
Journal of Machine Learning Research 5 (2004) 725–775 Submitted 3/03; Revised 11/03; Published 7/04

Bias-Variance Analysis of Support Vector Machines for the
Development of SVM-Based Ensemble Methods

Giorgio Valentini VALENTINI@DSI.UNIMI.IT

DSI - Dipartimento di Scienze dell’Informazione
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Abstract

Bias-variance analysis provides a tool to study learning algorithms and can be used to properly
design ensemble methods well tuned to the properties of a specific base learner. Indeed the effec-
tiveness of ensemble methods critically depends on accuracy, diversity and learning characteristics
of base learners. We present an extended experimental analysis of bias-variance decomposition of
the error in Support Vector Machines (SVMs), considering Gaussian, polynomial and dot prod-
uct kernels. A characterization of the error decomposition is provided, by means of the analysis
of the relationships between bias, variance, kernel type and its parameters, offering insights into
the way SVMs learn. The results show that the expected trade-off between bias and variance is
sometimes observed, but more complex relationships can be detected, especially in Gaussian and
polynomial kernels. We show that the bias-variance decomposition offers a rationale to develop en-
semble methods using SVMs as base learners, and we outline two directions for developing SVM
ensembles, exploiting the SVM bias characteristics and the bias-variance dependence on the kernel
parameters.

Keywords: Bias-variance analysis, support vector machines, ensemble methods, multi-classifier
systems.

1. Introduction

Ensembles of classifiers represent one of the main research directions in machine learning (Diet-
terich, 2000a). Empirical studies showed that both in classification and regression problems en-
sembles are often much more accurate than the individual base learner that make them up (Bauer
and Kohavi, 1999; Dietterich, 2000b; Freund and Schapire, 1996), and recently different theoreti-
cal explanations have been proposed to justify the effectiveness of some commonly used ensemble
methods (Kittler et al., 1998; Schapire, 1999; Kleinberg, 2000; Allwein et al., 2000).

Two main theories are invoked to explain the success of ensemble methods. The first one con-
siders the ensembles in the framework of large margin classifiers (Mason et al., 2000), showing
that ensembles enlarge the margins, enhancing the generalization capabilities of learning algo-
rithms (Schapire et al., 1998; Allwein et al., 2000). The second is based on the classical bias-
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variance decomposition of the error (Geman et al., 1992), and it shows that ensembles can reduce
variance (Breiman, 1996b) and also bias (Kong and Dietterich, 1995).

Recently Domingos proved that Schapire’s notion of margins (Schapire et al., 1998) can be
expressed in terms of bias and variance and vice versa (Domingos, 2000c), and hence Schapire’s
bounds of ensemble’s generalization error can be equivalently expressed in terms of the distribution
of the margins or in terms of the bias-variance decomposition of the error, showing the equivalence
of margin-based and bias-variance-based approaches.

The effectiveness of ensemble methods depends on the specific characteristics of the base learn-
ers; in particular on the relationship between diversity and accuracy of the base learners (Dietterich,
2000a; Kuncheva et al., 2001b; Kuncheva and Whitaker, 2003), on their stability (Breiman, 1996b;
Bousquet and Elisseeff, 2002), and on their general geometrical properties (Cohen and Intrator,
2001).

From this standpoint the analysis of the features and properties of the base learners used in en-
semble methods is crucial in order to design ensemble methods well tuned to the characteristics of
a specific base learner. For instance, considering that the agglomeration of many classifiers into
one classification rule reduces variance (Breiman, 1996a), we could apply low-bias base learners
to reduce both bias and variance using ensemble methods. To this purpose in this paper we study
Support Vector Machines (SVMs), that are “strong” dichotomic classifiers, well founded on Vap-
nik’s statistical learning theory (Vapnik, 1998), in order to establish if and how we can exploit their
specific features in the context of ensemble methods. We analyze the learning properties of SVMs
using the bias-variance decomposition of the error as a tool to understand the relationships between
kernels, kernel parameters, and learning processes in SVM.

Historically, the bias-variance insight was borrowed from the field of regression, using squared-
loss as the loss function (Geman et al., 1992). For classification problems, where the 0/1 loss is the
main criterion, several authors proposed bias-variance decompositions related to 0/1 loss. Kong and
Dietterich (1995) proposed a bias-variance decomposition in the context of ECOC ensembles (Diet-
terich and Bakiri, 1995), but their analysis is extensible to arbitrary classifiers, even if they defined
variance simply as a difference between loss and bias.

In Breiman’s decomposition (Breiman, 1996b) bias and variance are always non-negative (while
Dietterich definition allows a negative variance), but at any input the reducible error (i.e. the total
error rate less noise) is assigned entirely to variance if the classification is unbiased, and to bias if
biased. Moreover he forced the decomposition to be purely additive, while for the 0/1 loss this is
not the case. Kohavi and Wolpert (1996) approach leads to a biased estimation of bias and variance,
assigning a non-zero bias to a Bayes classifier, while Tibshirani (1996) did not use directly the notion
of variance, decomposing the 0/1 loss in bias and an unrelated quantity he called “aggregation
effect”, which is similar to the James’ notion of variance effect (James, 2003).

Friedman (1997) showed that bias and variance are not purely additive: in some cases increas-
ing variance increases the error, but in other cases can also reduce the error, especially when the
prediction is biased.

Heskes (1998) proposed a bias-variance decomposition using as loss function the Kullback-
Leibler divergence. By this approach the error between the target and the predicted classifier densi-
ties is measured; anyway when he tried to extend this approach to the zero-one function interpreted
as the limit case of log-likelihood type error, the resulting decomposition produces a definition of
bias that loses his natural interpretation as systematic error committed by the classifier.
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As briefly outlined, these decompositions suffer of significant shortcomings: in particular they
lose the relationship to the original squared loss decomposition, forcing in most cases bias and
variance to be purely additive.

We consider classification problems and the 0/1 loss function in the Domingos’ unified frame-
work of bias-variance decomposition of the error (Domingos, 2000c,b). In this approach bias and
variance are defined for an arbitrary loss function, showing that the resulting decomposition spe-
cializes to the standard one for squared loss, but it holds also for the 0/1 loss (Domingos, 2000c).

A similar approach has been proposed by James (2003): he extended the notion of variance and
bias for general loss functions, distinguishing also between bias and variance, interpreted respec-
tively as the systematic error and the variability of an estimator, and the actual effect of bias and
variance on the error.

Using Domingos’ theoretical framework, we tried to answer two main questions:

1. Can we characterize bias and variance in SVMs with respect to the kernel and its parameters?

2. Can the bias-variance decomposition offer guidance for developing ensemble methods using
SVMs as base learners?

In order to answer these two questions, we planned and performed an extensive series of experiments
on synthetic and real data sets to evaluate bias variance-decomposition of the error with different
kernels and different kernel parameters.

The paper is organized as follows. In Section 2, we summarize the main results of Domingos’
unified bias-variance decomposition of error. Section 3 outlines how to measure in practice bias
and variance decomposition of the error with artificial or large benchmark data sets, or when only
a small “real” data set is available. Section 4 outlines the main characteristics of the data sets
employed in our experiments and the main experimental tasks performed. Then we present the main
results of our experiments about bias-variance decomposition of the error in SVMs, considering
separately Gaussian, polynomial and and dot product SVMs, and comparing also the results between
different kernels. Section 6 provides a characterization of bias-variance decomposition of the error
for Gaussian, polynomial and and dot product SVMs, highlighting the common patterns for each
different kernel. Section 7 exploits the knowledge achieved by the bias-variance decomposition of
the error to formulate hypotheses about the effectiveness of SVMs as base learners in ensembles of
learning machines, and two directions for developing new ensemble models of SVM are proposed.
An outline of ongoing and future developments of this work concludes the paper.

2. Bias-Variance Decomposition for the 0/1 Loss Function

The analysis of bias-variance decomposition of the error has been originally developed in the stan-
dard regression setting, where the squared error is usually used as loss function. Considering a
prediction y = f (x) of an unknown target t, provided by a learner f on input x, with x ∈ R

d and
y ∈ R, the classical decomposition of the error in bias and variance for the squared error loss is (Ge-
man et al., 1992)

Ey,t [(y− t)2] = Et [(t −E[t])2]+Ey[(y−E[y])2]+ (E[y]−E[t])2

= Noise(t)+Var(y)+Bias2(y).
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In words, the expected loss of using y to predict t is the sum of the variances of t (noise) and y plus
the squared bias. Ey[·] indicates the expected value with respect to the distribution of the random
variable y.

This decomposition cannot be automatically extended to the standard classification setting, as
in this context the 0/1 loss function is usually applied, and bias and variance are not purely additive.
As we are mainly interested in analyzing bias-variance for classification problems, we introduce
the bias-variance decomposition for the 0/1 loss function, according to the Domingos unified bias-
variance decomposition of the error (Domingos, 2000b).

2.1 Expected Loss Depends on the Randomness of the Training Set and the Target

Consider a (potentially infinite) population U of labeled training data points, where each point is a
pair (x j, t j), t j ∈ C , x j ∈ R

d , d ∈ N, where C is the set of the class labels. Let P(x, t) be the joint
distribution of the data points in U . Let D be a set of m points drawn identically and independently
from U according to P. We think of D as being the training sample that we are given for training
a classifier. We can view D as a random variable, and we will let ED[·] indicate the expected value
with respect to the distribution of D.

Let L be a learning algorithm, and define fD = L(D) as the classifier produced by L applied to
a training set D. The model produces a prediction fD(x) = y. Let L(t,y) be the 0/1 loss function,
that is L(t,y) = 0 if y = t, and L(t,y) = 1 otherwise.

Suppose we consider a fixed point x ∈ R
d . This point may appear in many labeled training

points in the population. We can view the corresponding labels as being distributed according to
the conditional distribution P(t|x). Recall that it is always possible to factor the joint distribution as
P(x, t) = P(x)P(t|x). Let Et [·] indicate the expectation with respect to t drawn according to P(t|x).

Suppose we consider a fixed predicted class y for a given x. This prediction will have an expected
loss of Et [L(t,y)]. In general, however, the prediction y is not fixed. Instead, it is computed from a
model fD which is in turn computed from a training sample D.

