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Abstract

Pairwise coupling is a popular multi-class classification method that combines all com-
parisons for each pair of classes. This paper presents two approaches for obtaining class
probabilities. Both methods can be reduced to linear systems and are easy to implement.
We show conceptually and experimentally that the proposed approaches are more stable
than the two existing popular methods: voting and the method by Hastie and Tibshirani
(1998).
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1. Introduction

The multi-class classification problem refers to assigning each of the observations into one
of k classes. As two-class problems are much easier to solve, many authors propose to use
two-class classifiers for multi-class classification. In this paper we focus on techniques that
provide a multi-class probability estimate by combining all pairwise comparisons.

A common way to combine pairwise comparisons is by voting (Knerr et al., 1990; Fried-
man, 1996). It constructs a rule for discriminating between every pair of classes and then
selecting the class with the most winning two-class decisions. Though the voting procedure
requires just pairwise decisions, it only predicts a class label. In many scenarios, however,
probability estimates are desired. As numerous (pairwise) classifiers do provide class proba-
bilities, several authors (Refregier and Vallet, 1991; Price et al., 1995; Hastie and Tibshirani,
1998) have proposed probability estimates by combining the pairwise class probabilities.

Given the observation x and the class label y, we assume that the estimated pairwise
class probabilities rij of µij = P (y = i | y = i or j,x) are available. From the ith and jth
classes of a training set, we obtain a model which, for any new x, calculates rij as an approx-
imation of µij . Then, using all rij , the goal is to estimate pi = P (y = i | x), i = 1, . . . , k. In
this paper, we first propose a method for obtaining probability estimates via an approxima-
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tion solution to an identity. The existence of the solution is guaranteed by theory in finite
Markov Chains. Motivated by the optimization formulation of this method, we propose a
second approach. Interestingly, it can also be regarded as an improved version of the cou-
pling approach given by Refregier and Vallet (1991). Both of the proposed methods can be
reduced to solving linear systems and are simple in practical implementation. Furthermore,
from conceptual and experimental points of view, we show that the two proposed methods
are more stable than voting and the method by Hastie and Tibshirani (1998).

We organize the paper as follows. In Section 2, we review several existing methods.
Sections 3 and 4 detail the two proposed approaches. Section 5 presents the relationship
between different methods through their corresponding optimization formulas. In Section
6, we compare these methods using simulated data. In Section 7, we conduct experiments
using real data. The classifiers considered are support vector machines and random forest.
A preliminary version of this paper was presented previously (Wu et al., 2004).

2. Survey of Existing Methods

For methods surveyed in this section and those proposed later, each provides a vector of
multi-class probability estimates. We denote it as p∗ according to method ∗. Similarly,
there is an associated rule arg maxi[p

∗
i ] for prediction and we denote the rule as δ∗.

2.1 Voting

Let rij be the estimates of µij ≡ P (y = i | y = i or j,x) and assume rij + rji = 1. The
voting rule (Knerr et al., 1990; Friedman, 1996) is

δV = arg max
i

[
∑

j:j 6=i

I{rij>rji}], (1)

where I is the indicator function: I{x} = 1 if x is true, and 0 otherwise. A simple estimate
of probabilities can be derived as

pv
i = 2

∑

j:j 6=i

I{rij>rji}/(k(k − 1)).

2.2 Method by Refregier and Vallet

With µij = pi/(pi + pj), Refregier and Vallet (1991) consider that

rij

rji
≈ µij

µji
=

pi

pj
. (2)

Thus, making (2) an equality may be a way to solve pi. However, the number of equations,
k(k− 1)/2, is more than the number of unknowns k, so Refregier and Vallet (1991) propose
to choose any k − 1 rij . Then, with the condition

∑k
i=1 pi = 1, pRV can be obtained by

solving a linear system. However, as pointed out previously by Price et al. (1995), the
results depend strongly on the selection of k − 1 rij .

In Section 4, by considering (2) as well, we propose a method which remedies this
problem.
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2.3 Method by Price, Knerr, Personnaz, and Dreyfus

Price et al. (1995) consider that





∑

j:j 6=i

P (y = i or j | x)



− (k − 2)P (y = i | x) =
k

∑

j=1

P (y = j | x) = 1.

Using

rij ≈ µij =
P (y = i | x)

P (y = i or j | x)
,

one obtains

pPKPD
i =

1
∑

j:j 6=i
1

rij
− (k − 2)

. (3)

As
∑k

i=1 pi = 1 does not hold, we must normalize pPKPD. This approach is very simple
and easy to implement. In the rest of this paper, we refer to this method as PKPD.

2.4 Method by Hastie and Tibshirani

Hastie and Tibshirani (1998) propose to minimize the Kullback-Leibler (KL) distance be-
tween rij and µij :

l(p) =
∑

i6=j

nijrij log
rij

µij
, (4)

=
∑

i<j

nij

(

rij log
rij

µij
+ (1− rij) log

1− rij

1− µij

)

,

where µij = pi/(pi + pj), rji = 1− rij , and nij is the number of training data in the ith and
jth classes.

To minimize (4), they first calculate

∂l(p)

∂pi
=

∑

j:j 6=i

nij

(

−rij

pi
+

1

pi + pj

)

.

Thus, letting ∂l(p)/∂pi = 0, i = 1, . . . , k and multiplying pi on each term, Hastie and
Tibshirani (1998) propose finding a point that satisfies

∑

j:j 6=i

nijµij =
∑

j:j 6=i

nijrij ,
k

∑

i=1

pi = 1, and pi > 0, i = 1, . . . , k. (6)

Such a point is obtained by the following algorithm:

Algorithm 1
1. Start with some initial pj > 0, ∀j and corresponding µij = pi/(pi + pj).
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2. Repeat (i = 1, . . . , k, 1, . . .)

α =

∑

j:j 6=i nijrij
∑

j:j 6=i nijµij
(7)

µij ←
αµij

αµij + µji
, µji ← 1− µij , for all j 6= i (8)

pi ← αpi (9)

normalize p (optional) (10)

until k consecutive α are all close to ones.

