applying k-means clustering (with both k = 4 and k = 3) to the metric
embedding (Figure 1) produces the tentative classifications shown in Figure 4. The k-means results
exhibit both overclassification, where a single true cluster is broken into two classes, and misclas-
sification, where parts of two true clusters are combined in a single class. Applying distributional
scaling to the original dissimilarities, using the tentative cluster assignments rather than the true
ones, produces the improved embeddings shown in Figure 5. Both resemble the embedding in Fig-
ure 3, which was generated using the true assignments. This is a satisfying result, since it indicates
that our algorithm is robust with respect to at least some classification errors. In general, the prob-

4. Given the choice between a conservative clustering and a more permissive one (e.g., hierarchical clustering with
different thresholds), one might prefer the conservative algorithm. Note that here we ignore issues of generalization
and model validity of the clustering profile, as they are irrelevant at this point. Opting for structure-preserving em-
beddings, smaller and more compact clusters can be considered as entities of high confidence and are more amenable
to undergo this process successfully.
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Figure 3: Improved map from distributional scaling. Starting from the metric embedding, the
objective function defined by Eq. (5) (with α = 0.1) was numerically optimized. The
artifact seen in Figure 1 is largely corrected: cluster A now appears as a single cluster, as
it should.

lem of overclassification is well-corrected by our algorithm. The problem of misclassification is not
addressed as well; but in cases like the example, where intercluster and intracluster distances have
substantially different distributions, distributional MDS gives a more reliable picture of the actual
data than metric MDS alone.

2.6 The Earth-Mover’s Distance Between Probability Distributions

There are several common measures to assess the statistical similarity of probability distributions,
among which are the Manhattan distance (the L1 norm) and the KL divergence (Kullback, 1959).
Our first choice was the information-theoretic Jensen-Shannon divergence measure (Lin, 1991),
which is a symmetric and bounded variant of the KL divergence. Formally, given two (empirical)
probability distributions p and q, for every 0 ≤ λ ≤ 1, the λ-JS divergence is defined as

DJS
λ [p||q] = λDKL[p||r]+ (1−λ)DKL[q||r] ,

where DKL[p||q] = ∑i pi log2(pi/qi) is the KL divergence, and r = λp+(1−λ)q can be considered
as the most likely common source distribution of both distributions p and q, with λ as a prior weight.
The parameter λ reflects the a priori information and is set by default to 0.5.
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Figure 4: Naive cluster assignments generated by the application of k-means clustering (k = 4,
left; k = 3, right) to the points in Figure 1. Note that the true cluster assignments were
never used. The k = 4 example shows overclassification, where a single true cluster is
broken into two classes. The k = 3 example shows misclassification, where parts of two
true clusters are combined in a single class.

Despite its attractive properties as a measure of statistical similarity,5 we learned quite early on
that this measure is inappropriate when attempting to preserve the overall shape of the distribution.
Specifically, this measure was found to be difficult to optimize through a local search. Since the
Jensen-Shannon distance is a purely local measure of the difference between two distributions, a
JS-based algorithm is easily trapped in poor local minima.

A more effective measure of dissimilarity between two distributions is the earth-mover’s dis-
tance (EMD) (Rubner et al., 1998). As shown in Figure 6, the EMD is substantially easier to
minimize than the Jensen-Shannon divergence. Given two probability distributions p and q over
the interval [0,K] (which can be thought of as distributions of “earth” and “holes” respectively), the
EMD between p and q can be defined by means of the following transport or bipartite-graph flow
problem. Let f (x,y) be the amount of earth (flow) carried from x ∈ [0,K] to y ∈ [0,K], such that
every hole is filled and no new holes are dug. In other words, f (x,y) is a flow function that should
satisfy

f (x,y) ≥ 0 ,

p(x) =
∫ K

0
dy f (x,y) ,

5. Besides being bounded and symmetric, it has been shown that the JS divergence measure is proportional to minus the
logarithm of the probability that the two empirical distributions represent samples drawn from the same (“common”)
source distribution (El-Yaniv et al., 1998).
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Figure 5: Distributional scaling with naive cluster assignments. The figure was generated in
the same way as Figure 3, except that the k-means cluster assignments (from Figure 4)
were used in place of the true ones. In both examples, the process merges the two central
groups of points, while keeping them separate from the remaining two groups.

q(y) =
∫ K

0
dx f (x,y) .

Let dist(x,y) be the “ground distance” between x and y. (In our case, dist(x,y) = |x− y|.) Then the
EMD is the minimum total distance traveled by the earth,

EMD [p,q] = min
f

∫

dx
∫

dydist(x,y) f (x,y) ,

subject to the given constraints on f . Intuitively, the EMD can be considered as the minimal amount
of work required to match p with q. It can be shown that the EMD between normalized one-
dimensional distributions is the same as the L1 distance between their cumulative distribution func-
tions (Levina and Bickel, 2001). That is, the earth-mover’s distance between distributions p and q
is just

EMD [p,q] =
∫ K

0
dx

∣

∣

∣

∣

∫ x

0
dy(p(y)−q(y))

∣

∣

∣

∣

.