Hence, the expected loss EL of learning algorithm L at point x can be written by considering
both the randomness due to the choice of the training set D and the randomness in t due to the choice
of a particular test point (x, t):

EL(L ,x) = ED[Et [L(t, fD(x))]],

where fD = L(D) is the classifier learned by L on training data D. The purpose of the bias-variance
analysis is to decompose this expected loss into terms that separate the bias and the variance.

2.2 Optimal and Main Prediction

To derive this decomposition, we must define two things: the optimal prediction and the main
prediction: according to Domingos, bias and variance can be defined in terms of these quantities.

The optimal prediction y∗ for point x minimizes Et [L(t,y)] :

y∗(x) = argmin
y

Et [L(t,y)]. (1)

It is equal to the label t that is observed more often in the universe U of the data points, and
corresponds to the prediction provided by the Bayes classifier. The optimal model f̂ (x) = y∗, ∀x
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makes the optimal prediction at each point x, and corresponds to the Bayes classifier; its error rate
corresponds to the Bayes error rate.

The noise N(x), is defined in terms of the optimal prediction, and represents the remaining loss
that cannot be eliminated, even by the optimal prediction:

N(x) = Et [L(t,y∗)].

Note that in the deterministic case y∗ = t and N(x) = 0.
The main prediction ym at point x is defined as

ym = argmin
y′

ED[L( fD(x),y′)]. (2)

This is a value that would give the lowest expected loss if it were the “true label” of x. It expresses
the “central tendency” of a learner, that is its systematic prediction, or, in other words, it is the label
for x that the learning algorithm “wishes” were correct. For 0/1 loss, the main prediction is the class
predicted most often by the learning algorithm L when applied to training sets D.

2.3 Bias, Unbiased and Biased Variance.

Given these definitions, the bias B(x) (of a learning algorithm L on training sets of size m) is the
loss of the main prediction relative to the optimal prediction:

B(x) = L(y∗,ym).

For 0/1 loss, the bias is always 0 or 1. We will say that L is biased at point x, if B(x) = 1.
The variance V (x) is the average loss of the predictions relative to the main prediction:

V (x) = ED[L(ym, fD(x))]. (3)

It captures the extent to which the various predictions fD(x) vary depending on D.
In the case of the 0/1 loss we can also distinguish two opposite effects of variance (and noise)

on the error: in the unbiased case variance and noise increase the error, while in the biased case
variance and noise decrease the error.

There are three components that determine whether t = y:

1. Noise: is t = y∗ ?

2. Bias: is y∗ = ym ?

3. Variance: is ym = y ?

Note that bias is either 0 or 1 because neither y∗ nor ym are random variables. From this standpoint
we can consider two different cases: the unbiased and the biased case.

In the unbiased case, B(x) = 0 and hence y∗ = ym. In this case we suffer a loss if the prediction
y differs from the main prediction ym (variance) and the optimal prediction y∗ is equal to the target
t, or y is equal to ym, but y∗ is different from t (noise).

In the biased case, B(x) = 1 and hence y∗ 6= ym. In this case we suffer a loss if the prediction y
is equal to the main prediction ym and the optimal prediction y∗ is equal to the target t, or if both y
is different from ym (variance), and y∗ is different from t (noise). Figure 1 summarizes the different
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Figure 1: Case analysis of error.

conditions under which an error can arise, considering the combined effect of bias, variance and
noise on the learner prediction.

Considering the above case analysis of the error, if we let P(t 6= y∗) = N(x) = τ and P(ym 6=
y) = V (x) = σ, in the unbiased case we have

L(t,y) = τ(1−σ)+σ(1− τ) (4)

= τ+σ−2τσ
= N(x)+V (x)−2N(x)V (x),

while in the biased case

L(t,y) = τσ+(1− τ)(1−σ) (5)

= 1− (τ+σ−2τσ)

= B(x)− (N(x)+V (x)−2N(x)V (x)).

Note that in the unbiased case (Equation 4) the variance is an additive term of the loss function,
while in the biased case (Equation 5) the variance is a subtractive term of the loss function. Moreover
the interaction terms will usually be small, because, for instance, if both noise and variance term
will be both lower than 0.1, the interaction term 2N(x)V (x) will be reduced to less than 0.02.

In order to distinguish between these two different effects of the variance on the loss function,
Domingos defines the unbiased variance, Vu(x), to be the variance when B(x) = 0 and the biased
variance, Vb(x), to be the variance when B(x) = 1. We can also define the net variance Vn(x) to
take into account the combined effect of the unbiased and biased variance:

Vn(x) = Vu(x)−Vb(x).
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Figure 2: Effects of biased and unbiased variance on the error. The unbiased variance increments,
while the biased variance decrements the error.

Figure 2 summarizes in graphic form the opposite effects of biased and unbiased variance on the
error.

If we can disregard the noise, the unbiased variance captures the extents to which the learner
deviates from the correct prediction ym (in the unbiased case ym = y∗), while the biased variance
captures the extents to which the learner deviates from the incorrect prediction ym (in the biased
case ym 6= y∗).

2.4 Domingos’ Bias-Variance Decomposition

Domingos (2000a) showed that for a quite general loss function the expected loss is

EL(L ,x) = c1N(x)+B(x)+ c2V (x). (6)

For the 0/1 loss function c1 is 2PD( fD(x) = y∗)− 1 and c2 is +1 if B(x) = 0 and −1 if B(x) = 1.
Note that c2V (x) = Vu(x)−Vb(x) = Vn(x) (Equation 3), and if we disregard the noise, Equation 6
can be simplified to

EL(L ,x) = B(x)+Vn(x). (7)

Summarizing, one of the most interesting aspects of Domingos’ decomposition is that variance
hurts on unbiased points x, but it helps on biased points. Nonetheless, to obtain low overall expected
loss, we want the bias to be small, and hence, we see to reduce both the bias and the unbiased
variance. A good classifier will have low bias, in which case the expected loss will approximately
equal the variance.
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This decomposition for a single point x can be generalized to the entire population by defining
Ex[·] to be the expectation with respect to P(x). Then we can define the average bias Ex[B(x)], the
average unbiased variance Ex[Vu(x)], and the average biased variance Ex[Vb(x)]. In the noise-free
case, the expected loss over the entire population is

Ex[EL(L ,x)] = Ex[B(x)]+Ex[Vu(x)]−Ex[Vb(x)].

3. Measuring Bias and Variance

The procedures to measure bias and variance depend on the characteristics and on the cardinality of
the data sets used.

For synthetic data sets we can generate different sets of training data for each learner to be
trained. Then a large synthetic test set can be generated in order to estimate the bias-variance
decomposition of the error for a specific learner model.

Similarly, if a large data set is available, we can split it in a large learning set and in a large
testing set. Then we can randomly draw subsets of data from the large training set in order to train
the learners; bias-variance decomposition of the error is measured on the large independent test set.

However, in practice, for real data we dispose of only one and often small data set. In this
case, we can use cross-validation techniques for estimating bias-variance decomposition, but we
propose to use out-of-bag (Breiman, 2001) estimation procedures, as they are computationally less
expensive.

3.1 Measuring with Artificial or Large Benchmark Data Sets

Consider a set D = {Di}
n
i=1 of learning sets Di = {xk, tk}m

k=1. The data sets Di can be generated
according to some known probability distribution or can be drawn with replacement from a large
data set D according to an uniform probability distribution. Here we consider only a two-class case,
i.e. tk ∈ C = {−1,1}, xk ∈ X, for instance X = R

d , d ∈ N, but the extension to the multiclass
case is straightforward.

The estimates of the error, bias, unbiased and biased variance are performed on a test set T
separated from the training set D . In particular these estimates with respect to a single example
(x, t) ∈ T are performed using the classifiers fDi = L(Di) produced by a learner L using training
sets Di drawn from D . These classifiers produce a prediction y∈ C , that is fDi(x) = y. The estimates
are performed for all the (x, t)∈T , and the overall loss, bias and variance can be evaluated averaging
over the entire test set T .

In presence of noise and with the 0/1 loss, the optimal prediction y∗ is equal to the label t that is
observed more often in the universe U of data points:

y∗(x) = argmax
t∈C

P(t|x).

The noise N(x) for the 0/1 loss can be estimated if we can evaluate the probability of the targets for
a given example x:

N(x) = ∑
t∈C

L(t,y∗)P(t|x) = ∑
t∈C

||t 6= y∗||P(t|x),

where ||z||= 1 if z is true, 0 otherwise. In practice it is difficult to estimate the noise for “real world”
data sets, and to simplify the computation we consider the noise free case. In this situation we have
y∗ = t.
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The main prediction is a function of the y = fDi(x). Considering a 0/1 loss, we have

ym = argmax(p1, p−1),

where p1 = PD(y = 1|x) and p−1 = PD(y =−1|x), i.e. the main prediction is the mode. To calculate
p1, having a test set T = {x j, t j}

r
j=1, it is sufficient to count the number of learners that predict class

1 on a given input x:

p1(x j) =
∑n

i=1 ‖ fDi(x j) = 1‖
n

,

where ‖z‖ = 1 if z is true and ‖z‖ = 0 if z is false
The bias can be easily calculated after the evaluation of the main prediction:

B(x) =

{

1 if ym 6= t
0 if ym = t

=

∣

∣

∣

∣

ym − t
2

∣

∣

∣

∣

, (8)

or equivalently:

B(x) =

{

1 if pcorr(x) ≤ 0.5
0 otherwise,

where pcorr is the probability that a prediction is correct, i.e. pcorr(x) = P(y = t|x) = PD( fD(x) = t).
In order to measure the variance V (x), if we define yDi = fDi(x), we have

V (x) =
1
n

n

∑
i=1

L(ym,yDi) =
1
n

n

∑
i=1

||(ym 6= yDi)||

The unbiased variance Vu(x) and the biased variance Vb(x) can be calculated evaluating if the
prediction of each learner differs from the main prediction respectively in the unbiased and in the
biased case:

Vu(x) =
1
n

n

∑
i=1

||(ym = t) and (ym 6= yDi)||,

Vb(x) =
1
n

n

∑
i=1

||(ym 6= t) and (ym 6= yDi)||.

