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Abstract
Latent class models are used for cluster analysis of categorical data. Underlying such a model is the
assumption that the observed variables are mutually independent given the class variable. A serious
problem with the use of latent class models, known as local dependence, is that this assumption is
often untrue. In this paper we propose hierarchical latent class models as a framework where the
local dependence problem can be addressed in a principled manner. We develop a search-based
algorithm for learning hierarchical latent class models from data. The algorithm is evaluated using
both synthetic and real-world data.

Keywords: Model-based clustering, latent class models, local dependence, Bayesian networks,
latent structure discovery

1. Introduction

Cluster analysis is the partitioning of similar objects into meaningful classes, when both the number
of classes and the composition of the classes are to be determined (Kaufman and Rousseeuw 1990;
Everitt 1993). In model-based clustering, it is assumed that the objects under study are generated
by a mixture of probability distributions, with one component corresponding to each class. When
the attributes of objects are continuous, cluster analysis is sometimes called latent profile analysis
(Gibson, 1959; Lazarsfeld and Henry, 1968; Bartholomew and Knott, 1999; Vermunt and Magidson,
2002). When the attributes are categorical, cluster analysis is sometimes called latent class analysis
(LCA) (Lazarsfeld and Henry, 1968; Goodman, 1974b; Bartholomew and Knott, 1999; Uebersax,
2001). There is also cluster analysis of mixed-mode data (Everitt, 1993) where some attributes are
continuous while others are categorical.

This paper is concerned with LCA, where data are assumed to be generated by a latent class
(LC) model. An LC model consists of a class variable that represents the clusters to be identified and
a number of other variables that represent attributes of objects.1 The class variable is not observed
and hence said to be latent. On the other hand, the attributes are observed and are called manifest
variables.

LC models assume local independence, i.e., manifest variables are mutually independent in
each latent class, or equivalently, given the latent variable. A serious problem with the use of LCA,
known as local dependence, is that this assumption is often violated. If one does not deal with local

1. Latent class models are sometimes also referred to as naïve Bayes models. We suggest that the term “naïve Bayes
models” be used only in the context of classification and the term “latent class models” be used in the context of
clustering.
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dependence explicitly, one implicitly attributes it to the latent variable. This can lead to spurious
latent classes and poor model fit. It can also degenerate the accuracy of classification because locally
dependent manifest variables contain overlapping information (Vermunt and Magidson, 2002).

The local dependence problem has attracted some attention in the LCA literature (Espeland
and Handelman, 1989; Garrett and Zeger, 2000; Hagenaars, 1988; Vermunt and Magidson, 2000).
Methods for detecting and modeling local dependence have been proposed. To detect local depen-
dence, one typically compares observed and expected cross-classification frequencies for pairs of
manifest variables. To model local dependence, one can join manifest variables, introduce multiple
latent variables, or reformulate LC models as loglinear models and then impose constraints on them.
All existing methods are preliminary proposals and suffer from a number of deficiencies (Section
2).

1.1 Our Work

This paper describes the first systematic approach to the problem of local dependence. We address
the problem in the framework of hierarchical latent class (HLC) models. HLC models are Bayesian
networks whose structures are rooted trees and where the leaf nodes are observed while all other
nodes are latent. This class of models is chosen for two reasons. First it is significantly larger than
the class of LC models and can accommodate local dependence. Second inference in an HLC model
takes time linear in model size, which makes it computationally feasible to run EM.

We develop a search-based algorithm for learning HLC models from data. The algorithm sys-
tematically searches for the optimal model by hill-climbing in a space of HLC models with the
guidance of a model selection criterion. When there is no local dependence, the algorithm returns
an LC model. When local dependence is present, it returns an HLC model where local dependence
is appropriately modeled. It should be noted, however, that the algorithm might not work well on
data generated by models that neither are HLC models nor can be closely approximated by HLC
models.

The motivation for this work originates from an application in traditional Chinese medicine.
In that application, there are approximately seventy manifest variables and local dependence is an
important issue. The aim is to learn a statistical model from data and hence provide doctors with an
objective picture about the structure of the application domain.2 As such, model quality is of utmost
importance, while it is reasonable to assume abundant data and computing resources. So we take
a principled (as opposed to heuristic) approach when designing our algorithm and we empirically
show that the algorithm yields models of good quality. In subsequent work, we will explore ways
to scale up the algorithm.