The result follows from the fact that there is a greedy algorithm for finding the minimal flow in one
dimension (only): fill the leftmost unfilled hole with the leftmost available dirt until all holes are
filled. This expression is essential for our algorithm, since it makes the EMD simple to calculate
and differentiate, rendering it suitable for inclusion in the stress function.
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Figure 6: Comparison of EMD-based algorithm with Jensen-Shannon algorithm. The ele-
ments of a 200×200 dissimilarity matrix were drawn from a bimodal distribution (“Tar-
get”). Downhill search was used to find a two-dimensional embedding with interpoint
distance distribution closest to the target distribution, under the EMD and JS measures.
The JS-based algorithm became trapped in a local minimum: shifting weight to the right
does not immediately decrease the Jensen-Shannon distance between the target and JS
curves. The EMD-based algorithm, on the other hand, reproduced the target distribution
accurately.

2.6.1 IMPLEMENTATION ISSUES

The naive implementation of the algorithm is impractical for large data sets, because building and
storing the exact, discrete distribution defined by Eq. (4) takes a large amount of space, O(n2), and
calculating the EMD between two such distributions takes O(n2 logn) time.6 Moreover, the earth-
mover’s distance between two such distributions has many nondifferentiable points along any given
line, which is problematic for our (gradient-based) optimization strategy. We address both these
issues by using an approximate distribution in place of the exact one.

Our approximate distributions are piecewise constant, consisting of a relatively small number
of disjoint bins. We associate the k-th bin with the interval [xk,xk+1]. To build the necessary dis-
tribution, each delta-function in Eq. (4) is first broadened into a finite-width shape with the correct
total weight. That is, aδ(x− b) → ah(x− b), where h is a smooth function. The weight is then
distributed among the relevant bins: the k-th bin is incremented by a

∫ xk+1
xk

h(x−b)dx (see Figure 7).
The result is a histogram whose bin contents are differentiable functions of the distances Di j. We
use this histogram in our calculation of the earth-mover’s distance; using the chain rule, the EMD
is then differentiable as well.7

6. The rate-limiting step is the sorting of the values Di j , which is needed to find the cumulative distribution function.
7. More precisely, the EMD still has nondifferentiable points, but they are sparse enough that there are none on a typical

ray in the search space.
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Figure 7: Histogram construction. To construct a histogram from a discrete distribution (top), we
first broaden each point by a smooth window function (middle). The integrated weights
are then used as the bin counts for the histogram (bottom).

2.7 Choosing the Initial Embedding

Since our optimization method is iterative, beginning with a low-stress embedding can save time
and, potentially, improve the final result. We suggest two inexpensive ways to generate a reasonably
good initial configuration.

The first method is principal component analysis (PCA). Principal component analysis is well
known as the basis for classical scaling (Young and Householder, 1938; Gower, 1966); given a data
set with a low-stress embedding, PCA can be used to find a good configuration very quickly. To
find the principal components we first form the auxiliary matrix M, with matrix elements

Mi j = −1
2

∆2
i j +

1
2n ∑

k

(

∆2
ik +∆2

jk

)

− 1
2n2 ∑

k,l

∆2
kl . (6)

To generate an embedding in p dimensions we compute the p largest eigenvalues of M, together with
their associated eigenvectors (λa and ua). Finally, we form an initial configuration with coordinate
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components

(xi)a =
√

λa(ua)i

for a = 1, . . . p. If ∆ is, in fact, a distance matrix D(X) with X ∈ Sp
n , then M will have only p nonzero

eigenvalues, and this initial configuration will have zero stress. If ∆ is a higher-dimensional distance
matrix, this configuration will represent an optimal linear projection into p dimensions.

This analysis could be carried out by fully diagonalizing M, but this is extremely wasteful when
only p � n principal eigenvectors are wanted. Instead, we use a simple iterative method based on
Hotelling’s power method (Hotelling, 1933). Start with a random orthonormal set of p vectors ea.
Multiply each by the matrix M, then orthonormalize the set using the Gram-Schmidt algorithm. As
this step is repeated, the vectors ea approach the p largest eigenvectors.8 The eigenvalues are then
given by λa = eT

a ·M · ea. Exact diagonalization is known to take O(n3) time; this method cuts the
time down to O(pn2).

The second method we use for finding a good initial embedding is the stochastic embedding
algorithm proposed by Agrafiotis and Xu (2002). This method is also very simple and fast, and
seems to work well when the data is sufficiently compatible with the embedding space. The al-
gorithm begins with a random configuration. A random edge i j is selected, and the points xi and
x j, currently separated by a distance di j, are moved along the line connecting them so their separa-
tion becomes α∆i j +(1−α)di j. This basic step is repeated many times, while the learning rate α
decreases according to a specified schedule.

2.8 Choosing the Embedding Dimension

One of the major problems with embedding algorithms is determining the intrinsic dimensionality
of the data. When the dimension of the host space is increased, the optimal metric stress will always
decrease, as the search space is enlarged. One would like to know when the embedding dimension is
sufficiently large, i.e., when any additional improvement is insignificant. Principal component anal-
ysis can sometimes suggest the appropriate embedding dimension, based on the number of “large”
eigenvalues of the PCA matrix M (Eq. (6)). However, in many cases the distribution of eigenvalues
is relatively flat and uninformative and the subtlety then lies in setting the correct eigenvalue thresh-
old. To our knowledge, this has not been addressed in a statistical setting. Moreover, as a linear
embedding technique, PCA explores only a small subset of all possible embeddings.