In the noise-free case, the average loss on the example x ED(x) is calculated by a simple
algebraic sum of bias, unbiased and biased variance:

ED(x) = B(x)+Vu(x)−Vb(x) = B(x)+(1−2B(x))V (x).

We can easily calculate the average bias, variance, unbiased, biased and net variance, averaging
over the entire set of the examples of the test set T = {(x j, t j)}

r
j=1. In the remaining part of this

section the indices j refer to the examples that belong to the test set T , while the indices i refer to
the training sets Di, drawn with replacement from the separated training set D , and used to train the
classifiers fDi .

The average quantities are
Average bias:

Ex[B(x)] =
1
r

r

∑
j=1

B(x j) =
1
r

r

∑
j=1

∣

∣

∣

∣

ym(x j)− t j

2

∣

∣

∣

∣

,
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Average variance:

Ex[V (x)] =
1
r

r

∑
j=1

V (x j)

=
1
nr

r

∑
j=1

n

∑
i=1

L(ym(x j), fDi(x j))

=
1
nr

r

∑
j=1

n

∑
i=1

||ym(x j) 6= fDi(x j)||,

Average unbiased variance:

Ex[Vu(x)] =
1
r

r

∑
j=1

Vu(x j) =
1
nr

r

∑
j=1

n

∑
i=1

||(ym(x j) = t j) and (ym(x j) 6= fDi(x j))||,

Average biased variance:

Ex[Vb(x)] =
1
r

r

∑
j=1

Vb(x j) =
1
nr

r

∑
j=1

n

∑
i=1

||(ym(x j) 6= t j) and (ym(x j) 6= fDi(x j))||,

and the Average net variance:

Ex[Vn(x)] =
1
r

r

∑
j=1

Vn(x j) =
1
r

r

∑
j=1

(Vu(x j)−Vb(x j)).

Finally, the average loss on all the examples (with no noise) is the algebraic sum of the average
bias, unbiased and biased variance.

Ex[L(t,y)] = Ex[B(x)]+Ex[Vu(x)]−Ex[Vb(x)]

3.2 Measuring with Small Data Sets

In practice (unlike in theory), we have only one and often small data set S . We can simulate mul-
tiple training sets by bootstrap replicates Sb = {x|x is drawn at random with replacement from S}.
In order to measure bias and variance we can use out-of-bag points, providing in such a way an
unbiased estimate of the error. At first we need to construct B bootstrap replicates of S (e. g.,
B = 200): S1, . . . ,SB. Then we apply a learning algorithm L to each replicate Sb to obtain hypothe-
ses fb = L(Sb).

Let Tb = S\Sb be the data points that do not appear in Sb (out of bag points). We can use these
data sets Tb to evaluate the bias-variance decomposition of the error; that is we compute the predicted
values fb(x), ∀x s.t. x ∈ Tb. For each data point x, we have now the observed corresponding value t
and several predictions y1, . . . ,yK , where K = |{Tb|x ∈ Tb,1 ≤ b ≤ B}|, K ≤ B, and on the average
K ' B/3, because about 1/3 of the predictors is not trained on a specific input x. Note that the value
of K depends on the specific example x considered. Moreover if x ∈ Tb then x /∈ Sb, hence fb(x)
makes a prediction on an unknown example x.

In order to compute the main prediction, for a two-class classification problem, we can define

p1(x) =
1
K

B

∑
b=1

||(x ∈ Tb) and ( fb(x) = 1)||,
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p−1(x) =
1
K

B

∑
b=1

||(x ∈ Tb) and ( fb(x) = −1)||.

The main prediction ym(x) corresponds to the mode:

ym = argmax(p1, p−1).

The bias can be calculated as in Equation 8, and the variance V (x) is

V (x) =
1
K

B

∑
b=1

||(x ∈ Tb) and (ym 6= fb(x))||.

Similarly easily computed are the unbiased, biased and net-variance:

Vu(x) =
1
K

B

∑
b=1

||(x ∈ Tb) and (B(x) = 0) and (ym 6= fb(x))||,

Vb(x) =
1
K

B

∑
b=1

||(x ∈ Tb) and (B(x) = 1) and (ym 6= fb(x))||,

Vn(x) = Vu(x)−Vb(x).

Average bias, variance, unbiased, biased and net variance, can be easily calculated averaging over
all the examples.

4. Bias-Variance Analysis in SVMs

The bias-variance decomposition of the error represents a powerful tool to analyze learning pro-
cesses in learning machines. According to the procedures described in the previous section, we
measured bias and variance in SVMs, in order to study the relationships with different kernel types
and their parameters. To accomplish this task we computed bias-variance decomposition of the error
on different synthetic and “real” data sets.

4.1 Experimental Setup

In the experiments we employed seven different data sets, both synthetic and “real”. P2 is a syn-
thetic bidimensional two-class data set;1 each region is delimited by one or more of four simple
polynomial and trigonometric functions (Figure 3). The synthetic data set Waveform is generated
from a combination of two of three “base” waves; we reduced the original three classes of Wave-
form to two, deleting all samples pertaining to class 0. The other data sets are all from the UCI
repository (Merz and Murphy, 1998). Table 4.1 summarizes the main features of the data sets used
in the experiments.

1. The application gensimple, that we developed to generate the data, is freely available on line at
ftp://ftp.disi.unige.it/person/ValentiniG/BV/gensimple.
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Figure 3: P2 data set, a bidimensional two class synthetic data set. Roman numbers label the re-
gions belonging to the two classes.

Data set # of # of tr. # of tr. # base # of
attr. samples sets tr. set test samples

P2 2 100 400 synthetic 10000
Waveform 21 100 200 synthetic 10000
Grey-Landsat 36 100 200 4425 2000
Letter 16 100 200 614 613
Letter w. noise 16 100 200 614 613
Spam 57 100 200 2301 2300
Musk 166 100 200 3299 3299

Table 1: Data sets used in the experiments.

In order to perform a reliable evaluation of bias and variance we used small training set and
large test sets. For synthetic data we generated the desired number of samples. For real data sets
we used bootstrapping to replicate the data. In both cases we computed the main prediction, bias,
unbiased and biased variance, net-variance according to the procedures explained in Section 3.1. In
our experiments, the computation of James’ variance and systematic effect (James, 2003) is reduced
to the measurements of the net-variance and bias, and hence we did not explicitly compute these
quantities (see Appendix A for details).

With synthetic data sets, we generated small training sets of about 100 examples and reasonably
large test sets using computer programs. In fact small samples show bias and variance more clearly
than having larger samples. We produced 400 different training sets for P2 and 200 training sets for
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Waveform. The test sets were chosen reasonably large (10000 examples) to obtain reliable estimates
of bias and variance.

For real data sets we first divided the data into a training D and a test T sets. If the data sets had
a predefined training and test sets reasonably large, we used them (as in Grey-Landsat and Spam),
otherwise we split them in a training and test set of equal size. Then we drew from D bootstrap
samples. We chose bootstrap samples much smaller than |T | (100 examples). More precisely we
drew 200 data sets from D , each one consisting of 100 examples uniformly drawn with replacement.

Summarizing, both with synthetic and real data sets we generated small training sets for each
data set and a much larger test set. Then all the data were normalized in such a way that for each
attribute the mean was 0 and the standard deviation 1. In all our experiments we used NEUROb-
jects (Valentini and Masulli, 2002),2 a C++ library for the development of neural networks and
machine learning applications, and SVM-light (Joachims, 1999), a set of C applications for training
and testing SVMs.

We developed and used the C++ application analyze BV, to perform bias-variance decompo-
sition of the error.3 This application analyzes the output of a generic learning machine model and
computes the main prediction, error, bias, net-variance, unbiased and biased variance using the 0/1
loss function. Other C++ applications have been developed to process and analyze the results, using
also Cshell scripts to train, test and analyze bias-variance decomposition of all the SVM models for
each specific data set.

4.2 Experimental Tasks

To evaluate bias and variance in SVMs we conducted experiments with different kernels (Gaussian,
polynomial and dot product) and different kernel parameters. For each kernel we considered the
same set of values for the parameter C that controls the trade-off between training error and margin,
ranging from C = 0.01 to C = 1000.

1. Gaussian kernels. We evaluated bias-variance decomposition varying the parameters σ of
the kernel and the C parameter. In particular we analyzed:

(a) The relationships between average error, bias, net-variance, unbiased and biased vari-
ance, the σ parameter of the kernel and the C parameter.

(b) The relationships between generalization error, training error, number of support vectors
and capacity with respect to σ.

We trained RBF-SVM with all the combinations of the parameters σ and C, using the a set of
values for σ ranging from σ = 0.01 to σ = 1000. We evaluated about 200 different RBF-SVM
models for each data set.

2. Polynomial kernels. We evaluated bias-variance decomposition varying the degree of the
kernel and the C parameter. In particular we analyzed the relationships between average
error, bias, net-variance, unbiased and biased variance, the degree of the kernel and the C
parameter.

2. This library may be downloaded from the web at http://www.disi.unige.it/person/ValentiniG/NEURObjects.
3. The source code is available at ftp://ftp.disi.unige.it/person/ValentiniG/BV. Moreover C++ classes for

bias-variance analysis have been developed as part of the NEURObjects library.
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Figure 4: Grey-Landsat data set. Error (a) and its decomposition in bias (b), net variance (c), unbi-
ased variance (d), and biased variance (e) in SVM RBF, varying both C and σ.

We trained polynomial-SVM with several combinations of the degree parameter of the kernel
and C values, using all the polynomial degrees between 1 and 10, evaluating in such a way
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about 120 different polynomial-SVM models for each data set. Following the heuristic of
Jakkola, the dot product of polynomial kernel was divided by the dimension of the input data,
to “normalize” the dot product before to raise to the degree of the polynomial.

3. Dot product kernels. We evaluated bias-variance decomposition varying the C parameter.
We analyzed the relationships between average error, bias, net-variance, unbiased and biased
variance and the parameter C (the regularization factor) of the kernel. We trained dot-product-
SVM considering different values for the C parameter, evaluating in such a way 12 different
dot-product-SVM models for each data set.