3. p← p/
∑k

i=1 pi

(9) implies that in each iteration, only the ith component is updated and all others remain
the same. There are several remarks about this algorithm. First, the initial p must be
positive so that all later p are positive and α is well defined (i.e., no zero denominator in
(7)). Second, (10) is an optional operation because whether we normalize p or not does not
affect the values of µij and α in (7) and (8).

Hastie and Tibshirani (1998) prove that Algorithm 1 generates a sequence of points
at which the KL distance is strictly decreasing. However, Hunter (2004) indicates that
the strict decrease in l(p) does not guarantee that any limit point satisfies (6). Hunter
(2004) discusses the convergence of algorithms for generalized Bradley-Terry models where
Algorithm 1 is a special case. It points out that Zermelo (1929) has proved that, if rij >
0, ∀i 6= j, for any initial point, the whole sequence generated by Algorithm 1 converges to
a point satisfying (6). Furthermore, this point is the unique global minimum of l(p) under
the constraints

∑k
i=1 pi = 1 and 0 ≤ pi ≤ 1, i = 1, . . . , k.

Let pHT denote the global minimum of l(p). It is shown in Zermelo (1929) and Theorem
1 of (Hastie and Tibshirani, 1998) that if weights nij in (4) are considered equal, then pHT

satisfies

pHT
i > pHT

j if and only if p̃HT
i ≡

2
∑

s:i6=s ris

k(k − 1)
> p̃HT

j ≡
2

∑

s:j 6=s rjs

k(k − 1)
. (11)

Therefore, p̃HT is sufficient if one only requires the classification rule. In fact, p̃HT can be
derived as an approximation to the identity

pi =
∑

j:j 6=i

(

pi + pj

k − 1

) (

pi

pi + pj

)

=
∑

j:j 6=i

(

pi + pj

k − 1

)

µij (12)

by replacing pi + pj with 2/k, and µij with rij in (12). We refer to the decision rule as δHT ,
which is essentially

arg max
i

[p̃HT
i ]. (13)

In the next two sections, we propose two methods which are simpler in both practical
implementation and algorithmic analysis.

If the multi-class data are balanced, it is reasonable to assume equal weighting (i.e.,
nij = 1) as the above. In the rest of this paper, we restrict our discussion under such an
assumption.
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3. Our First Approach

As δHT relies on pi + pj ≈ 2/k, in Section 6 we use two examples to illustrate possible
problems with this rule. In this section, instead of replacing pi + pj by 2/k in (12), we
propose to solve the system:

pi =
∑

j:j 6=i

(
pi + pj

k − 1
)rij , ∀i, subject to

k
∑

i=1

pi = 1, pi ≥ 0, ∀i. (14)

Let p1 denote the solution to (14). Then the resulting decision rule is

δ1 = arg max
i

[p1
i ].

3.1 Solving (14)

To solve (14), we rewrite it as

Qp = p,
k

∑

i=1

pi = 1, pi ≥ 0, ∀i, where Qij ≡
{

rij/(k − 1) if i 6= j,
∑

s:s6=i ris/(k − 1) if i = j.
(15)

Observe that
∑k

i=1 Qij = 1 for j = 1, . . . , k and 0 ≤ Qij ≤ 1 for i, j = 1, . . . , k, so there
exists a finite Markov Chain whose transition matrix is Q. Moreover, if rij > 0 for all
i 6= j, then Qij > 0, which implies that this Markov Chain is irreducible and aperiodic.
From Theorem 4.3.3 of Ross (1996), these conditions guarantee the existence of a unique
stationary probability and all states being positive recurrent. Hence, we have the following
theorem:

Theorem 1 If rij > 0, i 6= j, then (15) has a unique solution p with 0 < pi < 1 ∀i.

Assume the solution from Theorem 1 is p∗. We claim that without the constraints
pi ≥ 0, ∀i, the linear system

Qp = p,
k

∑

i=1

pi = 1 (16)

still has the same unique solution p∗. Otherwise, there is another solution p̄∗(6= p∗). Then
for any 0 ≤ λ ≤ 1, λp∗ +(1−λ)p̄∗ satisfies (16) as well. As p∗i > 0, ∀i, when λ is sufficiently
close to 1, λp∗i +(1−λ)p̄∗i > 0, i = 1, . . . , k. This violates the uniqueness property in Theorem
1.

Therefore, unlike the method in Section 2.4 where a special iterative procedure has to
be implemented, here we only solve a simple linear system. As (16) has k + 1 equalities
but only k variables, practically we remove any one equality from Qp = p and obtain a
square system. Since the column sum of Q is the vector of all ones, the removed equality
is a linear combination of all remaining equalities. Thus, any solution of the square system
satisfies (16) and vice versa. Therefore, this square system has the same unique solution as
(16) and hence can be solved by standard Gaussian elimination.

Instead of Gaussian elimination, as the stationary solution of a Markov Chain can be
derived by the limit of the n-step transition probability matrix Qn, we can solve (14) by
repeatedly multiplying Q with any initial probability vector.
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3.2 Another Look at (14)

The following arguments show that the solution to (14) is a global minimum of a meaningful
optimization problem. To begin, using the property that rij + rji = 1, ∀i 6= j, we re-express

pi =
∑

j:j 6=i(
pi+pj

k−1 )rij of (15) (i.e., Qp = p of (16)) as

∑

j:j 6=i

rjipi −
∑

j:j 6=i

rijpj = 0, i = 1, . . . , k.

Therefore, a solution of (15) is in fact the unique global minimum of the following convex
problem:

min
p

k
∑

i=1

(
∑

j:j 6=i

rjipi −
∑

j:j 6=i

rijpj)
2

subject to
k

∑

i=1

pi = 1, pi ≥ 0, i = 1, . . . , k. (18)

The reason is that the object function is always nonnegative, and it attains zero under
(15). Note that the constraints pi ≥ 0 ∀i are not redundant following the discussion around
Equation (16).