We propose two complementary approaches to this question. The first method is based on a
geometric analysis of the optimization problem in the space of distance matrices, and formulates
the problem in probabilistic terms. It can be used to decide whether a dimensional increase is
statistically significant. This method is tailored to the case of unweighted SAMMON with small
distortions. The second method, on the other hand, is information-theoretic in nature, and compares
embeddings based on the principle of minimum description length (MDL). This method is more
heuristic than the first, and consequently more widely applicable. In the remainder of this section,
we discuss both proposed methods in detail.

2.8.1 GEOMETRIC APPROACH

In practice, one often seeks the correct embedding dimension by an iterative method: successive
embeddings with decreasing metric stress are constructed, in higher and higher dimensions, until

8. Because the result will be further refined in any case, full convergence is not required.
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the decrease in stress becomes negligible. We can place this iterative method on a firm statistical
footing by specifying precisely what is meant by “negligible”. We do this by defining a statistical
null model for the decrease in stress associated with an increase in embedding dimension. For
any p-dimensional embedding of a dissimilarity matrix ∆ with (locally) minimum stress, our null
model proposes that the remaining discrepancies between the target distances ∆i j and the embedded
distances are independent and identically distributed Gaussian random variables. By comparing the
measured stress in a dimension q > p to the stress predicted under the null model, we can assign
statistical significance to the decrease in stress. When the statistical significance becomes too low,
we conclude that we may well be “fitting noise,” and terminate the iterative method. The details of
this calculation comprise the remainder of this section.

Given a set of n points, we denote the set of all possible embeddings in p dimensions by S p
n . The

corresponding distance matrices form the manifold Dp
n ≡ D(Sp

n) ⊂ Ωn. This manifold is enlarged
with increasing p until p = n−1; that is,

D1
n ⊂ D2

n ⊂ ·· · ⊂ Dn−1
n ≡ D∞

n ⊂ Ωn .

Since n points always lie in a single (n−1)-plane, larger values of p are never necessary. The dimen-
sion of Dp

n is the dimension of Sp
n , minus the dimension of the group of Euclidean transformations

of R p (i.e., the transformations (X, M̂) under which D is invariant):

dimDp
n = dimSp

n − p− 1
2

p(p−1)

= n · p− 1
2

p(p+1)

=
1
2

p(2n− p−1) .

Equivalently, the codimension of Dp
n is

cp
n ≡ dimΩn −dimDp

n

=
1
2

n(n−1)− 1
2

p(2n− p−1)

=
1
2
(n− p)(n− p−1) ,

which is equal to zero when p = n−1, as expected.
Suppose we have found an optimal embedding X ∈ Sp

n in p dimensions, with metric stress equal
to s(p). In the case of unweighted SAMMON, the stress function is simply the squared Euclidean
distance between ∆ and the distance matrix D(X) within the encompassing space of Ωn:

s(p) = ||D(X)−∆||2 .

If X is a p-dimensional stress minimizer, then D(X) is (locally) the closest point to ∆ in Dp
n , and the

error vector Ep(X) ≡ ∆−D(X) is perpendicular to Dp
n at that point. In other words, Ep(X) lives in

a space with dimension cp
n (the codimension of Dp

n ).
Assume now that we look for a q-dimensional stress minimizer (q > p). Starting at X , the

search manifold is extended to Dq
n, adding dimDq

n − dimDp
n = cp

n − cq
n new directions. If Ep(X) is

small, then a q-dimensional minimizer can be found by moving D(X) so these (now unconstrained)
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components of Ep(X) become zero. This will lead to a new error vector Eq(X) with a lower stress
value s(q). Note that s(q) = ∑i E2

i < ∑ j E2
j = s(p), where the second sum is over all cp

n components
of E(X), while the first sum is over a particular subset of cq

n components.
At this point we ask whether the reduction in the error is significant, i.e., greater than expected

by chance alone. Our null hypothesis is that the error vector is randomly oriented within the space
perpendicular to Dp

n at D(X). That is, we hypothesize that Ep(X) is given by

Êp(X) =
(e1,e2, ...,ecp

n
)

√

e2
1 + e2

2 + ..e2
cp

n

√

s(p) ,

where the ei are normally distributed with zero mean and unit variance. Setting the first cq
n coordinate

axes in this space to be those that are also perpendicular to Dq
n, the projection of this random vector

onto the subspace where Eq(X) resides is

Êq(X) =
(e1,e2, ...,ecq

n
,0,0, ..0)

√

e2
1 + e2

2 + ..e2
cp

n

√

s(p) .

The random stress ratio is therefore

F̂ ≡ ŝ(q)

ŝ(p)
=

||Êq(X)||
||Êp(X)||

=
∑cq

n
i=1 e2

i

∑cp
n

j=1 e2
j

< 1 .

This can be rewritten as

F̂ =
A

A+B
,

where A = ∑cq
n

i=1 e2
i and B = ∑cp

n

cq
n+1

e2
i . Note that A and B are two independent chi-squared random

variables, with a and b degrees of freedom, where

a = cq
n =

1
2
(n−q)(n−q−1) ,

b = cp
n − cq

n =
1
2
(q− p)(2n− p−q−1) .