1.2 Related Literature

This paper is an addition to the growing literature on hidden variable discovery in Bayesian net-
works (BN). Here is a brief discussion of some of this literature. Elidan et al. (2001) discuss how
to introduce latent variables to BNs constructed for observed variables by BN structure learning
algorithms. The idea is to look for structural signatures of latent variables. Elidan and Friedman
(2001) give a fast algorithm for determining the cardinalities — the numbers of possible states —
of latent variables introduced this way. Meila-Predoviciu (1999) studies how mixtures of trees can

2. Currently, diagnosis in Chinese medicine is based on theories that have not been scientifically validated.
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be induced from data. This work is based on the method of approximating joint probability distri-
butions with dependence trees by Chow and Liu (1968). The new component is a latent variable
that specifies how several trees over observed nodes fit into one model.

The algorithms described in Connolly (1993) and Martin and VanLehn (1994) are closely related
the algorithm presented in this paper. They all aim at inducing from data a latent structure that
explains correlations among observed variables. The algorithm by Martin and VanLehn (1994)
builds a two-level Bayesian network where the lower level consists of observed variables while the
upper level consists of latent variables. The algorithm is based on tests of association between pairs
of observed variables. The algorithm by Connolly (1993) constructs exactly what we call HLC
models. Mutual information is used to group variables, a latent variable is introduced for each
group, and the cardinality of the latent variable is determined using a technique called conceptual
clustering. In comparison with Connolly’s method, our method is more principled in the sense that
it determines model structure and cardinalities of latent variables using one criterion, namely (some
approximation) of the marginal likelihood.

The task of learning HLC models is similar to the reconstruction of phylogenetic trees, which is
a major topic in biological sequence analysis (Durbin et al., 1998). As a matter of fact, phylogenetic
trees are special HLC models where the model structures are binary (bifurcating) trees and all the
variables share the same set of possible states. However, phylogenetic trees cannot be directly
used for general cluster analysis because the constraints imposed on them. And techniques for
phylogenetic tree reconstruction do not necessarily carry over to HLC models. For example, the
structural EM algorithm for phylogenetic tree reconstruction by Friedman et al., (2002) does not
work for HLC models because we do not know, a priori, the number of latent variables and their
cardinalities.

HLC models should not be confused with model-based hierarchical clustering (e.g., Hanson et
al., 1991; Fraley, 1998). In an LC model (or similar models with continuous manifest variables),
there is only one latent variable and each state of the variable corresponds to a cluster in data. HLC
models generalize LC models by allowing multiple latent variables and hence open up the possibility
of multiple clusterings in one model. An HLC model contains a hierarchy of latent variables, with
each corresponding to one way to cluster data. In model-based hierarchical clustering, on the other
hand, one has a hierarchy of classes. Conceptually there is only one latent variable. Classes at
different levels of the hierarchy correspond to states of the variable at different levels of granularity.

1.3 Organization of Paper

The rest of this paper is organized as follows. In the next section we give a brief review of latent
class models and survey previous work on local dependence. In Section 3 we formally define HLC
models and study a number of theoretical issues related to the task of learning HLC models. A hill-
climbing algorithm for inducing regular HLC models from data is described in Section 4. Section
5 reports empirical results on synthetic data and Section 6 discusses experiments with real-world
data. Conclusions and remarks about future directions are provided in the final section.

2. Latent Class Models and Local Dependence

A latent class (LC) model involves a latent variable X and a number of manifest variables Y1, Y2, . . . ,
Yn. All the variables are categorical and the relationships among them are described by the simple
Bayesian network shown in Figure 1. In applications, the latent variable X represents concepts
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Figure 1: Structure of LC models.

such as “depression” that cannot be directly measured (Eaton et al., 1989). States of the latent
variable correspond to classes of individuals in a population. The manifest variables Yi represent
manifestations of the latent concept such as “loss of appetite”, “trouble falling asleep”, “thoughts of
death”, and so on.