4. Our Second Approach

Note that both approaches in Sections 2.4 and 3 involve solving optimization problems using
relations like pi/(pi +pj) ≈ rij or

∑

j:j 6=i rjipi ≈
∑

j:j 6=i rijpj . Motivated by (18), we suggest
another optimization formulation as follows:

min
p

k
∑

i=1

∑

j:j 6=i

(rjipi − rijpj)
2 subject to

k
∑

i=1

pi = 1, pi ≥ 0, ∀i. (19)

Note that the method (Refregier and Vallet, 1991) described in Section 2.2 considers a
random selection of k − 1 equations of the form rjipi = rijpj . As (19) considers all rijpj −
rjipi, not just k − 1 of them, it can be viewed as an improved version of the coupling
approach by Refregier and Vallet (1991).

Let p2 denote the corresponding solution. We then define the classification rule as

δ2 = arg max
i

[p2
i ].

4.1 A Linear System from (19)

Since (18) has a unique solution, which can be obtained by solving a simple linear system,
it is desirable to see whether the minimization problem (19) has these nice properties. In
this subsection, we show that (19) has a unique solution and can be solved by a simple
linear system.

First, the following theorem shows that the nonnegative constraints in (19) are redun-
dant.
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Theorem 2 Problem (19) is equivalent to

min
p

k
∑

i=1

∑

j:j 6=i

(rjipi − rijpj)
2 subject to

k
∑

i=1

pi = 1. (20)

The proof is in Appendix A. Note that we can rewrite the objective function of (20) as

min
p

2pT Qp ≡ min
p

1

2
pT Qp, (21)

where

Qij =

{

∑

s:s6=i r2
si if i = j,

−rjirij if i 6= j.
(22)

We divide the objective function by a positive factor of four so its derivative is a simple form
Qp. From (22), Q is positive semi-definite as for any v 6= 0,vT Qv = 1/2

∑k
i=1

∑k
j=1(rjivi−

rijvj)
2 ≥ 0. Therefore, without constraints pi ≥ 0, ∀i, (21) is a linear-equality-constrained

convex quadratic programming problem. Consequently, a point p is a global minimum if
and only if it satisfies the optimality condition: There is a scalar b such that

[

Q e
eT 0

] [

p
b

]

=

[

0
1

]

. (23)

Here Qp is the derivative of (21), b is the Lagrangian multiplier of the equality constraint
∑k

i=1 pi = 1, e is the k × 1 vector of all ones, and 0 is the k × 1 vector of all zeros. Thus,
the solution to (19) can be obtained by solving the simple linear system (23).

4.2 Solving (23)

Equation (23) can be solved by some direct methods in numerical linear algebra. Theorem
3(i) below shows that the matrix in (23) is invertible; therefore, Gaussian elimination can
be easily applied.

For symmetric positive definite systems, Cholesky factorization reduces the time for
Gaussian elimination by half. Though (23) is symmetric but not positive definite, if Q is
positive definite, Cholesky factorization can be used to obtain b = −1/(eT Q−1e) first and
then p = −bQ−1e. Theorem 3(ii) shows that Q is positive definite under quite general
conditions. Moreover, even if Q is only positive semi-definite, Theorem 3(i) proves that
Q + ∆eeT is positive definite for any constant ∆ > 0. Along with the fact that (23) is
equivalent to

[

Q + ∆eeT e
eT 0

] [

p
b

]

=

[

∆e
1

]

,

we can do Cholesky factorization on Q + ∆eeT and solve b and p similarly, regardless
whether Q is positive definite or not.

Theorem 3 If rtu > 0 ∀t 6= u, we have
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(i) For any ∆ > 0, Q + ∆eeT is positive definite. In addition,
[

Q e

e
T 0

]

is invertible, and

hence (19) has a unique global minimum.

(ii) If for any i = 1, . . . , k, there are s 6= j for which s 6= i, j 6= i, and

rsirsj

ris
6= rjirjs

rij
, (25)

then Q is positive definite.

We leave the proof in Appendix B.

In addition to direct methods, next we propose a simple iterative method for solving
(23):

Algorithm 2
1. Start with some initial pi ≥ 0, ∀i and

∑k
i=1 pi = 1.

2. Repeat (t = 1, . . . , k, 1, . . .)

pt ←
1

Qtt
[−

∑

j:j 6=t

Qtjpj + pT Qp] (26)

normalize p (27)

until (23) is satisfied.

Equation (22) and the assumption rij > 0, ∀i 6= j, ensure that the right-hand side of (26) is

always nonnegative. For (27) to be well defined, we must ensure that
∑k

i=1 pi > 0 after the
operation in (26). This property holds (see (43) for more explanation). With b = −pT Qp
obtained from (23), (26) is motivated from the tth equality in (23) with b replaced by
−pT Qp. The convergence of Algorithm 2 is established in the following theorem:

Theorem 4 If rsj > 0, ∀s 6= j, then {pi}∞i=1, the sequence generated by Algorithm 2,
converges globally to the unique minimum of (19).

The proof is in Appendix C. Algorithm 2 is implemented in the software LIBSVM

developed by Chang and Lin (2001) for multi-class probability estimates. We discuss some
implementation issues of Algorithm 2 in Appendix D.

5. Relations Between Different Methods

Among the methods discussed in this paper, the four decision rules δHT , δ1, δ2, and δV can
be written as arg maxi[pi], where p is derived by the following four optimization formulations
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under the constraints
∑k

i=1 pi = 1 and pi ≥ 0, ∀i:

δHT : min
p

k
∑

i=1

[
∑

j:j 6=i

(rij
1

k
− 1

2
pi)]

2, (28)

δ1 : min
p

k
∑

i=1

[
∑

j:j 6=i

(rijpj − rjipi)]
2, (29)

δ2 : min
p

k
∑

i=1

∑

j:j 6=i

(rijpj − rjipi)
2, (30)

δV : min
p

k
∑

i=1

∑

j:j 6=i

(I{rij>rji}pj − I{rji>rij}pi)
2. (31)

Note that (28) can be easily verified from (11), and that (29) and (30) have been explained
in Sections 3 and 4. For (31), its solution is

pi =
c

∑

j:j 6=i I{rji>rij}
, (32)

where c is the normalizing constant; and therefore, arg maxi[pi] is the same as (1).1 Detailed
derivation of (32) is in Appendix E.