Each SVM model required the training of 200 different SVMs, one for each synthesized or boot-
strapped data set, for a total of (204 + 120 + 12)× 200 = 67200 trained SVM for each data set
(134400 for the data set P2, as for this data set we used 400 data sets for each model). The ex-
periments required the training of more than half million of SVMs, considering all the data sets
and of course the testing of all the SVM previously trained in order to evaluate the bias-variance
decomposition of the error of the different SVM models. For each SVM model we computed the
main prediction, bias, net-variance, biased and unbiased variance and the error on each example of
the test set, and the corresponding average quantities on the overall test set.

5. Results

In this section we present the results of the experiments. We analyzed bias-variance decomposition
with respect to the kernel parameters considering separately Gaussian, polynomial and dot product
SVMs, comparing also the results among different kernels. Here we present the main results. Full
results, data and graphics are available by anonymous ftp at ftp://ftp.disi.unige.it/person/ValentiniG/papers/bv-svm.ps.gz.

5.1 Gaussian Kernels

Figure 4 depicts the average loss, bias net-variance, unbiased and biased variance varying the values
of σ and the regularization parameter C in RBF-SVM on the Grey-Landsat data set. We note that σ
is the most important parameter: although for very low values of C the SVM cannot learn, indepen-
dently of the values of σ, (Figure 4 a), the error, the bias, and the net-variance depend mostly on
the σ parameter. In particular for low values of σ, bias is very high (Figure 4 b) and net-variance
is 0, as biased and unbiased variance are about equal (Figure 4d and 4e). Then the bias suddenly
drops (Figure 4b), lowering the average loss (Figure 4a), and then stabilizes for higher values of
σ. Interestingly enough, in this data set (but also in others, data not shown), we note an increment
followed by a decrement of the net-variance, resulting in a sort of “wave shape” of the net variance
graph (Figure 4c).

Figure 5 shows the bias-variance decomposition on different data sets, varying σ, and for a fixed
value of C, that is a sort of “slice” along the σ axis of the Figure 4. The plots show that average
loss, bias, and variance depend significantly on σ for all the considered data sets, confirming the
existence of a “high biased region” for low values of σ. In this region, biased and unbiased variance
are about equal (net-variance Vn = Vu −Vb is low). Then unbiased variance increases while biased
variance decreases (Figure 5 a,b,c and d), and finally both stabilize for relatively high values of σ.
Interestingly, the average loss and the bias do not increase for high values of σ, especially if C is
high.
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Bias and average loss increases with σ only for very small C values. Note that net-variance
and bias show opposite trends only for small values of C (Figure 5 c). For larger C values the
symmetric trend is limited only to σ ≤ 1 (Figure 5 d), otherwise bias stabilizes and net-variance
slowly decreases. Figure 6 shows more in detail the effect of the C parameter on bias-variance
decomposition. For C ≥ 1 there are no variations of the average error, bias and variance for a fixed
value of σ. Note that for very low values of σ (Figure 6a and b) there is no learning. In the Letter-
Two data set, as in other data sets (figures not shown), only for small C values we have variations in
bias and variance values (Figure 6).

5.1.1 DISCRIMINANT FUNCTION COMPUTED BY THE SVM-RBF CLASSIFIER

In order to get insights into the behaviour of the SVM learning algorithm with Gaussian kernels we
plotted the real-valued functions computed without considering the discretization step performed
through the sign function. The real valued function computed by a Gaussian SVM is

f (x,α,b) = ∑
i∈SV

yiαi exp(−‖xi −x‖2/σ2)+b,

where the αi are the Lagrange multipliers found by the solution of the dual optimization problem,
the xi ∈ SV are the support vectors, that is the points for which αi > 0.

We plotted the surface computed by the Gaussian SVM with the synthetic data set P2. Indeed
it is the only surface that can be easily visualized, as the data are bidimensional and the resulting
real valued function can be easily represented through a wireframe three-dimensional surface. The
SVMs are trained with exactly the same training set composed by 100 examples. The outputs are
referred to a test set of 10000 examples, selected in an uniform way through all the data domain.
In particular we considered a grid of equi-spaced data at 0.1 interval in a two dimensional 10×10
input space. If f (x,α,b) > 0 then the SVM matches up the example x with class 1, otherwise with
class 2.

With small values of σ we have “spiky” functions: the response is high around the support
vectors, and is close to 0 in all the other regions of the input domain (Figure 7). In this case we have
overfitting: a large error on the test set (about 46 % with σ = 0.01 and 42.5 % with σ = 0.02 ), and
a training error near to 0.

If we enlarge the values of σ we obtain a wider response on the input domain and the error
decreases (with σ = 0.1 the error is about 37 %). With σ = 1 we have a smooth function that fits
quite well the data (Figure 8). In this case the error drops down to about 13 %.

Enlarging too much σ we have a too smooth function (Figure 9 (a)), and the error increases to
about 37 %: in this case the high bias is due to an excessive smoothing of the function. Increasing
the values of the regularization parameter C (in order to better fit the data), we can diminish the
error to about 15 %: the shape of the function now is less smooth (Figure 9 (b)).

As noted in Scholkopf and Smola (2002), using very large values of sigma, we have a very
smooth discriminant function (in practice a plane), and increasing it even further does not change
anything. Indeed, enlarging σ to 500 we obtain a plane (Fig 9 (c)), and a very biased function (error
about 45 %), and even if we increment C, we can obtain better results, but always with a large error
(about 35 %, Fig 9 (d)).
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5.1.2 BEHAVIOR OF SVMS WITH LARGE σ VALUES

Fig 4 and 5 show that σ parameter plays a sort of smoothing effect, as the value of σ increases.
In particular with large values of σ we did not observe any increment of bias nor decrement of
variance. In order to get insights into this counter-intuitive behaviour we tried to answer these two
questions:

1. Does the bias increase while variance decrease with large values of σ, and what is the com-
bined effect of bias-variance on the error?

2. In this situation (large values for σ), what is the effect of the C parameter?

In Figure 5 we do not observe an increment of bias with large values of σ, but we limited our
experiments to values of σ ≤ 100. Here we investigate the effect for larger values of σ (from 100 to
1000).

In most cases, also increasing the values of σ right to 1000 we do not observe an increment of
the bias and a substantial decrement of the variance. Only for low values of C, that is C < 1, the
bias and the error increase with large values of σ (Figure 10). With the P2 data set the situation is
different: in this case we observe an increment of the bias and the error with large values of σ, even
if with large values of C the increment rate is lower (Figure 11 a and b).

Also with the musk data set we note an increment of the error with very large values of σ, but
surprisingly this is due to an increment of the unbiased variance, while the bias is quite stable, at
least for values of C > 1, (Figure 11 c and d).

Larger values of C counter-balance the bias introduced by large values of σ. But with some
distributions of the data too large values of σ produce too smooth functions, and also incrementing
C it is very difficult to fit the data. Indeed, the discriminant function computed by the RBF-SVM
with the P2 data set (that is the function computed without considering the sign function) is too
smooth for large values of σ: for σ = 20, the error is about 37%, due almost entirely to the large
bias, (Figure 9 a), and for σ = 500 the error is about 45 % and also incrementing the C value to 1000,
we obtain a surface that fits the data better, but with an error that remains large (about 35%). Indeed
with very large values of σ the Gaussian kernel becomes nearly linear (Scholkopf and Smola, 2002)
and if the data set is very far from being linearly separable, as with the P2 data set (Figure 3), the
error increases, especially in the bias component (Figure 11 (a) and (b)). Summarizing with large
σ values bias can increment, while net-variance tends to stabilize, but this effect can be counter-
balanced by larger C values.

5.1.3 RELATIONSHIPS BETWEEN GENERALIZATION ERROR, TRAINING ERROR, NUMBER OF

SUPPORT VECTORS AND CAPACITY

Looking at Figure 4 and 5, we see that SVMs do not learn for small values of σ. Moreover the low
error region is relatively large with respect to σ and C.

In this section we evaluate the relationships between the estimated generalization error, the bias,
the training error, the number of support vectors and the estimated Vapnik Chervonenkis dimension,
in order to answer the following questions:

1. Why SVMs do not learn for small values of σ?

2. Why we have a so large bias for small values of σ?
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3. Can we use the variation of the number of support vectors to predict the “low error” region?

4. Is there any relationship between the bias, variance and VC dimension, and can we use this
last one to individuate the “low error” region?

The generalization error, bias, training error, number of support vectors and the Vapnik Cher-
vonenkis dimension are estimated averaging with respect to 400 SVMs (P2 data set) or 200 SVMs
(other data sets) trained with different bootstrapped training sets composed by 100 examples each
one. The test error and the bias are estimated with respect to an independent and sufficiently large
data set.

The VC dimension is estimated using the Vapnik’s bound based on the radius R of the sphere that
contains all the data (in the feature space), approximated through the sphere centered in the origin,
and on the norm of the weights in the feature space (Vapnik, 1998). In this way the VC dimension
is overestimated but it is easy to compute and we are interested mainly in the comparison of the VC
dimension of different SVM models:

VC ≤ R2 · ‖w‖2 +1,

where
‖w‖2 = ∑

i∈SV
∑

j∈SV

αiα jK(xi,xj)yiy j

and
R2 = max

i
K(xi,xi).

The number of support vectors is expressed as the halved ratio of the number (% SV ) of support
vectors with respect to the total number of training data:

%SV =
#SV

#trainingdata ·2
.

In the graphs shown in Figure 12 and Figure 13, on the left y axis is represented the error, training
error and bias, and the halved ratio of support vectors. On the right y axis is reported the estimated
Vapnik Chervonenkis dimension.