Given an observed stress ratio of F = 1/(1+ε), we are interested in the probability that F̂ ≤ F ,
or (equivalently) that εA−B < 0. Since the distributions of A and B are known, the significance can
be calculated exactly. However, when p,q � n, as is often the case, it is useful to approximate the
significance in terms of the normal distribution, so that tabulated Z-scores may be used. Specifically,
as a and b become large, A and B approach normal variables: A ∼ N(a,

√
2a) and B ∼ N(b,

√
2b).

Therefore, the difference εA−B is distributed as

x = εA−B ∼ N(εa,ε
√

2a)−N(b,
√

2b)

∼ N(εa−b,
√

2
√

ε2a+b)

≡ N(µx,σx) .

With the scaling z = (x− µx)/σx, the distribution is transformed to a standard normal distribution,
and

P(εA−B < 0) = P

(

z >
εa−b√

2
√

ε2a+b

)

,
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where z ∼ N(0,1). The probability is 1/2 when ε = b/a. For the probability to be significant (say,
three standard deviations away from the mean, or smaller than P(z > 3)), we need to have ε greater
than (b+3

√
2b)/a.

In summary, we have derived the significance (p-value) of a given stress ratio, based on a pos-
tulated background distribution. This p-value can be calculated exactly, or approximated in terms
of the normal distribution. If the p-value associated with an increase in embedding dimension is
sufficiently low, then the decrease in stress is significant, and the higher-dimensional embedding
describes the data (∆) significantly better than the lower-dimensional one. In this framework, the
optimal embedding dimension has been found when an increase in dimension fails to significantly
decrease the metric stress.

2.8.2 INFORMATION-THEORETIC APPROACH

An alternative method for model selection is the minimum description length (MDL) approach. The
description length of a given model (hypothesis) and data is defined as the description length of
the model plus the description length of the data given the model. In our case, we are trying to
represent proximity data (∆) in terms of the pairwise distances from a p-dimensional embedding.
The model is a specific embedding X ∈ Sp

n . Given the model, the data can be reconstructed from the
pairwise distortions: for concreteness, we will use the relative distortions

Ei j =
Di j(X)−∆i j

∆i j
.

According to the MDL principle, we should select the model that minimizes the total description
length. This heuristic favors low-dimensional models (short model description) that are capable of
providing a fairly accurate description of the data (short description of the remaining errors, given
the model).

The model is a specific embedding with the set of positions x1,x2, ...,xn in Euclidean space R p,
for a total of n · p independent coordinates. Since the coordinates are not explicitly statistics of the
data (we do not have an explicit mapping from ∆ to X , but rather determine X implicitly, through
optimization), it is difficult to specify the uncertainty in each coordinate, which could be used to de-
fine the description length. However, indirectly, they do summarize some global information about
the data and in that sense they can be perceived as statistics. One can then estimate the uncertainty
from the gradient curve in the vicinity of the point, or from the overall distortion in pairwise dis-
tances associated with it. For simplicity we assume a constant uncertainty for all coordinates, so the
description length of the model is proportional to n · p.

The description of the data given the model depends on the set of n(n−1)/2 pairwise distortions.
Because this represents a large number of samples, the description length per sample will approach
the information-theoretic lower bound, which is related to the entropy of the underlying distribution.
For a continuous probability distribution p(x), the entropy is S[p] =− ∫

dx p(x) log2 p(x). According
to Shannon’s theorem, to encode a stream of samples from this distribution, with errors bounded by
ε/2 (which must be small), one needs − log2 ε+S[p] bits per sample. In our case, we must estimate
the underlying distribution from the empirically measured distortions Ei j, which can be done along
the lines of Section 2.6.1.

Combining the two terms, we suggest a scoring function of the form

αn · p+
1
2

n(n−1)SE , (7)
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where SE is the entropy of the error distribution, and the scaling parameter α represents the de-
scription length per coordinate of the model. We have dropped the constant term involving − log2 ε:
since this term is independent of p and X , it plays no role when comparing different models.

Initially, we intended to train the parameter α to optimize the scoring function’s performance;
for instance, one might seek the α that most often assigns noisy data to its original dimension.
However, upon reflection it is clear that the MDL method should not, in fact, be coerced into this
behavior. The purpose of the method is to find the shortest encoding of the data, and often this
will not coincide with the data’s original dimensionality. For noisy and high-dimensional data in
particular, the error distribution will never become very narrow, so the description length of the
conditional data cannot become arbitrarily short, while each additional coordinate costs the same
amount. Unless α is unreasonably small (say, less than 2 bits per coordinate), the MDL heuristic will
select a lower dimension than it would for the denoised data. This behavior is acceptable and even
informative. Therefore, we selected a somewhat arbitrary value of α = 10 for use in Section 3.2,
corresponding to a relative precision of 0.001, with the understanding that values anywhere from 5
to 50 would also be reasonable.

3. Test Data and Results

To test our algorithm we ran several tests. The first set of experiments tested the robustness and
performance of different metric objective functions. The second set tested our method for determin-
ing the embedding dimension. Next we evaluate structural preservation when using our algorithm
compared to MDS. Lastly, we test and compare the performance of our algorithm on handwriting
data.