Clearly, (28) can be obtained from (29) by letting pj = 1/k and rji = 1/2. Such
approximations ignore the differences between pi. Next, (31) is from (30) with rij replaced
by I{rij>rji}, and hence, (31) may enlarge the differences between pi. Moreover, compared
with (30), (29) allows the difference between rijpj and rjipi to be canceled first, so (29) may
tend to underestimate the differences between pi. In conclusion, conceptually, (28) and (31)
are more extreme – the former tends to underestimate the differences between pi, while the
latter overestimates them. These arguments will be supported by simulated and real data
in the next two sections.

For PKPD approach (3), the decision rule can be written as:

δPKPD = arg min
i

[
∑

j:j 6=i

1

rij
].

This form looks similar to δHT = arg maxi[
∑

j:j 6=i rij ], which can be obtained from (11)
and (13). Notice that the differences among

∑

j:j 6=i rij tend to be larger than those among
∑

j:j 6=i
1

rij
, because 1/rij > 1 > rij . More discussion on these two rules will be given in

Section 6.

6. Experiments on Synthetic Data

In this section, we use synthetic data to compare the performance of existing methods
described in Section 2 as well as two new approaches proposed in Sections 3 and 4. Here we

1. For I{rij>rji} to be well defined, we consider rij 6= rji, which is generally true. In addition, if there is an
i for which

∑

j:j 6=i
I{rji>rij} = 0, an optimal solution of (31) is pi = 1, and pj = 0, ∀j 6= i. The resulting

decision is the same as that of (1).
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do not include the method in Section 2.2 because its results depend strongly on the choice
of k − 1 rij and our second method is an improved version of it.

Hastie and Tibshirani (1998) design a simple experiment in which all pi are fairly close
and their method δHT outperforms the voting strategy δV . We conduct this experiment
first to assess the performance of our proposed methods. Following their settings, we define
class probabilities

(a) p1 = 1.5/k, pj = (1− p1)/(k − 1), j = 2, . . . , k,

and then set

rij =
pi

pi + pj
+ 0.1zij if i > j, (33)

rji =
pj

pi + pj
+ 0.1zji = 1− rij if j > i, (34)

where zij are standard normal variates and zji = −zij . Since rij are required to be within
(0,1), we truncate rij at ε below and 1 − ε above, with ε = 10−7. In this example, class 1
has the highest probability and hence is the correct class.

Figure 2(a) shows accuracy rates for each of the five methods when k = 22, d22.5e,
23, . . . , 27, where dxe denotes the largest integer not exceeding x. The accuracy rates are
averaged over 1,000 replicates. Note that in this experiment all classes are quite competitive,
so, when using δV , sometimes the highest vote occurs at two or more different classes. We
handle this problem by randomly selecting one class from the ties. This partly explains the
poor performance of δV . Another explanation is that the rij here are all close to 1/2, but
(31) uses 1 or 0 instead, as stated in the previous section; therefore, the solution may be
severely biased. Besides δV , the other four rules have good performance in this example.

Since δHT relies on the approximation pi + pj ≈ k/2, this rule may suffer some losses
if the class probabilities are not highly balanced. To examine this point, we consider the
following two sets of class probabilities:

(b) We let k1 = k/2 if k is even, and (k+1)/2 if k is odd; then we define p1 = 0.95×1.5/k1,
pi = (0.95− p1)/(k1− 1) for i = 2, . . . , k1, and pi = 0.05/(k− k1) for i = k1 +1, . . . , k.

(c) We define p1 = 0.95× 1.5/2, p2 = 0.95− p1, and pi = 0.05/(k − 2), i = 3, . . . , k.

An illustration of these three sets of class probabilities is in Figure 1.

p1

p2p3

p4

p5

p6

p7 p8
p9

p10

p1p2

p3

p4
p5

p6 · · · p10

p1

p2

p3 · · · p10

(a) (b) (c)

Figure 1: Three sets of class probabilities
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After setting pi, we define the pairwise comparisons rij as in (33)-(34). Both experiments
are repeated for 1,000 times. The accuracy rates are shown in Figures 2(b) and 2(c). In
both scenarios, pi are not balanced. As expected, δHT is quite sensitive to the imbalance of
pi. The situation is much worse in Figure 2(c) because the approximation pi + pj ≈ k/2 is
more seriously violated, especially when k is large.

A further analysis of Figure 2(c) shows that when k is large,

r12 =
3

4
+ 0.1z12, r1j ≈ 1 + 0.1z1j , j ≥ 3,

r21 =
1

4
+ 0.1z21, r2j ≈ 1 + 0.1z2j , j ≥ 3,

rij ≈ 0 + 0.1zij , i 6= j, i ≥ 3,

where zji = −zij are standard normal variates. From (11), the decision rule δHT in this case
is mainly on comparing

∑

j:j 6=1 r1j and
∑

j:j 6=2 r2j . The difference between these two sums

is 1
2 + 0.1(

∑

j:j 6=1 z1j −
∑

j:j 6=2 z2j), where the second term has zero mean and, when k is
large, high variance. Therefore, for large k, the decision depends strongly on these normal
variates, and the probability of choosing the first class is approaching half. On the other
hand, δPKPD relies on comparing

∑

j:j 6=1 1/r1j and
∑

j:j 6=2 1/r2j . As the difference between
1/r12 and 1/r21 is larger than that between r12 and r21, though the accuracy rates decline
when k increases, the situation is less serious.

We also analyze the mean square error (MSE) in Figure 3:

MSE =
1

1000

1000
∑

j=1

1

k

k
∑

i=1

(p̂j
i − pi)

2, (35)

where p̂j is the probability estimate obtained in the jth of the 1,000 replicates. Overall, δHT

and δV have higher MSE, confirming again that they are less stable. Note that Algorithm
1 and (11) give the same prediction for δHT , but their MSE are different. Here we consider
(11) as it is the one analyzed and compared in Section 5.