For very small values of σ the training error is very small (about 0), while the number of support
vectors is very high, and high is also the error and the bias (Figure12 and 13). These facts support
the hypothesis of overfitting problems with small values of σ. Indeed the real-valued function
computed by the SVM (that is the function computed without considering the sign function, see
Section 5.1.1) is very spiky with small values of σ (Figure 7). The response of the SVM is high
only in small areas around the support vectors, while in all the other areas “not covered” by the
support vectors the response is very low (about 0), that is the SVM is not able to get a decision,
with a consequently very high bias. In the same region (small values for σ) the net variance is
usually very small, for either one of these reasons: 1) biased and unbiased variance are almost equal
because the SVM performs a sort of random guessing for the most part of the unknown data; 2)
both biased and unbiased variance are about 0, showing that all the SVMs tend to answer in the
same way independently of a particular instance of the training set (Figure 5 a, b and f). Enlarging
σ we obtain a wider response on the input domain: the real-valued function computed by the SVM
becomes smoother (Figure 8), as the “bumps” around the support vectors become wider and the
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SVM can decide also on unknown examples. At the same time the number of support vectors
decreases (Figure 12 and 13).

Considering the variation of the ratio of the support vectors with σ, in all data sets the trend of
the rate of support vectors follows the error, with a sigmoid shape that sometimes becomes an U
shape for small values of C (Figure12 and 13). This is not surprising because it is known that the
support vector ratio offers an approximation of the generalization error of the SVMs (Vapnik, 1998).
Moreover, on all the data sets the %SV decreases in the “stabilized” region, while in the transition
region remains high. As a consequence the decrement in the number of support vectors shows that
we are entering the “low error” region, and in principle we can use this information to detect this
region.

In our experiments, an inspection of the support vectors relative to the Grey-Landsat and Wave-
form data sets found that most of the support vectors are shared in polynomial and Gaussian kernels
with respectively the best degree and σ parameters. Even if these results confirmed the ones found
by other authors (see e.g. Vapnik (1998)), it is worth noting that we did not perform a system-
atic study on this topic: we considered only two data sets and we compared only few hundreds of
different SVMs.

In order to analyze the role of the VC dimension on the generalization ability of learning ma-
chines, we know from statistical learning theory that the form of the bounds of the generalization
error E of SVMs is

E( f (σ,C)k
n)) ≤ Eemp( f (σ,C)k

n))+Φ(
hk

n
), (9)

where f (σ,C)k
n represents the set of functions computed by an RBF-SVM trained with n examples

and with parameters (σk,Ck) taken from a set of parameters S = {(σi,Ci), i ∈ N}, Eemp represents
the empirical error and Φ the confidence interval that depends on the cardinality n of the data set and
on the VC dimension hk of the set of functions identified by the actual selection of the parameters
(σk,Ck). In order to obtain good generalization capabilities we need to minimize both the empirical
risk and the confidence interval. According to Vapnik’s bounds (Equation 9), in Figure 12 and
13 the lowest generalization error is obtained for a small empirical risk and a small estimated VC
dimension.

But sometimes with relatively small values of VC we may have a very large error, as the training
error and the number of support vectors increase with very large values of σ (Figure 12 a and 13
a). Moreover with a very large estimate of the VC dimension and low empirical error (Figure 12
and 13) we may have a relatively low generalization error. In conclusion it seems very difficult to
use in practice these estimate of the VC dimension to infer the generalization abilities of the SVM.
In particular it seems unreliable to use the VC dimension to infer the “low error” region of the
RBF-SVM.

5.2 Polynomial and Dot Product Kernels

In this section we analyze the characteristics of bias-variance decomposition of the error in polyno-
mial SVMs, varying the degree of the kernel and the regularization parameter C.

Error shows a U shape with respect to the degree. This shape depends on unbiased variance
(Figure 14 a and b), or both by bias and unbiased variance (Figure 14 c and d). The U shape of the
error with respect to the degree tends to be more flat for increasing values of C, and net-variance
and bias show often opposite trends (Figure 15).
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Average error and bias tends to be higher for low C and degree values, but, incrementing the
degree, the error is less sensitive to C values (Figure 16).

Bias is flat (Figure 17 a) or decreasing with respect to the degree (Figure 15 b), or it can be con-
stant or decreasing, depending on C (Figure 17 b). Unbiased variance shows an U shape (Figure 14
a and b) or it increases (Figure 14 c) with respect to the degree, and the net-variance follows the
shape of the unbiased variance. Note that in the P2 data set (Figure 15) bias and net-variance follow
the classical opposite trends with respect to the degree. This is not the case with other data sets (see,
e.g. Figure 14).

For large values of C bias and net-variance tend to converge, as a result of the bias reduction
and net-variance increment (Figure 18), or because both stabilize at similar values (Figure 16).

In dot product SVMs bias and net-variance show opposite trends: bias decreases, while net-
variance and unbiased variance tend to increase with C (Figure 19). On the data set P2 this trend
is not observed, as in this task the bias is very high and the SVM does not perform better than
random guessing (Figure 19a). The minimum of the average loss for relatively low values of C is
the result of the decrement of the bias and the increment of the net-variance: it is achieved usually
before the crossover of bias and net-variance curves and before the stabilization of the bias and the
net-variance for large values of C. The biased variance remains small independently of C.

5.3 Comparing Kernels

In this section we compare the bias-variance decomposition of the error with respect to the C pa-
rameter, considering Gaussian, polynomial and dot product kernels. For each kernel and for each
data set the best results are selected. Table 5.3 shows the best results achieved by the SVM, con-
sidering each kernel and each data set used in the experiments. Interestingly enough in 3 data sets
(Waveform, Letter-Two with added noise and Spam) there are not significant differences in the error
between the kernels, but there are differences in bias, net-variance, unbiased or biased variance. In
the other data sets Gaussian kernels outperform polynomial and dot product kernels, lowering bias
or net-variance or both. Considering bias and net-variance, in some cases they are lower for poly-
nomial or dot product kernel, showing that different kernels learn in different ways with different
data.

Considering the data set P2 (Figure 20 a, c, e), RBF-SVMs achieve the best results, as bias
is lower. Unbiased variance is comparable between polynomial and Gaussian kernel, while net-
variance is lower, as biased variance is higher for polynomial-SVM. In this task the bias of dot
product SVM is very high. Also in the data set Musk (Figure 20 b, d, f) RBF-SVM obtains the
best results, but in this case unbiased variance is responsible for this fact, while bias is similar.
With the other data sets the bias is similar between RBF-SVM and polynomial-SVM, but for dot
product SVM often the bias is higher (Figure 21 b, d, f). Interestingly enough RBF-SVM seems
to be more sensible to the C value with respect to both polynomial and dot product SVM: for
C < 0.1 in some data sets the bias is much higher (Figure 21 a, c, e). With respect to C bias and
unbiased variance show sometimes opposite trends, independently of the kernel: bias decreases,
while unbiased variance increases, but this does not occur in some data sets. We outline also that the
shape of the error, bias and variance curves is similar between different kernels in all the considered
data sets: that is, well tuned SVMs having different kernels tend to show similar trends of the bias
and variance curves with respect to the C parameter.
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Parameters Avg. Bias Var. Var. Net
Error unb. bias. Var.

Data set P2
RBF-SVM C = 20, σ = 2 0.1516 0.0500 0.1221 0.0205 0.1016
Poly-SVM C = 10, degree = 5 0.2108 0.1309 0.1261 0.0461 0.0799
D-prod SVM C = 500 0.4711 0.4504 0.1317 0.1109 0.0207
Data set Waveform
RBF-SVM C = 1, σ = 50 0.0706 0.0508 0.0356 0.0157 0.0198
Poly-SVM C = 1, degree = 1 0.0760 0.0509 0.0417 0.0165 0.0251
D-prod SVM C = 0.1 0.0746 0.0512 0.0397 0.0163 0.0234
Data set Grey-Landsat
RBF-SVM C = 2, σ = 20 0.0382 0.0315 0.0137 0.0069 0.0068
Poly-SVM C = 0.1, degree = 5 0.0402 0.0355 0.0116 0.0069 0.0047
D-prod SVM C = 0.1 0.0450 0.0415 0.0113 0.0078 0.0035
Data set Letter-Two
RBF-SVM C = 5, σ = 20 0.0743 0.0359 0.0483 0.0098 0.0384
Poly-SVM C = 2, degree = 2 0.0745 0.0391 0.0465 0.0111 0.0353
D-prod SVM C = 0.1 0.0908 0.0767 0.0347 0.0205 0.0142
Data set Letter-Two with added noise
RBF-SVM C = 10, σ = 100 0.3362 0.2799 0.0988 0.0425 0.0563
Poly-SVM C = 1, degree = 2 0.3432 0.2799 0.1094 0.0461 0.0633
D-prod SVM C = 0.1 0.3410 0.3109 0.0828 0.0527 0.0301
Data set Spam
RBF-SVM C = 5, σ = 100 0.1263 0.0987 0.0488 0.0213 0.0275
Poly-SVM C = 2, degree = 2 0.1292 0.0969 0.0510 0.0188 0.0323
D-prod SVM C = 0.1 0.1306 0.0965 0.0547 0.0205 0.0341
Data set Musk
RBF-SVM C = 2, σ = 100 0.0884 0.0800 0.0217 0.0133 0.0084
Poly-SVM C = 2, degree = 2 0.1163 0.0785 0.0553 0.0175 0.0378
D-prod SVM C = 0.01 0.1229 0.1118 0.0264 0.0154 0.0110