The latent variable influences all the manifest variables at the same time and hence renders
them correlated. The essence of latent class analysis (LCA) is to characterize the latent concept
by analyzing those correlations. This is possible due to the assumption that the manifest variables
are mutually independent given the latent variable, which can be intuitively interpreted as saying
that the latent variable is the only reason for the correlations. Since each state of the latent variable
corresponds to a class of individuals in a population, the conditional independence assumption can
be restated as that the manifest variables are independent within each latent class. Because of this,
it is sometimes called the local independence assumption.

Learning an LC model from data means to (1) determine the cardinality for variable X , i.e., the
number of latent classes; and (2) estimate the model parameters P(X) and P(Yi|X). Parameters are
usually estimated using the EM algorithm (Dempster et al., 1977; Lauritzen, 1995). The cardinal-
ity of X is determined by comparing alternatives using goodness-of-fit indices or scoring metrics.
The most commonly used scoring metric is BIC (Schwarz, 1978). Equivalent to the MDL score
(Lanterman, 2001), the BIC score is an approximation of the marginal likelihood that is derived in a
setting when all variables are observed. Geiger et al., (1998) have recently cautioned against its use
in LC models. Extensive experiments by Chickering and Heckerman (1997) show that BIC is less
accurate than other efficient approximations of marginal likelihood such as the Cheeseman-Stutz
(CS) score (Cheeseman and Stutz, 1995).

A serious problem with the use of LCA is that the local independence assumption is often
violated. The term local dependence is used to refer to this problem. Previous methods for dealing
with local independence are surveyed by Uebersax (2000). In this survey, Uebersax distinguishes
between two subtasks, namely the diagnosis and modeling of local dependence.

Diagnostic methods compare observed and expected frequencies for pairs of manifest variables.
For concreteness, consider two manifest variables A and B in an LC model. Denote the observed
and expected frequencies on A and B by O(A,B) and E(A,B) respectively. For any state a of A and
b of B, O(a,b) is the number of records where A is in state a and B is in state b.3 On the other hand,
E(a,b) = P(a,b)∗N, where P(A,B) is the joint probability of A and B in the LC model and N is the
total number of records. Hagenaars (1988) suggests that one examine the standardized residuals

R(a,b) =
O(a,b)−E(a,b)

√

E(a,b)

3. We use upper case letters for variable names and the corresponding lower case letters for their states.
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Figure 2: Modeling of local dependence.

for each combination (a,b) of states of A and B. If the residuals deviate from zero significantly, one
concludes that A and B are locally dependent. Espeland and Handelman (1988) propose computing
the likelihood ratio statistic

L(A,B) = ∑
a,b

2O(a,b)log
O(a,b)

E(a,b)
.

The larger the statistic, the stronger the evidence for local dependence between A and B. When A
and B are binary variables, we denote the possible states for the two variables by a, ¬a, b, and ¬b.
Garret and Zeger (2000) recommend to compare the observed and expected log odds ratio

log
O(¬a,b)/O(a,b)

O(¬a,¬b)/O(a,¬b)
, log

E(¬a,b)/E(a,b)

E(¬a,¬b)/E(a,¬b)
.

Again larger differences indicate stronger evidence for local dependence.
An obvious way to model local dependence is to introduce joint variables. Consider the LC

model M1 in Figure 2. If variables B and C are locally dependent, we can combine those two
variables and introduce a joint variable BC. This lead to the model M2. A second method is to
introduce new latent variables (Goodman, 1974a). Uebersax calls it the multiple indicator method.
To account for the local dependence between B and C in M1, for instance, we can introduce a new
latent variable X1 and thereby get model M3. By doing this, we are assuming that the reason for B
and C being locally dependent is that they are jointly influenced by a latent variable X1 that is not
completely determined by the latent variable X . In a third approach (Hagenaars, 1988), one views
LC models as special loglinear models. When two manifest variables are locally dependent, one
simply adds a direct effect between them. In model M1, adding a direct effect between B and C
yields the model M4. Note that M4 is no longer a Bayesian network. It is the path-diagram (see
Bohrnstedt and Knoke, 1994, Chapter 11) for a loglinear model.