In summary, δ1 and δ2 are less sensitive to pi, and their overall performance are fairly
stable. All observations about δHT , δ1, δ2, and δV here agree with our analysis in Section
5. Despite some similarity to δHT , δPKPD outperforms δHT in general. Experiments in this
study are conducted using MATLAB.

7. Experiments on Real Data

In this section we present experimental results on several multi-class problems: dna, satim-

age, segment, and letter from the Statlog collection (Michie et al., 1994), waveform from
UCI Machine Learning Repository (Blake and Merz, 1998), USPS (Hull, 1994), and MNIST

(LeCun et al., 1998). The numbers of classes and features are reported in Table 7. Ex-
cept dna, which takes two possible values 0 and 1, each attribute of all other data is
linearly scaled to [−1, 1]. In each scaled data, we randomly select 300 training and 500
testing instances from thousands of data points. 20 such selections are generated and
the testing error rates are averaged. Similarly, we do experiments on larger sets (800
training and 1,000 testing). All training and testing sets used are available at http://
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Figure 2: Accuracy of predicting the true class by the methods: δHT (solid line, cross
marked), δV (dashed line, square marked), δ1 (dotted line, circle marked), δ2

(dashed line, asterisk marked), and δPKPD (dashdot line, diamond marked).
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Figure 3: MSE by the methods: δHT via (11) (solid line, cross marked), δV (dashed line,
square marked), δ1 (dotted line, circle marked), δ2 (dashed line, asterisk marked),
and δPKPD (dashdot line, diamond marked).

www.csie.ntu.edu.tw/~cjlin/papers/svmprob/data and the code is available at http:

//www.csie.ntu.edu.tw/~cjlin/libsvmtools/svmprob/svmprob-1.0.tgz.
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For the implementation of the four probability estimates, δ1 and δ2 are via solving linear
systems. For δHT , we implement Algorithm 1 with the following stopping condition

k
∑

i=1

∣

∣

∣

∣

∣

∑

j:j 6=i rij
∑

j:j 6=i µij
− 1

∣

∣

∣

∣

∣

≤ 10−3.

We observe that the performance of δHT may downgrade if the stopping condition is too
loose.

dataset dna waveform satimage segment USPS MNIST letter

#class 3 3 6 7 10 10 26
#attribute 180 21 36 19 256 784 16

Table 1: Data set Statistics

7.1 SVM as the Binary Classifier

We first consider support vector machines (SVM) (Boser et al., 1992; Cortes and Vapnik,
1995) with the RBF kernel e−γ‖xi−xj‖

2

as the binary classifier. The regularization param-
eter C and the kernel parameter γ are selected by cross-validation (CV). To begin, for
each training set, a five-fold cross-validation is conducted on the following points of (C, γ):
[2−5, 2−3, . . . , 215]× [2−5, 2−3, . . . , 215]. This is done by modifying LIBSVM (Chang and Lin,
2001), a library for SVM. At each (C, γ), sequentially four folds are used as the training set
while one fold as the validation set. The training of the four folds consists of k(k − 1)/2
binary SVMs. For the binary SVM of the ith and jth classes, we employ an improved
implementation (Lin et al., 2003) of Platt’s posterior probabilities (Platt, 2000) to estimate
rij :

rij = P (i | i or j,x) =
1

1 + eAf̂+B
, (36)

where A and B are estimated by minimizing the negative log-likelihood function, and f̂
are the decision values of training data. Platt (2000) and Zhang (2004) observe that SVM
decision values are easily clustered at±1, so the probability estimate (36) may be inaccurate.
Thus, it is better to use CV decision values as we less overfit the model and values are not
so close to ±1. In our experiments here, this requires a further CV on the four-fold data
(i.e., a second level CV).

Next, for each instance in the validation set, we apply the pairwise coupling methods
to obtain classification decisions. The error of the five validation sets is thus the cross-
validation error at (C, γ). From this, each rule obtains its best (C, γ).2 Then, the decision
values from the five-fold cross-validation at the best (C, γ) are employed in (36) to find the
final A and B for future use. These two values and the model via applying the best param-
eters on the whole training set are then used to predict testing data. Figure 4 summarizes
the procedure of getting validation accuracy at each given (C, γ).

2. If more than one parameter sets return the smallest cross-validation error, we simply choose the one
with the smallest C.

987



Wu, Lin, and Weng

Given (C, γ)

1 fold 4 folds

5-fold CV
decision values

rij

validation accuracy

Figure 4: Parameter selection when using SVM as the binary classifier

The average of 20 MSEs are presented on the left panel of Figure 5, where the solid line
represents results of small sets (300 training/500 testing), and the dashed line of large sets
(800 training/1,000 testing). The definition of MSE here is similar to (35), but as there is
no correct pi for these problems, we let pi = 1 if the data is in the ith class, and 0 otherwise.
This measurement is called Brier Score (Brier, 1950), which is popular in meteorology. The
figures show that for smaller k, δHT , δ1, δ2 and δPKPD have similar MSEs, but for larger k,
δHT has the largest MSE. The MSEs of δV are much larger than those by all other methods,
so they are not included in the figures. In summary, the two proposed approaches, δ1 and δ2,
are fairly insensitive to the values of k, and all above observations agree well with previous
findings in Sections 5 and 6.

Next, left panels of Figures 6 and 7 present the average of 20 test errors for problems with
small size (300 training/500 testing) and large size (800 training/1,000 testing), respectively.
The caption of each sub-figure also shows the average of 20 test errors of the multi-class
implementation in LIBSVM. This rule is voting using merely pairwise SVM decision values,
and is denoted as δDV for later discussion. The figures show that the errors of the five
methods are fairly close for smaller k, but quite different for larger k. Notice that for smaller
k (Figures 6 and 7 (a), (c), (e), and (g)) the differences of the averaged errors among the five
methods are small, and there is no particular trend in these figures. However, for problems
with larger k (Figures 6 and 7 (i), (k), and (m)), the differences are bigger and δHT is less
competitive. In particular, for letter problem (Figure 6 (m), k =26), δ2 and δV outperform
δHT by more than 4%. The test errors along with MSE seems to indicate that, for problems
with larger k, the posterior probabilities pi are closer to the setting of Figure 2(c), rather
than that of Figure 2(a). Another feature consistent with earlier findings is that when k is
larger the results of δ2 are closer to those of δV , and δ1 closer to δHT , for both small and
large training/testing sets. As for δPKPD, its overall performance is competitive, but we
are not clear about its relationships to the other methods.