Table 2: Compared best results with different kernels and data sets. RBF-SVM stands for SVM
with Gaussian kernel; Poly-SVM for SVM with polynomial kernel and D-prod SVM for
SVM with dot product kernel. Var unb. and Var. bias. stand for unbiased and biased
variance.
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Figure 5: Bias-variance decomposition of error in bias, net variance, unbiased and biased variance
in SVM RBF, varying σ and for fixed C values: (a) Waveform, (b) Grey-Landsat, (c)
Letter-Two with C = 0.1, (c) Letter-Two with C = 1, (e) Letter-Two with added noise and
(f) Spam.
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Figure 6: Letter-Two data set. Bias-variance decomposition of the error in bias, net variance, unbi-
ased and biased variance in SVM RBF, while varying C and for some fixed values of σ:
(a) σ = 0.01, (b) σ = 0.1, (c) σ = 1, (d) σ = 5, (e) σ = 20, (f) σ = 100.
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Figure 7: The real valued function computed by the SVM on the P2 data set with σ = 0.01, C = 1.
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Figure 8: The real valued function computed by the SVM on the P2 data set, with σ = 1, C = 1.
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Figure 9: The real valued function computed by the SVM on the P2 data set. (a) σ = 20 C = 1, (b)
σ = 20 C = 1000, (c) σ = 500 C = 1, (d) σ = 500 C = 1000.
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Figure 10: Grey-Landsat data set. Bias-variance decomposition of error in bias, net variance, unbi-
ased and biased variance in SVM RBF, while varying σ and for some fixed values of C:
(a) C = 0.1, (b) C = 1, (c) C = 10, (d) C = 100.
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Figure 11: Bias-variance decomposition of the error in bias, net variance, unbiased and biased vari-
ance in SVM RBF, while varying σ and for some fixed values of C: (a) P2, with C = 1,
(b) P2, with C = 1000, (c) Musk, with C = 1, (d) Musk, with C = 1000.
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Figure 12: Letter-Two data set. Error, bias, training error, support vector rate, and estimated VC
dimension in SVM RBF, while varying the σ parameter and for some fixed values of C:
(a) C = 1, (b) C = 10, (c) C = 100, and C = 1000.
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Figure 13: Grey-Landsat data set. Error, bias, training error, support vector rate, and estimated VC
dimension in SVM RBF, while varying the σ parameter and for some fixed values of C:
(a) C = 1, (b) C = 10, (c) C = 100, and C = 1000.
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Figure 14: Bias-variance decomposition of the error in bias, net variance, unbiased and biased vari-
ance in polynomial SVM, while varying the degree and for some fixed values of C: (a)
Waveform, C = 0.1, (b) Waveform, C = 50, (c) Letter-Two, C = 0.1, (d) Letter-Two,
C = 50.
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Figure 15: P2 data set. Error (a) and its decomposition in bias (b) and net variance (c), varying both
C and the polynomial degree.
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Figure 16: Letter-Two data set. Bias-variance decomposition of error in bias, net variance, unbiased
and biased variance in polynomial SVM, while varying C and for some polynomial
degrees: (a) degree = 2, (b) degree = 3, (c) degree = 5, (d) degree = 10
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Figure 17: Bias in polynomial SVMs with (a) Waveform and (b) Spam data sets, varying both C
and polynomial degree.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.01 0.1 1 2 5 10 20 50 100 200 500 1000
C

avg. error
bias

net variance
unbiased var.

biased var

degree=6

-0.1

0

0.1

0.2

0.3

0.4

0.01 0.1 1 2 5 10 20 50 100 200 500 1000
C

avg. error
bias

net variance
unbiased var.

biased var

degree=3

(a) (b)

Figure 18: Bias-variance decomposition of the error in bias, net variance, unbiased and biased vari-
ance in polynomial SVM, varying C: (a) P2 data set with degree = 6, (b) Spam data set
with degree = 3.
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Figure 19: Bias-variance decomposition of error in bias, net variance, unbiased and biased variance
in dot product SVM, varying C: (a) P2, (b) Grey-Landsat, (c) Letter-Two, (d) Letter-Two
with added noise, (e) Spam, (f) Musk.
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Figure 20: Bias-variance decomposition of the error in bias, net variance, unbiased and biased vari-
ance with respect to C, considering different kernels. (a) P2, Gaussian; (b) Musk, Gaus-
sian (c) P2, polynomial; (d) Musk, polynomial; (e) P2, dot product; (f) Musk, dot prod-
uct.
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Figure 21: Bias-variance decomposition of the error in bias, net variance, unbiased and biased
variance with respect to C, considering different kernels. (a) Waveform, Gaussian; (b)
Letter-Two, Gaussian (c) Waveform, polynomial; (d) Letter-Two, polynomial; (e) Wave-
form, dot product; (f) Letter-Two, dot product.
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Kernel Avg. Bias Var. Var. Net
type Error unb. bias. Var.
RBF 0.0901±0.0087 0.0805±0.0126 0.0237±0.0039 0.0141±0.0025 0.0096±0.0019
Poly 0.1158±0.0069 0.0782±0.0083 0.0585±0.0071 0.0109±0.0018 0.0376±0.0047
D-prod 0.1305±0.0133 0.1179±0.0140 0.0285±0.0084 0.0159±0.0045 0.0126±0.0035

Table 3: Evaluation of the variation of the estimated values of bias variance decomposition with
the Musk data set. RBF-SVM stands for SVM with Gaussian kernel; Poly-SVM for SVM
with polynomial kernel and D-prod SVM for SVM with dot product kernel. Net Var.
Var unb. and Var. bias. stand for net, unbiased and biased variance. For each value is
represented the mean value over 100 replicated experiments and the corresponding value
of the standard deviation.

In our experiments we used relatively small training sets (100 examples), while the number
of input variables ranged from 2 (P2 data set) to 166 (Musk data set). Hence, even if for each
SVM model (that is for each combination of SVM parameters) we used 200 training sets Di,1 ≤
i ≤ 200 in order to train 200 different classifiers fDi , you could wonder whether the estimated
quantities (average error, bias, net-variance, unbiased and biased variance) could be noisy. An
extensive evaluation of the sensitivity of the estimated quantities to the sampling procedure would
be very expensive. Indeed if we replicate only 10 times our experiments on all the data sets, we
should train and test more than 5 millions of different SVMs. Anyway, in order to get insights about
this problem, we performed 100 replicates of our experiments limited only to the Musk data set (that
is the data set with the largest dimensionality in our experiments), for a subset of the parameters near
the optimal ones. We found that the standard deviation of the estimated values is not too large. For
instance, considering the best model for Gaussian, polynomial and dot product kernels we obtained
the values shown in Table 5.3. It seems that the computed quantities are not too noisy, even if we
need more experiments to confirm this result.

5.4 Bias-Variance Decomposition with Noisy Data

While the estimation of the noise is quite straightforward with synthetic data, it is a difficult task
with “real” data James (2003). For these reasons, and in order to simplify the computation and the
overall analysis, in our experiments we did not explicitly consider noise.

Anyway, noise can play a significant role in the bias-variance analysis. Indeed, according to
Domingos, with the 0/1 loss the noise is linearly added to the error with a coefficient equal to
2PD( fD(x) = y∗)−1 (Equation 6). Hence, if the classifier is accurate, that is if PD( fD(x) = y∗) � 0.5,
then the noise N(x), if present, influences the expected loss. In the opposite situation also, with very
bad classifiers, that is when PD( fD(x) = y∗) � 0.5, the noise influences the overall error in the op-
posite sense: it reduces the expected loss. If PD( fD(x) = y∗) ≈ 0.5, that is if the classifier performs
a sort of random guessing, then 2PD( fD(x) = y∗)−1 ≈ 0 and the noise has no substantial impact on
the error.

Hence if we know that the noise is small we can disregard it, but what about the effect of noise
when it is present but not explicitly considered in the bias-variance decomposition of the error? The
analysis of the results in the data set Letter-Two without and with 20 % added noise shows that the
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Figure 22: Effect of noise on bias and variance. The bias-variance decomposition of the error is
shown while varying the C regularization parameter with polynomial and Gaussian ker-
nels. (a) Letter-Two: Gaussian kernel, σ = 5, (b) Letter-Two with added noise: Gaussian
kernel, σ = 5, (c) Letter-Two: polynomial kernel, degree = 3, (d) Letter-Two with added
noise: polynomial kernel, degree = 3.

main effect of noise in this specific situation consists in incrementing the bias and consequently the
average error. Indeed, with Gaussian kernels (Figure 22 (a) and (b)) the bias is raised to about 0.3,
with an increment of about 0.25 with respect to the data set without noise, while the net-variance is
incremented only by about 0.02, as the increment of the unbiased variance is counter-balanced by
the increment of the biased variance. A similar behavior is registered also with polynomial (Figure
22 (c) and (d)) and dot product kernels (Figure 19 (c) and (d)).

6. Characterization of Bias-Variance Decomposition of the Error

Despite the differences observed in different data sets, common patterns of bias and variance can
be detected for each of the kernels considered in this study. Each kernel presents a specific charac-
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Figure 23: The 3 regions of the error in RBF-SVM with respect to σ.

terization of bias and variance with respect to its specific parameters, as explained in the following
sections.

6.1 Gaussian Kernels

Error, bias, net-variance, unbiased and biased variance show a common trend in the 7 data sets
we used in the experiments. Some differences, of course, arise in the different data sets, but we
can distinguish three different regions in the error analysis of RBF-SVM, with respect to increasing
values of σ (Figure 23):

1. High bias region. For low values of σ, error is high: it depends on high bias. Net-variance is
about 0 as biased and unbiased variance are equivalent. In this region there are no remarkable
fluctuations of bias and variance: both remain constant, with high values of bias and com-
parable values of unbiased and biased variance, leading to net-variance values near to 0. In
some cases biased and unbiased variance are about equal, but different from 0, in other cases
they are equal, but near to 0.

2. Transition region. Suddenly, for a critical value of σ, the bias decreases rapidly. This critical
value depends also on C: for very low values of C, we have no learning, then for higher values
the bias drops. Higher values of C cause the critical value of σ to decrease (Figure 4 (b) and
5). In this region the increase in net-variance is lower than the decrease in bias: so the average
error decreases. The boundary of this region can be determined at the point where the error
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stops decrementing. This region is characterized also by a particular trend of the net-variance.
We can distinguish two main behaviors:

(a) Wave-shaped net-variance. Net-variance first increases and then decreases, producing
a wave-shaped curve with respect to σ. The initial increment of the net-variance is due
to the simultaneous increment of the unbiased variance and decrement of the biased
variance. In the second part of the transition region, biased variance stabilizes and
unbiased variance decreases, producing a parallel decrement of the net-variance. The
rapid decrement of the error with σ is due to the rapid decrement of the bias, after which
the bias stabilizes and the further decrement of the error with σ is determined by the
net-variance reduction (Figure 4c, 5).

(b) Semi-wave-shaped net-variance. In other cases the net-variance curve with σ is not so
clearly wave-shaped: the descending part is very reduced (Figure 5 e, f). In particular
in the musk data set we have a continuous increment of the net-variance (due to the
continuous growing of the unbiased variance with σ), and no wave-shaped curve is
observed (at least for C > 10, Figure 11 d).