3.1 Comparison of Metric Objective Functions

We created sixteen random configurations of 1200 points in two and three dimensions (8 sets in
2d, 8 sets in 3d). Each configuration consisted of twelve gaussian clusters of 100 points each, with
principal standard deviations between 0.2 and 1.0, and with intercluster separations between 1.0 and
8.0. A test distance matrix was generated from each configuration.

Our first experiment tested the robustness of metric MDS in the presence of noise, to see how
frequently the algorithm failed to converge to the global minimum. Using our algorithm for metric
SSTRESS with intermediate weighting, we embedded the test matrices 100 times each (from ran-
dom initial configurations), both without noise and with multiplicative noise of strength 0.02, 0.1,
or 0.5. The data sets were embedded in their original dimensions.

For the 2d→2d tests, the algorithm converged to the global minimum 100% of the time, for
each test matrix and for each level of noise. For the 3d→3d tests, the algorithm found the global
minimum 100% of the time for seven of the eight test matrices. On the eighth test matrix, the global
minimum was found 70–80% of the time, depending on the noise; in the remaining trials, a single
nonglobal minimizing configuration, with a low stress of 0.01–0.02, was found.

Our second experiment compared the performance of the various objective functions, and used
the same test matrices, but truncated to 400 points. We embedded the distance matrices from
3d→3d, 100 times each (from random initial configurations), with no noise, using SSTRESS with
intermediate and global weighting and SAMMON with intermediate and global weighting. The
number of times each objective function converged to the global minimum is shown in Table 1. The
results suggest that SAMMON is more liable to converge to a nonglobal minimizer than SSTRESS,
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as noted by other authors. They also indicate that global weighting, which emphasizes the impor-
tance of large target distances over small ones, is more successful than intermediate weighting at
recovering the original configuration.

ID SSTRESS-i SSTRESS-g SAMMON-i SAMMON-g
1 100 100 71 100
2 100 100 100 100
3 53 100 35 34
4 87 99 25 52
5 47 100 12 13
6 49 100 38 54
7 18 82 16 25
8 100 100 39 100

Table 1: Percentage of successful trials for 3d→3d embedding, for eight 400-point test sets and
four different objective functions.

3.2 Dimensionality Selection

We created twenty random configurations of 250 points in 2, 3, 5, 10, and 50 dimensions. (Four for
each dimensionality: a single gaussian cluster, a closely spaced pair of clusters, a widely spaced pair
of clusters, and a set of eight scattered clusters.) We then generated five dissimilarity matrices from
each of these configurations, using five different metrics, for a total of one hundred test matrices.
The metrics we used were:

1. Euc = Euclidean metric, ρ(x,y) =
√

∑i(xi − yi)2,

2. EucW = Euclidean metric plus weak multiplicative noise,

3. EucS = Euclidean metric plus strong multiplicative noise,

4. Mink = Minkowski metric, ρ(x,y) = (∑i |xi − yi|3/2)2/3,

5. Manh = Manhattan metric, ρ(x,y) = ∑i |xi − yi|.

In this set of tests, we embedded each test matrix 10 times each (from random initial configurations)
in 2, 3, 4, 5, and 10 dimensions, using SAMMON with global weighting. We took the lowest stress
from each set of 10 trials, and retained the corresponding embedding.

From the stresses, we calculated the statistical significance of the dimensional transitions 2 → 3,
3 → 4, 4 → 5, and 5 → 10, as described in Section 2.8.1 (geometric approach). These significances
were used to determine the best embedding dimension for each data set. An increase in dimension
was considered justified if it improved the stress at the 3σ-level (P < 0.0025, approximately). From
the final embeddings, we calculated the entropy of the distribution of errors for each embedding
dimension, as described in Section 2.8.2 (information-theoretic approach). Using the measured
entropies, we selected the dimensionality that minimized the MDL-based scoring function given by
Eq. (7).

420



DISTRIBUTIONAL SCALING

(3d)
YZ projection
XZ projection

-2
-1.5

-1
-0.5

0
0.5

1
x -2

-1.5
-1

-0.5
0

0.5
1

1.5
2

y

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

z

Figure 8: Embedding a non-Euclidean space. The dissimilarity matrix was created by applying
a Minkowskian metric to a two-dimensional gaussian distribution of points. After metric
embedding in 3d, the points appear to form a two-dimensional surface with negative
curvature, i.e., a saddle.

Tables 2 and 3 summarize the geometric and information-theoretic results. The results were
fairly consistent across the four types of test configuration (gaussian, pair, etc.). On the other hand,
they depended strongly on the dimensionality of the original configuration and on the way in which
dissimilarities were obtained, as seen in the Tables. Moreover, the geometric and information-
theoretic approaches can lead to very different results when applied to noisy or nonmetric data.

Applying the geometric approach, our algorithm selected the original dimensionality of the
data set in the Euclidean cases, both with and without noise, and indicated that higher-dimensional
embeddings were significantly better at describing the Minkowski- and Manhattan-metric test sets.
The results for the noisy data are not surprising; indeed, the method is designed to select the correct
dimensionality for data with additive gaussian noise. For the non-Euclidean test sets, the results
suggest that when a Minkowskian metric is imposed on a low-dimensional set of points, the points
tend to “curl up” into a higher dimension. Visual inspection of test embeddings tends to support
this idea: for instance, Figure 8 shows a 2d→3d example using the Minkowski metric in which the
embedded points have formed a saddle-shaped surface.