Finally, we consider another criterion on evaluating the probability estimates: the like-
lihood.

l
∏

j=1

pj
yj
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In practice, we use its log likelihood and divide the value by a scaling factor l:

1

l

l
∑

j=1

log pj
yj

, (37)

where l is the number of test data, pj is the probability estimates for the jth data, and yj

is its actual class label.

A larger value implies a possibly better estimate. The left panel of Figure 8 presents
the results of using SVM as the binary classifier. Clearly the trend is the same as MSE and
accuracy. When k is larger, δ2 and δV have larger values and hence better performance.
Similar to MSE, values of δV are not presented as they are too small.

7.2 Random Forest as the Binary Classifier

In this subsection we consider random forest (Breiman, 2001) as the binary classifier and
conduct experiments on the same data sets. As random forest itself can provide multi-class
probability estimates, we denote the corresponding rule as δRF and also compare it with
the coupling methods.

For each two classes of data, we construct 500 trees as the random forest classifiers.
Using mtry randomly selected features, a bootstrap sample (around two thirds) of training
data are employed to generate a full tree without pruning. For each test instance, rij is
simply the proportion out of the 500 trees that class i wins over class j. As we set the number
of trees to be fixed at 500, the only parameter left for tuning is mtry. Similar to (Sventnik

et al., 2003), we select mtry from {1,√m, m/3, m/2, m} by five-fold cross validation, where
m is the number of attributes. The cross validation procedure first sequentially uses four
folds as the training set to construct k(k − 1)/2 pairwise random forests, next obtains the
decision for each instance in the validation set by the pairwise coupling methods, and then
calculates the cross validation error at the given mtry by the error of five validation sets.
This is similar to the procedure in Section 7.1, but we do not need a second-level CV
for obtaining accurate two-class probabilistic estimates (i.e., rij). Instead of CV, a more
efficient “out of bag” validation can be used for random forest, but here we keep using CV
for consistency. Experiments are conducted using an R-interface (Liaw and Wiener, 2002)
to the code from (Breiman, 2001).

The MSE presented in the right panel of Figure 5 shows that δ1 and δ2 yield more stable
results than δHT and δV for both small and large sets. The right panels of Figures 6 and 7
give the average of 20 test errors. The caption of each sub-figure also shows the averaged
error when using random forest as a multi-class classifier (δRF ). Notice that random forest
bears a resemblance to SVM: the errors are only slightly different among the five methods
for smaller k, but δV and δ2 tend to outperform δHT and δ1 for larger k. The right panel of
Figure 8 presents the log likelihood value (37). The trend is again the same. In summary,
the results by using random forest as the binary classifier strongly support previous findings
regarding the four methods.
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7.3 Miscellaneous Observations and Discussion

Recall that in Section 7.1 we consider δDV , which does not use Platt’s posterior probabilities.
Experimental results in Figure 6 show that δDV is quite competitive (in particular, 3%
better for letter), but is about 2% worse than all probability-based methods for waveform.
Similar observations on waveform are also reported in (Duan and Keerthi, 2003), where
the comparison is between δDV and δHT . We explain why the results by probability-based
and decision-value-based methods can be so distinct. For some problems, the parameters
selected by δDV are quite different from those by the other five rules. In waveform, at some
parameters all probability-based methods gives much higher cross validation accuracy than
δDV . We observe, for example, the decision values of validation sets are in [0.73, 0.97] and
[0.93, 1.02] for data in two classes; hence, all data in the validation sets are classified as
in one class and the error is high. On the contrary, the probability-based methods fit the
decision values by a sigmoid function, which can better separate the two classes by cutting
at a decision value around 0.95. This observation shed some light on the difference between
probability-based and decision-value based methods.

Though the main purpose of this section is to compare different probability estimates,
here we check the accuracy of another multi-class classification method: exponential loss-
based decoding by Allwein et al. (2001). In the pairwise setting, if f̂ij ∈ R is the two-class

hypothesis so that f̂ij > 0 (< 0) predicts the data to be in the ith (jth) class, then

predicted label = arg min
i





∑

j:j<i

ef̂ji +
∑

j:j>i

e−f̂ij



 . (38)

For SVM, we can simply use decision values as f̂ij . On the other hand, rij − 1/2 is another
choice. Table 2 presents the error of the seven problem using these two options. Results
indicate that using decision values is worse than rij − 1/2 when k is large (USPS,MNIST,

and letter). This observation seems to indicate that large numerical ranges of f̂ij may cause
(38) to have more erroneous results (rij−1/2 is always in [−1/2, 1/2]). The results of using
rij−1/2 is competitive with those in Figures 6 and 7 when k is small. However, for larger k
(e.g., letter), it is slightly worse than δ2 and δV . We think this result is due to the similarity

between (38) and δHT . When f̂ij is close to zero, ef̂ij ≈ 1 + f̂ij , so (38) reduces to a “linear

loss-based encoding.” When rij − 1/2 is used, f̂ji = rji − 1/2 = 1/2− rij . Thus, the linear
encoding is arg mini[

∑

j:j 6=i−rij ] ≡ arg maxi[
∑

j:j 6=i rij ], exactly the same as (11) of δHT .

training/testing (f̂ij) dna waveform satimage segment USPS MNIST letter

300/500 (dec. values) 10.47 16.23 14.12 6.21 11.57 14.99 38.59
300/500 (rij − 1/2) 10.47 15.11 14.45 6.03 11.08 13.58 38.27
800/1000 (dec. values) 6.36 14.20 11.55 3.35 8.47 8.97 22.54
800/1000 (rij − 1/2) 6.22 13.45 11.6 3.19 7.71 7.95 20.29