In both cases the increment of net-variance is slower than the increment in bias: as a result,
the average error decreases.

3. Stabilized region. This region is characterized by small or no variations in bias and net-
variance. For high values of σ both bias and net-variance stabilize and the average error is
constant (Figure 4, 5). In other data sets the error increases with σ, because of the increment
of the bias (Figure 11 a,b) or the unbiased variance (Figure 11 c,d).

In the first region, bias rules SVM behavior: in most cases the bias is constant and close to 0.5,
showing that we have a sort of random guessing, without effective learning. It appears that the area
of influence of each support vector is too small (Figure 7), and the learning machine overfits the
data. This is confirmed by the fact that in this region the training error is about 0 and almost all the
training points are support vectors.

In the transition region, the SVM starts to learn, adapting itself to the data characteristics. Bias
rapidly goes down (at the expenses of a growing net-variance), but for higher values of σ (in the
second part of the transition region), sometimes net-variance also goes down, working to lower the
error (Figure 5).

Even if the third region is characterized by no variations in bias and variance, sometimes for
low values of C, the error increases with σ (Figure 10 a, 12 a), as a result of the bias increment; on
the whole RBF-SVMs are sensitive to low values of C: if C is too low, then bias can grow quickly.
High values of C lower the bias(Figure 12 c, d).

6.2 Polynomial and Dot Product Kernels

For polynomial and dot product SVMs, we have also characterized the behavior of SVMs in terms of
average error, bias, net-variance, unbiased and biased variance, even if we are not able to distinguish
between different regions clearly defined.

However, common patterns of the error curves with respect to the polynomial degree, consider-
ing bias, net-variance and unbiased and biased variance can be noticed.
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Figure 24: Behaviour of polynomial SVM with respect of the bias-variance decomposition of the
error.

The average loss curve shows in general a U shape with respect to the polynomial degree,
and this shape may depend on both bias and unbiased variance or in some cases mostly on the
unbiased variance according to the characteristics of the data set. From these general observations
we can schematically distinguish two main global pictures of the behaviour of polynomial SVM
with respect to the bias-variance decomposition of the error:

1. Error curve shape bias-variance dependent.
In this case the shape of the error curve is dependent both on the unbiased variance and the
bias. The trend of bias and net-variance can be symmetric or they can also have non coincident
paraboloid shape, depending on C parameter values (Figure 14 c, d and 15). Note that bias
and net variance show often opposite trends (Figure 15).

2. Error curve shape unbiased variance dependent.
In this case the shape of the error curve is mainly dependent on the unbiased variance. The
bias (and the biased variance) tend to be degree independent, especially for high values of C
(Figure 14 a, b) .

Figure 24 schematically summarizes the main characteristics of the bias-variance decomposition
of error in polynomial SVM. Note however that the error curve depends for the most part on both
variance and bias: the prevalence of the unbiased variance (Figure 14 a, b) or the bias seems to
depend mostly on the distribution of the data.

765



VALENTINI AND DIETTERICH

Minimum of the error
due to large decrement of bias

Opposite trends of
bias and net-var.

Low biased var. independent of C

Stabilized region

0

0.05

0.1

0.15

0.2

0.25

0.01 0.1 1 2 5 10 20 50 100 200 500 1000
C

avg. error
bias

net variance
unbiased var.

biased var

Figure 25: Behaviour of the dot product SVM with respect of the bias-variance decomposition of
the error.

The increment of the values of C tends to flatten the U shape of the error curve: in particular for
large C values bias becomes independent with respect to the degree (Figure 17). Moreover the C
parameter plays also a regularization role (Figure 18)

Dot product SVM are characterized by opposite trends of bias and net-variance: bias decre-
ments, while net-variance grows with respect to C; then, for higher values of C both stabilize. The
combined effect of these symmetric curves produces a minimum of the error for low values of C,
as the initial decrement of bias with C is larger than the initial increment of net-variance. Then the
error slightly increases and stabilizes with C (Figure 19). The shape of the net-variance curve is
determined mainly by the unbiased variance: it increases and then stabilizes with respect to C. On
the other hand the biased variance curve is flat, remaining small for all values of C. A schematic
picture of this behaviour is given in Figure 25.

7. Two Directions for Developing Ensembles of SVMs

In addition to providing insights into the behavior of SVMs, the analysis of the bias-variance de-
composition of the error can identify the situations in which ensemble methods might improve SVM
performance.

On several real-world problems, SVM ensembles are reported to give improvements over single
SVMs (Kim et al., 2002; Valentini et al., 2003), but few works showed also negative experimental
results about ensembles of SVMs (Buciu et al., 2001; Evgeniou et al., 2000). In particular Evgeniou
et al. (2000) experimentally found that leave-one-out error bounds for kernel machines ensembles
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are tighter that the equivalent ones for single machines, but they showed that with accurate parame-
ters tuning single SVMs and ensembles of SVMs perform similarly.

In this section we propose to exploit bias-variance analysis in order to develop ensemble meth-
ods well tuned to the bias-variance characteristics of the base learners. In particular we present two
possible ways of applying bias-variance analysis to develop SVM-based ensemble methods.

7.1 Bagged Ensemble of Selected Low-Bias SVMs

From a general standpoint, considering different kernels and different parameters of the kernel, we
can observe that the minimum of the error, bias and net-variance (and in particular unbiased vari-
ance) do not match. For instance, considering RBF-SVM we see that we achieve the minimum of
the error, bias and net-variance for different values of σ (see, for instance, Figure 5). Similar con-
siderations can also be applied to polynomial and dot product SVM. Often, modifying parameters
of the kernel, if we gain in bias we lose in variance and vice versa, even if this is not a rule.

Under the bootstrap assumption, bagging reduces only variance. From bias-variance decompo-
sition we know that unbiased variance reduces the error, while biased variance increases the error.
Hence bagging should be applied to low-biased classifiers, because the biased variance will be
small.

Summarizing, we can schematically consider the following observations:

• We know that bagging lowers net-variance (in particular unbiased variance) but not bias (Breiman,
1996b).

• SVMs are strong, low-biased learners, but this property depends on the proper selection of
the kernel and its parameters.

• If we can identify low-biased base learners with a relatively high unbiased variance, bagging
can lower the error.

• Bias-variance analysis can identify SVMs with low bias.

Hence a basic high-level algorithm for a general Bagged ensemble of selected low-bias SVMs is
the following:

1. Estimate bias-variance decomposition of the error for different SVM models

2. Select the SVM model with the lowest bias

3. Perform bagging using as base learner the SVM with the estimated lowest bias.

This approach combines the low bias properties of SVMs with the low unbiased variance prop-
erties of bagging and should produce ensembles with low overall error. We named this approach
Lobag, that stands for Low bias bagging. Using SVMs as base learners, depending on the type of
kernel and parameters considered, and on the way the bias is estimated for the different SVM mod-
els, different algorithmic variants can be provided: For instance, depending on the type of kernel
and parameters considered, different implementations can be given:

1. Selecting the RBF-SVM with the lowest bias with respect to the C and σ parameters.
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2. Selecting the polynomial-SVM with the lowest bias with respect to the C and degree param-
eters.

3. Selecting the dot-prod-SVM with the lowest bias with respect to the C parameter.

4. Selecting the SVM with the lowest bias with respect to the kernel.

Another issue is how to implement the estimation of the bias-variance decomposition of the
error for different SVM models. We could use cross-validation in conjunction with bootstrap repli-
cates, or out-of-bag estimates (especially if we have small training sets), or hold-out techniques in
conjunction with bootstrap replicates if we have sufficiently large training sets.

A first implementation of this approach, using an out-of-bag estimate of the bias-variance de-
composition of the error, has been proposed, and quite encouraging results have been achieved (Valen-
tini and Dietterich, 2003).

Another problem is the estimate of the noise in real data sets. A straightforward approach simply
consists in disregarding it, but in this way we could overestimate the bias (see Section 5.4). Some
heuristics are proposed in James (2003), but the problem remains substantially unresolved.

It is worth noting that this approach can be viewed as an alternative way for tuning SVM pa-
rameters, using an ensemble instead of a single SVM. From this standpoint recent works proposed
to automatically choose multiple kernel parameters (Chapelle et al., 2002; Grandvalet and Canu,
2003), setting, for instance different σ values for each input dimension in Gaussian kernels, by ap-
plying a minimax procedure to iteratively maximize the margin of the SVM and to minimize an
estimate of the generalization error over the set of kernel parameters (Chapelle et al., 2002). This
promising approach could be in principle extended to minimize the bias, instead of the overall error.
To this purpose we need to solve non trivial problems such as providing an upper bound for the bias
and the variance, or at least an easy to compute their estimator having, if possible, an analytical
expression. This approach could represent a new interesting research line that could improve the
performances and/or reduce the computational burden of the Lobag method.

7.2 Heterogeneous Ensembles of SVM

The analysis of bias-variance decomposition of error in SVM shows that the minimum of the overall
error, bias, net-variance, unbiased and biased variance occur often in different SVM models. These
different behaviors of different SVM models could be in principle exploited to produce diversity in
ensembles of SVMs. Although the diversity of base learner itself does not assure the error of the
ensemble will be reduced (Kuncheva et al., 2001b), the combination of accuracy and diversity in
most cases does (Dietterich, 2000a). As a consequence, we could select different SVM models as
base learners by evaluating their accuracy and diversity through the bias-variance decomposition of
the error.