Previous work in the LCA community for dealing with local dependence is not sufficient for a
number of reasons. First, the criteria for detecting local dependence is heuristic in nature. Judg-
ments are required as to how the various thresholds should be set. Second, there are no criteria for
making the trade-off between increasing the cardinalities of existing latent variables versus increas-
ing the complexity of model structure. In Hagenaars (1988) and Uebersax (2000), cardinalities of
all latent variables are fixed at 2 while model structures are allowed to change. In most other work
the standard one-latent-variable structure is assumed and fixed, while the cardinality of the latent
variable is allowed to change. Third, the search for the best model is carried out manually. Typically
only a few simple models are considered (Goodman, 1974a; Hagenaars, 1988). The search space

701



ZHANG

Figure 3: An example HLC model. The Xi’s are latent variables and the Y j’s are manifest variables.

for the multiple indicator method is not even clearly defined. Finally, when there are multiple pairs
of locally dependent manifest variables, it is not clear which pair should be tackled first, or if all
pairs should be handled simultaneously.

The purpose of this paper is to develop a principled and systematic method for dealing with
local dependence. In the next section, we describe the models that serve as the framework for our
work.

3. Hierarchical Latent Class Models

A hierarchical latent class (HLC) model is a Bayesian network where

1. The network structure is a rooted tree; and

2. The variables at the leaf nodes are observed and all the other variables are not.4

Figure 3 shows an example of an HLC model. Following the LCA literature, we refer to the observed
variables as manifest variables and all the other variables as latent variables. In this paper we do
not distinguish between variables and nodes. So we sometimes speak also of manifest nodes and
latent nodes. For technical convenience, we assume that there are at least two manifest variables.

We use θ to refer to the collection of parameters in an HLC model M and use m to refer to
what is left when the parameters are removed from M. So we usually write an HLC model as a pair
M = (m,θ). We sometimes refer to the first component m of the pair also as an HLC model. When
it is necessary to distinguish between m and the pair (m,θ), we call m an uninstantiated HLC model
and the pair an instantiated HLC model. The term HLC model structure is reserved for what is left
if information about cardinalities of latent variables are removed from an uninstantiated model m.
Model structures will be denoted by the letter S, possibly with subscripts.

3.1 Parsimonious HLC Models

In this paper we study the learning of HLC models. We assume that there is a collection of identical
and independently distributed (i.i.d.) samples generated by some HLC model. Each sample consists
of states for all or some of the manifest variables. The task is to reconstruct the HLC model from
data. As will be seen later, not all HLC models can be reconstructed from data. It is hence natural

4. The concept of a variable being observed is always w.r.t some given data set. A variable is observed in a data set if
there is at least one record that contains the state for that variable.
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to ask what models can be reconstructed. In this subsection we provide a partial answer to this
question.

Consider two instantiated HLC models M = (m,θ) and M ′ = (m′,θ′) that share the same man-
ifest variables Y1, Y2, . . . , Yn. We say that M and M′ are marginally equivalent if the probability
distribution over the manifest variables is the same in both models, i.e.,

P(Y1, . . . ,Yn|m,θ) = P(Y1, . . . ,Yn|m
′,θ′). (1)

Two marginally equivalent instantiated models are equivalent if they also have the same number
of independent parameters. Two uninstantiated HLC models m and m′ are equivalent if for any
parameterization θ of m there exists a parameterization θ′ of m′ such that (m,θ) and (m,θ′) are
equivalent and vice versa. Two HLC model structures S1 and S2 are equivalent if there are equivalent
uninstantiated models m1 and m2 whose underlying structures are S1 and S2 respectively.

An instantiated HLC model M is parsimonious if there does not exist another model M ′ that
is marginally equivalent to M and that has fewer independent parameters than M. An uninstan-
tiated HLC model m is parsimonious if there exists a parameterization θ of m such that (m,θ) is
parsimonious.