Table 2: Average of 20 test errors using exponential loss-based decoding (in percentage)

Regarding the accuracy of pairwise (i.e., δDV ) and non-pairwise (e.g., “one-against-the-
rest”) multi-class classification methods, there are already excellent comparisons. As δV
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and δ2 have similar accuracy to δDV , roughly how non-pairwise methods compared to δDV

is the same as compared to δV and δ2.
The results of random forest as a multi-class classifier (i.e., δRF ) are reported in the

caption of each sub-figure in Figures 6 and 7. We observe from the figures that, when the
number of classes is larger, using random forest as a multi-class classifier is better than
coupling binary random forests. However, for dna (k = 3) the result is the other way
around. This observation for random forest is left as a future research issue.
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Appendix A. Proof of Theorem 2

It suffices to prove that any optimal solution p of (20) satisfies pi ≥ 0, i = 1, . . . , k. If this
is not true, without loss of generality, we assume

p1 < 0, . . . , pr < 0, pr+1 ≥ 0, . . . , pk ≥ 0,

where r < k because
∑k

i=1 pi = 1. We can then define a new feasible solution of (20):

p′1 = 0, . . . , p′r = 0, p′r+1 = pr+1/α, . . . , p′k = pk/α,

where α = 1−∑r
i=1 pi > 1.

With rij > 0 and rji > 0, we obtain

(rjipi − rijpj)
2 ≥ 0 = (rjip

′
i − rijp

′
j)

2, if 1 ≤ i, j ≤ r,

(rjipi − rijpj)
2 >

(rijpj)
2

α2
= (rjip

′
i − rijp

′
j)

2, if 1 ≤ i ≤ r, r + 1 ≤ j ≤ k,

(rjipi − rijpj)
2 ≥ (rjipi − rijpj)

2

α2
= (rjip

′
i − rijp

′
j)

2, if r + 1 ≤ i, j ≤ k.

Therefore,
k

∑

i=1

∑

j:j 6=i

(rijpi − rjipj)
2 >

k
∑

i=1

∑

j:j 6=i

(rijp
′
i − rjip

′
j)

2.

This contradicts the assumption that p is an optimal solution of (20).

Appendix B. Proof of Theorem 3

(i) If Q + ∆eeT is not positive definite, there is a vector v with vi 6= 0 such that

vT (Q + ∆eeT )v =
1

2

k
∑

t=1

∑

u:u6=t

(rutvt − rtuvu)2 + ∆(
k

∑

t=1

vt)
2 = 0. (39)
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For all t 6= i, ritvt − rtivi = 0, so

vt =
rti

rit
vi 6= 0.

Thus,
k

∑

t=1

vt = (1 +
∑

t:t6=i

rti

rit
)vi 6= 0,

which contradicts (39).

The positive definiteness of Q + ∆eeT implies that
[

Q+∆ee
T

e

e
T 0

]

is invertible. As
[

Q+∆ee
T

e

e
T 0

]

is from adding the last row of
[

Q e

e
T 0

]

to its first k rows (with a scaling

factor ∆), the two matrices have the same rank. Thus,
[

Q e

e
T 0

]

is invertible as well.

Then (23) has a unique solution, and so does (19).

(ii) If Q is not positive definite, there is a vector v with vi 6= 0 such that

vT Qv =
1

2

k
∑

t=1

∑

u:u6=t

(rutvt − rtuvu)2 = 0.

Therefore,
(rutvt − rtuvu)2 = 0, ∀t 6= u.

As rtu > 0, ∀t 6= u, for any s 6= j for which s 6= i and j 6= i, we have

vs =
rsi

ris
vi, vj =

rji

rij
vi, vs =

rsj

rjs
vj . (40)

As vi 6= 0, (40) implies
rsirsj

ris
=

rjirjs

rij
,

which contradicts (25).

Appendix C. Proof of Theorem 4

First we need a lemma to show the strict decrease of the objective function:

Lemma 5 If rij > 0, ∀i 6= j, p and pn are from two consecutive iterations of Algorithm 2,
and pn 6= p, then

1

2
(pn)T Qpn <

1

2
pT Qp. (41)

Proof. Assume that pt is the component to be updated. Then, pn is obtained through the
following calculation:

p̄i =

{

pi if i 6= t,
1

Qtt
(−∑

j:j 6=t Qtjpj + pT Qp) if i = t,
(42)
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and

pn =
p̄

∑k
i=1 p̄i

. (43)

For (43) to be a valid operation,
∑k

i=1 p̄i must be strictly positive. To show this, we first
suppose that the current solution p satisfies pi ≥ 0, i = 1, . . . , l, but the next solution p̄
has

∑k
i=1 p̄i = 0. In Section 4.2, we have shown that p̄t ≥ 0, so with p̄i = pi ≥ 0, ∀i 6= t,

p̄i = 0 for all i. Next, from (42), pi = p̄i = 0 for i 6= t, which, together with the equality
∑k

i=1 pi = 1 implies that pt = 1. However, if pt = 1 and pi = 0 for i 6= t, then p̄t = 1 from
(42). This contradicts the situation that p̄i = 0 for all i. Therefore, by induction, the only
requirement is to have nonnegative initial p.

To prove (41), first we rewrite the update rule (42) as

p̄t = pt +
1

Qtt
(−(Qp)t + pT Qp) (44)

= pt + ∆.