Our results show that the “optimal region” (low average loss region) is quite large in RBF-
SVMs (Figure 4). This means that C and σ do not need to be tuned extremely carefully. From
this point of view, we can avoid time-consuming model selection by combining RBF-SVMs trained
with different σ values all chosen from within the “optimal region.” For instance, if we know that
the error curve looks like the one depicted in Figure 23, we could try to fit a sigmoid-like curve
using only few values to estimate where the stabilized region is located. Then we could train an
heterogeneous ensemble of SVMs with different σ parameters (located in the low bias region) and
average them according to their estimated accuracy.
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A high-level algorithm for Heterogeneous Ensembles of SVMs could include the following steps:

1. Individuate the “optimal region” through bias-variance analysis of the error

2. Select the SVMs with parameters chosen from within the optimal region defined by bias-
variance analysis.

3. Combine the selected SVMs by majority or weighted voting according to their estimated
accuracy.

We could use different methods or heuristics to find the “optimal region” (see Section 5.1.3) and
we have to define also the criterion used to select the SVM models inside the “optimal region”
(for instance, improvement of the diversity). The combination could be performed using also
other approaches, such as minimum, maximum, average and OWA aggregating operators (Kit-
tler et al., 1998) or Behavior-Knowledge space method (Huang and C. Y., 1995), Fuzzy aggre-
gation rules (Wang et al., 1998), Decision templates (Kuncheva et al., 2001a) or Meta-learning
techniques (Prodromidis et al., 1999). Bagging and boosting (Freund and Schapire, 1996) meth-
ods can also be combined with this approach to further improve diversity and accuracy of the base
learners.

7.3 Numerical Experiments with Low Bias Bagged SVMs

In order to show that these research directions could be fruitful to follow further, we performed
numerical experiments on different data sets to test the Lobag ensemble method using SVMs as
base learners. We compared the results with single SVMs and classical bagged SVM ensembles. We
report here some preliminary results.More detailed results are reported in Valentini and Dietterich
(2003).

We employed the 7 different two-class data sets described in Section 4.1, using small D training
sets and large test T sets in order to obtain a reliable estimate of the generalization error: the number
of examples for D was set to 100, while the size of T ranged from a few thousands for the “real”
data sets to ten thousands for synthetic data sets. Then we applied the Lobag algorithm setting
the number of samples bootstrapped from D to 100, and performing an out-of-bag estimate of the
bias-variance decomposition of the error. The selected lobag, bagged and single SVMs were finally
tested on the separated test set T .

Table 7.3 shows the results of the experiments. We measured 20 outcomes for each method: 7
data sets, and 3 kernels (Gaussian, polynomial, and dot product) applied to each data set except P2
for which we did not apply the dot product kernel (because it was obviously inappropriate). For
each pair of methods, we applied the McNemar test (Dietterich, 1998) to determine whether there
was a significant difference in predictive accuracy on the test set.

On nearly all the data sets, both bagging and Lobag outperform the single SVMs independently
of the kernel used. The null hypothesis that Lobag has the same error rate as a single SVM is
rejected at or below the 0.1 significance level in 17 of the 20 cases, while the null hypothesis that
bagging has the same error rate as a single SVM is rejected at or below the 0.1 level in 13 of the
20 cases. Most importantly, Lobag generally outperforms standard bagging. Lobag is statistically
significantly better than bagging in 9 of the 20 cases, and significantly inferior only once.

These preliminary results show the feasibility of our approach, as shown also by similar exper-
iments presented in Valentini and Dietterich (2003), but we need more experimental studies and
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Kernel Elobag Ebag Esingle Confidence level
type L/B L/S B/S

Data set P2
Polyn. 0.1735 0.2008 0.2097 0.001 0.001 0.001
Gauss. 0.1375 0.1530 0.1703 0.001 0.001 0.001

Data set Waveform
Linear 0.0740 0.0726 0.0939 1 0.001 0.001
Polyn. 0.0693 0.0707 0.0724 1 0.1 0.1
Gauss. 0.0601 0.0652 0.0692 0.001 0.001 0.001

Data set Grey-Landsat
Linear 0.0540 0.0540 0.0650 1 0.001 0.001
Polyn. 0.0400 0.0440 0.0480 1 0.1 1
Gauss. 0.0435 0.0470 0.0475 0.1 0.1 1

Data set Letter-Two
Linear 0.0881 0.0929 0.1011 1 0.025 0.05
Polyn. 0.0701 0.0717 0.0831 1 0.05 0.1
Gauss. 0.0668 0.0717 0.0799 1 1 1

Data set Letter-Two with added noise
Linear 0.3535 0.3518 0.3747 1 1 0.1
Polyn. 0.3404 0.3715 0.3993 1 0.05 0.1
Gauss. 0.3338 0.3764 0.3829 0.05 0.025 1

Data set Spam
Linear 0.1408 0.1352 0.1760 0.05 0.001 0.001
Polyn. 0.0960 0.1034 0.1069 0.1 0.025 1
Gauss. 0.1130 0.1256 0.1282 0.005 0.001 1

Data set Musk
Linear 0.1291 0.1291 0.1458 1 0.001 0.001
Polyn. 0.1018 0.1157 0.1154 0.001 0.001 1
Gauss. 0.0985 0.1036 0.0936 0.05 1 0.05

Table 4: Results of the experiments using pairs of train D and test T sets. Elobag, Ebag and ESV M

stand respectively for estimated error of lobag, bagged and single SVMs on the test set T .
The three last columns show the confidence level according to the Mc Nemar test. L/B,
L/S and B/S stand respectively for the comparison Lobag/Bagging, Lobag/Single SVM
and Bagging/Single SVM. If the confidence level is equal to 1, no significant difference is
registered.

applications to real problems in order to better understand when and in which conditions this ap-
proach could be fruitful.

8. Conclusion and Future Works

We applied bias-variance decomposition of the error as a tool to gain insights into SVM learning
algorithm. In particular we performed an analysis of bias and variance of SVMs, considering Gaus-
sian, polynomial, and dot product kernels. The relationships between parameters of the kernel and
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bias, net-variance, unbiased and biased variance have been studied through an extensive experimen-
tation involving training, testing, and bias-variance analysis of more than half million of SVMs.

We discovered regular patterns in the behavior of the bias and variance, and we related those
patterns to the parameters and kernel functions of the SVMs. The characterization of bias-variance
decomposition of the error showed that in Gaussian kernels we can individuate at least three different
regions with respect to the σ parameter, while in polynomial kernels the U shape of the error can
be determined by the combined effects of bias and unbiased variance. The analysis revealed also
that the expected trade-off between bias and variance holds systematically for dot product kernels,
while other kernels showed more complex relationships.

The information supplied by bias-variance analysis suggests two promising approaches for de-
signing ensembles of SVMs. One approach is to employ low-bias SVMs as base learners in a
bagged ensemble. The other approach is to apply bias-variance analysis to construct a heteroge-
neous, diverse set of accurate and low-bias classifiers. We are designing and experimenting with
both of these approaches.

An outgoing development of this work extends this analysis to bagged and boosted ensemble of
SVMs, in order to achieve more insights about the behavior of SVM ensembles based on resampling
methods.

In our experiments we did not explicitly consider the noise: analyzing the role of the noise in
the decomposition of the error (Section 5.4) could help to develop ensemble methods specifically
designed for noisy data.

Moreover in our experiments we did not explicitly consider the characteristics of the data.
Nonetheless, such as we could expect and as our experiments suggested, different data charac-
teristics influence bias-variance patterns in learning machines. To this purpose we plan to explicitly
analyze the relationships between bias-variance decomposition of the error and data characteristics,
using data complexity measures based on geometrical and topological characteristics of the data (Li
and Vitanyi, 1993; Ho and Basu, 2002).
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Appendix A.

In this appendix we discuss the notions of systematic and variance effect introduced by James
(2003), showing that these quantities are reduced respectively to the bias and the net-variance when
the 0/1 loss is used and the noise is disregarded.

James (2003) provides definitions of bias and variance that are similar to those provided by Domin-
gos (2000c). Indeed bias and variance definitions are based on quantities that he named the system-
atic part sy of the prediction y and the systematic part st of the target t. These correspond respec-
tively to the Domingos main prediction (Equation2) and optimal prediction (Equation1). Moreover
James distinguishes between bias and variance and systematic and variance effects. Bias and vari-
ance satisfy respectively the notion of the difference between the systematic parts of y and t, and
the variability of the estimate y. Systematic effect SE represents the change in error of predicting t
when using sy instead of st and the variance effect V E the change in prediction error when using y
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instead of sy in order to predict t. Using Domingos’ notation (ym for sy, and y∗ for st) the variance
effect is

V E(y, t) = Ey,t [L(y, t)]−Et [L(t,ym)],

while the systematic effect corresponds to

SE(y, t) = Et [L(t,ym)]−Et [L(t,y∗)].

In other words the systematic effect represents the change in prediction error caused by bias, while
the variance effect the change in prediction error caused by variance.

While for the squared loss the two sets of bias-variance definitions match, for general loss
functions the identity does not hold. In particular for the 0/1 loss James proposes the following
definitions for noise, variance and bias with 0/1 loss:

N(x) = P(t 6= y∗),

V (x) = P(y 6= ym),

B(x) = I(y∗ 6= ym), (10)

where I(z) is 1 if z is true and 0 otherwise.
The variance effect for the 0/1 loss can be expressed as

V E(y, t) = Ey,t [L(y, t)−L(t,ym)] = Py,t(y 6= t)−Pt(t 6= ym) =

= 1−Py,t(y = t)− (1−Pt(t = ym)) = Pt(t = ym)−Py,t(y = t), (11)

while the systematic effect is

SE(y, t) = Et [L(t,ym)]−Et [L(t,y∗)] = Pt(t 6= ym)−Pt(t 6= y∗) =

= 1−Pt(t = ym)− (1−Pt(t = y∗)) = Pt(t = y∗)−Pt(t = ym). (12)

If we let N(x) = 0, considering Equation 7, 10 and Equation 11 the variance effect becomes

V E(y, t) = Pt(t = ym)−Py,t(y = t) = P(y∗ = ym)−Py(y = y∗) =

= 1−P(y∗ 6= ym)− (1−Py(y 6= y∗)) = 1−B(x)− (1−EL(L ,x)) =

EL(L ,x)−B(x) = Vn(x), (13)

while from Equation 10 and Equation 12 the systematic effect becomes

SE(y, t) = Pt(t = y∗)−Pt(t = ym) = 1−Pt(t 6= y∗)− (1−Pt(t 6= ym)) =

P(y∗ 6= ym) = I(y∗ 6= ym) = B(x). (14)

Hence if N(x) = 0, it follows that the variance effect is equal to the net-variance (Equation 13), and
the systematic effect is equal to the bias (Equation 14).
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