Let M be an instantiated HLC model and D be a set of i.i.d. samples generated by M. If M is
not parsimonious, then there must exist another HLC model whose penalized loglikelihood score
given D (Green, 1998; Lanternman, 2001) is greater than that of M. This means that, if one uses
penalized loglikelihood for model selection, one would prefer this other parsimonious models over
the non-parsimonious model M. The following theorem states that, to some extent, the opposite is
also true, i.e., one would prefer M to other models if M is parsimonious.

Theorem 1 Let M and M′ be two instantiated HLC models with the same manifest variables. Let
D be a set of i.i.d. samples generated from M.

1. If M and M′ are not marginally equivalent, then the loglikelihood l(M|D) of M is strictly
greater than the loglikelihood l(M′|D) of M′ when the sample size is large enough.

2. If M is parsimonious and is not equivalent to M ′, then the penalized loglikelihood of M is
strictly larger than that of M′ when the sample size is large enough.

Proof: Use P and P′ to denote the marginal probability distributions over the manifest variables in
M and M′ respectively. Let N be the sample size. It follows from the law of large numbers that,
as N goes to infinity, [l(M|D)−l(M′|D)]/N approaches the Kullback-Leibler (KL) distance I(P:P′).
The first part hence follows from the well-known property of the KL distance that I(P:P′)≥0 and
the equality is true only when P and P′ are identical (e.g., Cover and Thomas, 1991).

The second part can be divided into two cases. The first case is when M and M ′ are marginally
equivalent and M′ has more parameters than M. Here the statement is trivially true for all sample
sizes. In the second case, M and M′ are not marginally equivalent. According to the first part of
the theorem, l(M|D)−l(M′|D) is positive when N is large enough. Moreover the quantity increases
linearly with N. On the other hand, the penalty on model complexity increases logarithmically with
N. Hence the statement is true when N is large enough. Q.E.D.
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Figure 4: The operation of root walking.

3.2 Model Equivalence

In this subsection we give an operational characterization of model equivalence. Let X1 be the root
of an instantiated HLC model M1. Suppose X2 is a child of X1 and it is a latent node (see Figure 4).
Define another HLC model M2 by reversing the arrow X1→X2 and, while leaving the values for all
other parameters unchanged, defining PM2(X2) and PM2(X1|X2) as follows:

PM2(X2) = ∑
X1

PM1(X1)PM1(X2|X1)

PM2(X1|X2) =

{

PM1 (X1)PM1 (X2|X1)

PM2 (X2)
if PM2(X2) > 0.

1
|X1|

otherwise.

We use the term root walking to refer to the process of obtaining M2 from M1. In the process, the
root has walked from X1 to X2.

Theorem 2 Let M1 and M2 be two instantiated HLC models. If M2 is obtained from M1 by one or
more steps of root walking, then M1 and M2 are equivalent.5

Proof: We will prove this theorem for the case when M2 is obtained from M1 by one step of root
walking. The general case follows from this special case by induction.

Assume the models are as shown in Figure 4. Model M2 is obtained by letting the root of M1

walk from X1 to X2. Let A be the set of variables in the subtrees rooted at X2 except those in the
subtree rooted at X1 and let B be the set of variables in the subtrees rooted at X1 except those in the
subtree rooted at X2. We have,

PM1(X1,X2,A,B) = PM1(X1)PM1(X2|X1)PM1(A|X2)PM1(B|X1)

= PM2(X2)PM2(X1|X2)PM2(A|X2)PM2(B|X1)

= PM2(X1,X2,A,B).

Consequently, M1 and M2 are marginally equivalent.
It is easy to see that PM1(X1) and PM1(X2|X1) encapsulate |X1||X2|−1 parameters. The same is

true for PM2(X2) and PM2(X1|X2). Hence M1 and M2 have the same number of parameters. The
theorem is therefore proved. Q.E.D.

5. A similar but different theorem was proved by Chickering (1996) for Bayesian networks with no latent variables. In
Chickering (1996), model equivalence implies equal number of parameters. Here equal number of parameters is part
of the definition of model equivalence.
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Figure 5: HLC models that are equivalent to the one in Figure 3.

Figure 6: The unrooted HLC model that corresponds to the HLC model in Figure 3.

The two HLC models shown in Figure 5 are equivalent to the model in Figure 3. The model on
the left is obtained by letting the root of the original model walk from X1 to X2, while the model on
the right is obtained by letting the root walk from X1 to X3.