The information-theoretic approach often proposed a lower embedding dimension than the ge-
ometric approach. This can best be understood by comparing the goals of the two approaches with
respect to residual errors. The geometric method tries to increase the embedding dimension until
the residual errors are effectively random, and as much information as possible has been packed into
the model. On the other hand, the MDL-based method will increase the embedding dimension until
a balance is struck between the residual errors and the model, such that the total description length
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Euc EucW EucS Mink Manh
d = 2 2 2 2 3-4 3-4
d = 3 3 3 3 5 5
d = 5 5 5 5 10 10

d = 10 10 10 10 10 10

Table 2: Best embedding dimension: geometric approach.

Euc EucW EucS Mink Manh
d = 2 2 2 2 3 3
d = 3 3 3 3 3-4 3-4
d = 5 5 5 3-4 5 5

d = 10 10 5 3 10 10

Table 3: Best embedding dimension: information-theoretic approach.

is minimized. This compromise will often leave significant information in the residual errors; in
any such case, the geometric approach will propose a higher dimensionality for the data.

3.3 Structural Preservation

To assess the efficacy of our distributional scaling method in preserving the structure of input data,
we used the distributional method to re-embed the 100 test matrices from the previous section,
in each case starting from the optimal metric embedding. For each test matrix, we calculated six
different measures of structural fidelity, before and after the re-embedding. The first measure was
the metric SSTRESS, which was expected to increase. The remaining measures were of the form
∑A≤BWABD [ρAB, ρ̃AB], where D [p,q] was one of the following:

1. EMD = Earth-mover’s distance,

2. JS = Jensen-Shannon distance,

3. mean = squared difference between the means of p and q,

4. max = squared difference between the maxima,

5. variance = squared difference between the variances.

Table 4 shows the percent change in each of these measures, averaged over the 100 test sets, for
various embedding dimensions.

These results pertain to low-stress (metric SSTRESS ≤ 0.05) embeddings, where the agreement
between distributions is rather good even without the improvements from our method. When em-
bedded with the distributional scaling method we observe a modest increase in metric stress. How-
ever, this is compensated on average by substantial improvements in the other measures. Moreover,
while we explicitly optimize only the EMD, the changes in the other measures are correlated.

For highly frustrated data, like the motivating example of Section 2.5 (shown in Figure 1, with
metric SSTRESS ∼ 0.5), the numbers are more dramatic. The bottom row of Table 4 shows the
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Dim. stress EMD JS mean max variance
2 +29% -45% -50% -34% -17% +22%
3 +27% -59% -61% -44% -24% -24%
4 +23% -70% -69% -48% -37% -60%
5 +20% -76% -74% -47% -45% -83%
10 +19% -87% -86% -81% -46% -81%
2∗ +1.7% -49% -60% -79% -17% -22%

Table 4: Change in six measures of structural fidelity when distributional scaling is applied.
The last data set (2∗) is the one from Figure 1.

changes in the same six measures during that example’s re-embedding in d = 2. Here, the im-
provements in structural fidelity cause only a very small increase in metric stress. Our method is
perhaps best suited to this type of example, where no low-stress embedding exists. In such cases,
distributional MDS distinguishes among many candidate embeddings where metric MDS cannot,
and selects a candidate that is faithful to the structure of the original data.

3.4 Handwriting Data

Finally, to test our algorithms on real-world data, we applied both metric and distributional SSTRESS
to a subset of the MNIST database of handwritten digits.9 Each digit is represented by a 28× 28
grayscale image, where each pixel’s brightness is between 0 and 255; we used the Euclidean dis-
tances between these 784-dimensional data points as input to our embedding algorithms. Figure 9
shows the two-dimensional embeddings that were generated using each method. We restrict this ex-
ample to three digits, because we expect to need more than two dimensions to embed all ten digits
(Saul and Roweis, 2003), making the results harder to interpret.

The general layout is similar with both methods: the digit 2 is most readily confused with the
other two digits, and digits 0 and 1 are most easily distinguished from one another. However, the
application of distributional scaling (right) clearly improves the embedding, in that the overlap be-
tween clusters is greatly reduced. This result suggests that the distributions of intercluster distances
provide additional information distinguishing the handwritten digits from one another.

4. Discussion

In this paper we presented a method for structure-preserving embedding. As opposed to classical
multidimensional scaling methods that are concerned only with the pairwise distances, our algo-
rithm also monitors any higher-order structure that might exist in the data and attempts to preserve
it as well.

There are many ways to characterize the structure of the data. If the data resides in a real normed
space one can talk about its geometry. However, embedding is more interesting when the data is
given as proximity data, where it may or may not be metric. The notion of geometry in these cases
is elusive. Here we decided to focus on the clustering profile that is implied by the data. The

9. The MNIST data is available at http://yann.lecun.org/exdb/mnist.

423



QUIST AND YONA

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

0
1
2

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

0
1
2

Figure 9: Maps of handwritten digits using metric MDS (left) and distributional MDS (right).
The embeddings are of 628 examples of digits 0, 1, and 2, using the SSTRESS objective
function with local weighting.

cluster structure is a strong indicator of self organization of the data and can be used to describe the
structure of a variety of data types. Note that since the relative positioning of clusters with respect
to each other is important in order to recover the structure, the cluster assignments alone are not
sufficient.