Since we keep
∑k

i=1 pi = 1,
∑k

i=1 p̄i = 1 + ∆. Then

p̄T Qp̄− (
k

∑

i=1

p̄i)
2pT Qp

= pT Qp + 2∆(Qp)t + Qtt∆
2 − (1 + ∆)2pT Qp

= 2∆(Qp)t + Qtt∆
2 − (2∆ + ∆2)pT Qp

= ∆
(

2(Qp)t − 2pT Qp + Qtt∆−∆pT Qp
)

= ∆(−Qtt∆−∆pT Qp) (45)

= −∆2(Qtt + pT Qp) < 0. (46)

(45) follows from the definition of ∆ in (44). For (46), it uses Qtt =
∑

j:j 6=t r2
jt > 0 and

∆ 6= 0, which comes from the assumption pn 6= p. 2

Now we are ready to prove the theorem. If this result does not hold, there is a convergent
sub-sequence {pi}i∈K such that p∗ = limi∈K,i→∞pi is not optimal for (19). Note that there
is at least one index of {1, . . . , k} which is considered in infinitely many iterations. Without
loss of generality, we assume that for all pi, i ∈ K, pi

t is updated to generate the next
iteration pi+1. As p∗ is not optimal for (19), starting from t, t + 1, . . . , k, 1, . . . , t− 1, there
is a first component t̄ for which

k
∑

j=1

Qt̄jp
∗
j − (p∗)T Qp∗ 6= 0.

By applying one iteration of Algorithm 2 on p∗
t̄
, from an explanation similar to the proof of

Lemma 5, we obtain p∗,n satisfying p∗,n
t̄
6= p∗

t̄
. Then by Lemma 5,

1

2
(p∗,n)T Qp∗,n <

1

2
(p∗)T Qp∗.
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Assume it takes ī steps from t to t̄ and ī > 1,

lim
i∈K,i→∞

pi+1
t = lim

i∈K,i→∞

1
Qtt

(−∑

j:j 6=t Qtjp
i
t + (pi)T Qpi)

1
Qtt

(−∑

j:j 6=t Qtjpi
t + (pi)T Qpi) +

∑

j:j 6=t pi
j

=

1
Qtt

(−∑

j:j 6=t Qtjp
∗
t + (p∗)T Qp∗)

1
Qtt

(−∑

j:j 6=t Qtjp∗t + (p∗)T Qp∗) +
∑

j:j 6=t p∗j

=
p∗t

∑k
j=1 p∗j

= p∗t ,

we have

lim
i∈K,i→∞

pi = lim
i∈K,i→∞

pi+1 = · · · = lim
i∈K,i→∞

pi+ī−1 = p∗.

Moreover,

lim
i∈K,i→∞

pi+ī = p∗,n

and

lim
i∈K,i→∞

1

2
(pi+ī)T Qpi+ī =

1

2
(p∗,n)T Qp∗,n

<
1

2
(p∗)T Qp∗

= lim
i∈K,i→∞

1

2
(pi)T Qpi.

This contradicts the fact from Lemma 5:

1

2
(p1)T Qp1 ≥ 1

2
(p2)T Qp2 ≥ · · · ≥ 1

2
(p∗)T Qp∗.

Therefore, p∗ must be optimal for (19).

Appendix D. Implementation Notes of Algorithm 2

From Algorithm 2, the main operation of each iteration is on calculating −∑

j:j 6=t Qtjpj

and pT Qp, both O(k2) procedures. In the following, we show how to easily reduce the cost
per iteration to O(k).

Following the notation in Lemma 5 of Appendix D, we consider p the current solution.
Assume pt is the component to be updated, we generate p̄ according to (42) and normalize
p̄ to the next iterate pn. Note that p̄ is the same as p except the tth component and we
consider the form (44). Since

∑k
i=1 pi = 1, (43) is pn = p̄/(1 + ∆). Throughout iterations,

we keep the current Qp and pT Qp, so ∆ can be easily calculated. To obtain Qpn and
(pn)T Qpn, we use

(Qpn)j =
(Qp̄)j

1 + ∆

=
(Qp)j + Qjt∆

1 + ∆
, j = 1, . . . , k, (47)

994



Probability Estimates for Multi-class Classification by Pairwise Coupling

and

(pn)T Q(pn) =
p̄T Qp̄

(1 + ∆)2
(48)

=
pT Qp + 2∆

∑k
j=1(Qp)j + Qtt∆

2

(1 + ∆)2
.

Both (and hence the whole iteration) takes O(k) operations.

Numerical inaccuracy may accumulate through iterations, so gradually (47) and (48)
may be away from values directly calculated using p. An easy prevention of this problem
is to recalculate Qp and pT Qp directly using p after several iterations (e.g., k iterations).
Then, the average cost per iteration is still O(k) + O(k2)/k = O(k).

Appendix E. Derivation of (32)

k
∑

i=1

∑

j:j 6=i

(I{rij>rji}pj − I{rji>rij}pi)
2

=
k

∑

i=1

∑

j:j 6=i

(I{rij>rji}p
2
j + I{rji>rij}p

2
i )

= 2
k

∑

i=1

(
∑

j:j 6=i

I{rji>rij})p
2
i .

If
∑

j:j 6=i I{rji>rij} 6= 0, ∀i, then, under the constraint
∑k

i=1 pi = 1, the optimal solution
satisfies

p1
∑

j:j 6=1 I{rj1>r1j}
= · · · = pk

∑

j:j 6=k I{rjk>rkj}
.

Thus, (32) is the optimal solution of (31).
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Figure 5: MSE by using four probability estimates methods based on binary SVMs (left)
and binary random forests (right). MSE of δV is too large and is not presented.
solid line: 300 training/500 testing points; dotted line: 800 training/1,000 testing
points.
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Figure 6: Average of 20 test errors by five probability estimates methods based on binary
SVMs (left) and binary random forests (right). Each of the 20 test errors is by 300
training/500 testing points. Caption of each sub-figure shows the averaged error
by voting using pairwise SVM decision values (δDV ) and the multi-class random
forest (δRF ).
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Figure 7: Average of 20 test errors by five probability estimates methods based on binary
SVMs (left) and binary random forests (right). Each of the 20 test errors is by
800 training/1,000 testing points. Caption of each sub-figure shows the averaged
error by voting using pairwise SVM decision values (δDV ) and the multi-class
random forest (δRF ).
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Figure 8: Log likelihood (37) by using four probability estimates methods based on binary
SVMs (left) and binary random forests (right). MSE of δV is too small and is
not presented. solid line: 300 training/500 testing points; dotted line: 800 train-
ing/1,000 testing points.
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