In general, the root of an HLC model can walk to any latent node. This implies the root node
cannot be determined from data.6 A question about the suitability of HLC models for cluster anal-
ysis naturally arises. We take the position that the root node can be determined from the objective
in clustering and domain knowledge. Moreover we view the presence of multiple latent variables as
an advantage because it enables one to cluster data in multiple ways. Each latent variable represents
one possible way to cluster data. Note that multiple clusterings due to multiple latent variables are
very different from multiple clusterings in hierarchical clustering. In the latter case, a clustering at
a lower level of the hierarchy is a refinement of a clustering at a higher level. The same relationship
does not exist in the former case.

The inability of determining the root node from data also has some technical consequences. We
can never induce HLC models from data. Instead we obtain what might be called unrooted HLC
models. An unrooted HLC model is an HLC model with all directions on the edges dropped. Figure
6 shows the unrooted HLC model that corresponds to the HLC model in Figure 3. An unrooted
HLC model represents a class of HLC models; members of the class are obtained by rooting the
model at various latent nodes and by directing the edges away from the root. Semantically it is a
Markov random field on an undirected tree. The leaf nodes are observed while the interior nodes
are latent. The concepts of marginal equivalence, equivalence, and parsimony can be defined for
unrooted HLC models in the same way as for rooted models.

From now on when we speak of HLC models we always mean unrooted HLC models unless it
is explicitly stated otherwise.

6. In the case of phylogenetic trees, this is a well-known fact (Durbin et al., 1998).
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3.3 Regular HLC Models

In this subsection we first introduce the concept of regular HLC models and show that all parsimo-
nious models must regular. We then show that the set of uninstantiated regular HLC models for a
given set of manifest variables is finite. This provides a search space for the learning algorithm to
be developed in the next section.

For any variable X , use ΩX and |X | to denote its domain and cardinality respectively. For a
latent variable Z in an HLC model, enumerate its neighbors as X1, X2, . . . , Xk. An HLC model is
regular if

1. It consists of at least two manifest variables; and

2. For any latent variable Z,

(a) If Z has only two neighbors, then one of the two neighbors must be a latent node and

|Z| <
|X1||X2|

max{|X1|, |X2|}
(2)

(b) If Z has more than two neighbors, then

|Z| ≤
∏k

i=1 |Xi|

maxk
i=1 |Xi|

. (3)

Note that this definition applies to instantiated as well as uninstantiated models.

Theorem 3 Let M be an instantiated HLC model. If M is irregular, then there exists another model
M′ that is marginally equivalent to and has fewer parameters than M.

Proof: Parameters of a rooted HLC model include the prior probability distribution of the root
and the conditional probability distribution of each of the non-root nodes given its parent. On the
other hand, parameters of an unrooted HLC model include a potential for each edge in the model
structure. The potential is a function of the two variables connected by the edge. Referring to the
definition of regularity, let f (Z,X1, . . . ,Xk) be the multiplication of all potentials for edges between
Z and its neighbors and let g(X1, . . . ,Xk)=∑Z f (Z,X1, . . . ,Xk).

Consider the case when inequality (3) is violated, i.e., |Z| > ∏k
i=1 |Xi|/maxk

i=1 |Xi|. Without loss
of generality, suppose |Xk|=maxk

i=1 |Xi|. Let M′ be the same as M except that the domain of Z is
redefined to be ∏k−1

i=1 ΩXi . An state of Z can be written as <z1, . . . ,zk−1>, where zi is a state of Xi.
For each i = 1, . . . ,k−1, set the potential fi(Z,Xi) for the edge between Xi and Z as follows:

fi(<z1, . . . ,zk−1>,xi) =

{

1 if zi = xi

0 if zi 6= xi.

Set the potential fk(Z,Xk) for the edge between Xk and Z as follows:

fi(<z1, . . . ,zk−1>,xk) = g(z1, . . . ,zk−1,xk).

Then

∑
Z

k

∏
i=1

fi(Z,Xi) = g(X1, . . . ,Xk).
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Hence M′ is marginally equivalent to M. Because Z has fewer states in M ′ than in M, M′ has fewer
parameters than M. Therefore M is not parsimonious.