To create embeddings that preserve the structure we defined a new objective function that con-
siders the geometric distortion as well as the pairwise distortion. Rather than considering the error
in each edge independently (as in traditional MDS techniques), we opt for embeddings that preserve
the overall structure of the information contained in the matrix ∆, and specifically, the distributions
of distances between and within clusters. The cluster assignments need not be known in advance, as
demonstrated in Section 2.5. One can apply traditional MDS techniques to generate a preliminary
embedding and use simple clustering algorithms in the host space to generate cluster assignments.
Even when these assignments are imperfect, the distributional information can recover the true
structure. We explored variants on this objective function, considering different functional forms,
normalizations and types of dissimilarity data. Our method can be applied to proximity data as well
as to high-dimensional feature vector data.

Finally, we addressed the problem of finding the “right” embedding dimension. In classical
MDS techniques, the embedding dimension must be set by the user, and no bound is provided on
the expected distortion of the embedding. In this paper we proposed two methods for computing the
expected distortion and estimating the right dimensionality of the data: a local geometric approach,
and a global heuristic based on the MDL principle.

Future directions include the study of globalization methods, other methods of assessing the
structure of the data and their incorporation in the objective function, and the application of this
method to real data sets.
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Appendix A. Metric Optimization

There are numerous methods described in the literature for the numerical optimization of both the
SAMMON and SSTRESS objective functions. The metric stress function is globally well-behaved:
it is smooth, bounded from below, and has compact level sets. Because of this, it is easy to guarantee
convergence to a local minimum. Differing strategies are distinguished not by their robustness, but
by their running times, rates of convergence, and space requirements. For large data sets, evaluation
of H takes O(n2) operations, as does the evaluation of either the gradient, ∇H , or the entire Hessian
matrix, ∇2H . As shown by Kearsley et al. (1998), linearly convergent methods, like the Guttman
transform originally proposed by Sammon (1969) for SAMMON, tend to stop prematurely. On the
other hand, the multidimensional Newton-Raphson method, with quadratic convergence to a local
minimum, can be applied with good success. Newton’s method takes O(n3) operations per iteration,
most of which are spent inverting the Hessian matrix, and space of O(n2) to hold the Hessian matrix,
which is not sparse. Because the latter space requirement may be prohibitive, and because we may
want to check partially-converged results more frequently, we do not use Newton’s method. Instead
we choose a quasi-Newton minimization strategy, conjugate gradient descent, as an alternative.

Conjugate gradient descent shares the quadratic convergence and expected running time of New-
ton’s method; but it has more modest storage requirements, and it produces output at shorter inter-
vals. The theoretical basis for the method is described in many places: see, for instance, Numerical
Recipes in C and its references (Press et al., 1993). We use the following version of the algorithm:

1. Set the iteration count k to 0, and choose an initial embedding X0.

2. Calculate the current downhill gradient: Gk+1 = −∇H (Xk).

3. Find new search direction, as a linear combination of the previous search direction and the
gradient:

Yk+1 = Gk+1 +
(Gk+1 −Gk) ·Gk+1

Gk ·Gk
Yk .

(For the first iteration, set Y1 = G1.)

4. Minimize H (Xk + αYk+1) with respect to the step size α. Update the embedding: Xk+1 =
Xk +αYk+1.

5. Terminate if α, ||Gk+1||, or H (Xk+1) is small enough, or if k is large enough. Otherwise,
increment k and return to step 2.

Because the conjugate gradient method is easy to implement and requires only first derivatives, we
used it for the optimization of all the objective functions mentioned in the paper, including distri-
butional scaling. As indicated above, it is as efficient as Newton’s method and more convenient in
several ways. In addition, we were able to substantially accelerate the conjugate-gradient optimiza-
tion of the SSTRESS and SAMMON functions by speeding up the line minimization step, which is
the bottleneck. We describe how this can be done in the following two sections.
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A.1 Optimizing Metric SSTRESS

When applied to metric MDS, the conjugate gradient algorithm spends most of its time in step 4,
performing line minimizations: at each iteration it calculates

arg min
α∈R

H (X +αY ) ,

where the starting point X and the search direction Y are known. In general, pinning down each
minimizing α (to sixteen digits of precision, say) will require 20–40 evaluations of H at different
points along the ray X +αY . For metric SSTRESS, however, this slow process can be circumvented.
Our key observation is that because H (X) is polynomial in the coordinates (xi)µ, its restriction to
a line is also polynomial, and can be minimized in constant time once the coefficients are known.
Specifically, for fixed X and Y , H (X + αY ) is a quartic polynomial in α, with coefficients that can
be found in O(n2) operations. In practice, it takes only a few times longer to find these coefficients
than it does to evaluate H itself. As a result, by using a specialized subroutine for polynomial line
minimization, we accelerate the optimization of metric SSTRESS by a factor of ten.