Now consider the case when inequality (2) is violated. In this case, the latent variable Z has two
neighbors X1 and X2, one of which being a latent node, such that

|Z| ≥
|X1||X2|

max{|X1|, |X2|}
(4)

We assume that X1 is a latent node. Let M′ be the model obtained by eliminating Z from M.7

Then M′ is marginally equivalent to M. To calculate the difference in the number of independent
parameters between M′ and M, imagine rooting both models at X1. Then it is easy to see that the
difference is

|X1|(|X2|−1)− [|X1|(|Z|−1)+ |Z|(|X2|−1)] = |X1||X2|− |Z|(|X1|+ |X2|−1).

This quantity is negative because of inequality (4) and of the fact that both X1 and X2 have more than
one state. Hence M′ has fewer parameters than M. Therefore M is not parsimonious. The theorem
is proved. Q.E.D

Corollary 1 Parsimonious HLC models must be regular.

Theorem 4 The set of all regular uninstantiated HLC models for a given set of manifest variables
is finite.

Before proving this theorem, we need to introduce several lemmas, which are interesting in their
own right. A latent node in an HLC model has at least two neighbors. A singly connected latent
node is one that has exactly two neighbors.

Lemma 1 In a regular HLC model, no two singly connected latent nodes can be neighbors.

Proof: We know from 2 that the cardinality of a singly connected node is strictly smaller than
those of its two neighbors. If two singly connected latent nodes Z1 and Z2 were neighbors, then we
would have both |Z1|>|Z2| and |Z1|<|Z2|. Therefore two singly connected latent nodes cannot be
neighbors. Q.E.D.

This lemma inspires the following two definitions. We say that an HLC model structure is
regular if no two singly connected latent nodes are neighbors. If there are no singly connected
latent nodes at all, we say that the model structure is strictly regular.

Lemma 2 Let S be an HLC model structure with n manifest variables. If S is regular, then there are
fewer than 3n latent nodes. If S is strictly regular, then there are fewer than n latent nodes.

Proof: We prove the second part first.8 Let h be the number of latent nodes. Then the total number
of nodes is n+h. Hence the number of edges is n+h−1.

7. This means to (1) remove Z and connect X1 and X2; and (2) set the potential for the new edge between X1 and X2 to
be ∑Z f1(X1,Z) f2(X2,Z), where f1 and f2 are the potentials for the edge between X1 and Z and the edge between X2
and Z respectively.

8. This proof is contributed by Tomáš Kočka.
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On the other hand, each manifest node appears in exactly one edge and, because of strict reg-
ularity, each latent node appears in at least three edges. Because each edge involves exactly two
variables, there are at least (n+3h)/2 edges. Hence n+h−1 ≥ (n+3h)/2. Solving this inequality
yields h≤n−2<n.

To prove the first part, let m be the total number of nodes in a regular structure. Imagine that
we root the structure at an arbitrary latent node. Then the child of a singly connected latent node is
either a manifest node or another latent node that is not singly connected. Moreover, the children
for different singly connected nodes are different. So if we eliminate all the singly connected latent
nodes, the resulting structure will have at least m/2 nodes. The resulting structure is strictly regular.
Hence m/2<2n. This implies that m<4n. Since there are n manifest nodes, the number of latent
must be smaller than 3n. Q.E.D

Lemma 3 There are fewer than 23n2
different regular HLC model structures for a given set of n

manifest nodes.

Proof: Let P be the power set of the set of manifest nodes and let V be the collection of vectors
that consist 3n elements of P . Duplicates are allowed in any given vector. Since the cardinality of
P is 2n, the cardinality of V is (2n)3n=23n2

.
Let S be the set of all regular HLC model structures for the given manifest nodes. Define a

mapping from S to V as follows: For any given model structure in S , first root the structure at the
parent of the first manifest node. Second, arrange all the latent nodes into a vector according to the
depth-first traversal order. According to Lemma 2, the length of the vector cannot exceed 3n. Third,
replace each latent node with the subset of manifest nodes in its subtrees. Finally, add copies of the
empty set to the end so that the length of the vector is 3n. It is not difficult to see that the mapping
is bijective. Therefore the cardinality of S cannot exceed that of V , which is 23n2

. The theorem is
proved. Q.E.D.