A.2 Optimizing Metric SAMMON

In the SAMMON case, the restriction of H to a line is not polynomial, so we cannot avail ourselves
directly of the trick that works for SSTRESS. However, it is possible to define an auxiliary function
that is polynomial, which can be used in place of H in the line minimizations. We will require
the auxiliary function to be a majorizing function for H ; this guarantees convergence to a local
minimum by ensuring that steps that decrease the auxiliary function also decrease H .

Formally, a function g(x,y) is called a majorizing function for f (x) if ∀x.yg(x,y) ≥ f (x) and
∀yg(y,y) = f (y). That is, for each fixed value of y (called the “point of support”), the values of
f (x) and g(x,y) coincide at x = y, and g(x,y) is never less than f (x). If f and g are smooth, then
clearly ∂1g(y,y) = f ′(y) and ∂2

1g(y,y) ≥ f ′′(y) for all y as well. Majorizing functions are of interest
in minimization problems, as they give rise to the following algorithm for finding a local minimizer
of f . Start at any x0. Consider g(x,x0) as a function of x, and look for a value of x such that
g(x,x0) < g(x0,x0). If there is none, terminate: x0 is a (local) minimizer of f . If there is one, call it
x1. Then f (x1) ≤ g(x1,x0) < g(x0,x0) = f (x0), so we have decreased the value of f . Repeat. The
potential advantage is that g can have special properties that f lacks, making it easier to minimize.

We want to find a majorizing function for f (x;δ) = (x−δ)2 that has the additional property of
being polynomial in x2. The simplest such function is the quartic

g4(x,y;δ) = δ2 +

(

1− 3δ
y

)

x2 +
δ
y3 x4 .

At the point of support y, only the first derivatives of g and f coincide. Using g instead of f in the
conjugate gradient algorithm gives a method with first-order convergence. To maintain quadratic
convergence, g needs to better approximate f for small step sizes, i.e., more derivatives need to
coincide. With this constraint, the next-simplest choice is the eighth-order polynomial

g8(x,y;δ) = δ2 +

(

1− 35δ
8y

)

x2 +
35δ
8y3 x4 − 21δ

8y5 x6 +
5δ
8y7 x8 .

This function matches f in its first three derivatives at the point of support. For fast minimization
of metric SAMMON, we use the function g8 in place of f for each line minimization.
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Appendix B. Nonmetric Optimization

Nonmetric scaling is often performed by alternating between two types of steps: those that im-
prove the configuration X , and those that improve the transformation g. Such algorithms are at best
linearly convergent, since they make no use of the coupling between X and g in the objective func-
tion. Drawing on knowledge of the metric problem, we expect the nonmetric problem also to be
fairly well-behaved and amenable to higher-order methods that treat X and g on the same footing.
We again choose to apply conjugate gradient descent, and expect quadratic convergence to a local
minimum.

In order to incorporate the function g into the set of minimization variables, we first select a
parametric representation of it. For a given input matrix ∆ = (∆i j), we fix M +1 points tk, such that

t0 < t1 < · · · < tM

and
t0 < min

i j
∆i j ≤ max

i j
∆i j < tM .

The tk are chosen so that the matrix elements of ∆ are distributed uniformly among the M intervals
(tk, tk+1]. Now the function g is taken to satisfy g(tk) = θk for each k, and is linearly interpolated
within each interval. The requirement that g be monotonic becomes a constraint on the parameters
θ:

θ0 ≤ θ1 ≤ ·· · ≤ θM . (8)

We now minimize Eq. (2) over the range of (X ,θ) admissible under the constraint (8).
Constrained minimization can be carried out in (at least) two ways consistent with our overall

methodology. The first way is to employ a “simplex”-type method, analogous to that used in linear
programming. Here we maintain a list of which of the M constraints (θk ≤ θk+1) are satisfied as
equalities, and take conjugate-gradient steps within that subspace. Whenever a line minimization
step saturates a new inequality, we add it to the list. Whenever the downhill gradient −∇H points
away from a surface θk = θk+1, we remove it from the list. The second way is to add a barrier
function to the original objective function H (X ,θ). Specifically, we might minimize

H ∗(X ,θ;µ) = H (X ,θ)−µ
M−1

∑
k=0

log

(

θk+1 −θk

θM −θ0

)

for a sequence of barrier heights µ tending to zero. This barrier function, like H itself, is chosen to
be scale-invariant.

Whichever method we use to enforce the constraints, we can still take advantage of efficient line
minimization in the case of SSTRESS. Because of our parametrization of g, each g(∆i j) is a linear
function of θ; so the numerator and the denominator of Eq. (2) are polynomial in the coordinates
xi,µ and the parameters θk. The restriction of H to a ray is

H (X +αY,θ+αζ) =
P1(α)

P2(α)
,

where P1 and P2 are polynomials (quartic and quadratic, in this case) with coefficients we can
calculate relatively quickly. As long as the number of intervals M is small compared to n2, evaluating
the barrier function for multiple values of α will not contribute substantially to the time. However,
we do not have a corresponding shortcut for nonmetric SAMMON. Therefore, our implementation
of nonmetric SSTRESS is from five to ten times faster per iteration than nonmetric SAMMON.
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