Proof of Theorem 4: According to Lemma 3, the number of regular model structures is finite. It is
clear from (3), the number of uninstantiated model for a given model structure must also be finite.
The theorem is therefore proved. Q.E.D

4. Searching for Optimal Models

In this section we present a hill-climbing algorithm for learning HLC models. Hill-climbing requires
a scoring metric for comparing candidate models. In this work we experiment with four existing
scoring metrics, namely AIC (Akaike, 1974), BIC (Schwarz, 1978), the Cheeseman-Stutz (CS)
score (Cheeseman and Stutz, 1995), and the holdout logarithmic score (LS) (Cowell et al., 1999).

Hill-climbing also requires the specification of a search space and search operators. According
to Corollary 1, a natural search space for our task is the set of all regular (uninstantiated) HLC
models for the set of manifest variables that appear in data. By Theorem 4, we know that this space
is finite.

Instead of searching this space directly, we structure the space into two levels according to the
following two subtasks and we search those two levels separately:

1. Given a model structure, find optimal cardinalities for the latent variables.

2. Find an optimal model structure.
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Figure 7: Illustration of structural search operators.

This search space restructuring is motivated by the fact that natural search operators exist for each
of the two levels, while operators for the flat space are less obvious.

4.1 Estimating Cardinalities of Latent Variables

The search space for the first subtask consists of all the regular models with the given model struc-
ture. To hill-climb in this space we start with the model where the cardinalities of all the latent
variables are the minimum. In most cases, the minimum cardinality for a latent variable is 2. For
a latent variable next to a singly connected latent node, however, the minimum possible cardinality
is 3 because of the inequality (2). At each step, we modify the current model to get a number of
new models. The operator for modifying a model is to increase the cardinality of a latent variable
by one. Irregular new models are discarded. We then evaluate each of the new models and picks the
best one to seed the next search step. To evaluate a model, one needs to estimate its parameters. We
use the EM algorithm (Dempster et al., 1977; Lauritzen, 1995) for this task.

4.2 Search for Optimal Model Structures

The search space for the subtask of finding an optimal model structure consists of all the regular
HLC model structures for the given manifest variables. To search this space, we start with the
simplest HLC model structure, namely the LC model structure (viewed as an unrooted HLC model
structure). At each step, we modify the current structure to construct a number of new structures.
The new structures are then evaluated and the best structure is selected as the starting point for
the next step. To evaluate a model structure, one needs to estimate the cardinalities of its latent
variables. This issue is addressed in subtask 1.

We use three search operators to modify model structures, namely node introduction, node
elimination, and neighbor relocation.

4.2.1 NODE INTRODUCTION

To motivate the node introduction operator, we need to go back to rooted models. Consider the
rooted HLC model M1 shown in Figure 7. Suppose variables Y1 and Y2 are locally dependent. A
natural way to model this local dependence is to introduce a new parent for Y1 and Y2, as shown in
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M2. This is precisely the idea behind the multiple indicator approach to local dependence that we
mentioned in Section 2.

When translated to unrooted model structures, the new parent introduction operator becomes
the node introduction operator. Let X be a latent node in an unrooted model structure. Suppose X
has more than two neighbors. Then for any two neighbors of X , say Z1 and Z2, we can introduce a
new latent node Z to separate X from Z1 and Z2. Afterwards, X is no longer connected to Z1 and Z2.
Instead X is connected to Z and Z is connected to Z1 and Z2. To see an example, consider the model
structure M′

1 in Figure 7. Introducing a new latent node X1 to separate X from Y1 and Y2 results in
the model structure M′

2.

In the case of rooted model structures, we do not consider introducing new parents for groups of
three or more nodes for the sake of computational efficiency. This constraint implies that the model
M3 in Figure 7 cannot be reached from M1 in one step. In the case of unrooted model structures,
we do not allow the introduction of a new node to separate a latent node from three or more of its
neighbors. This implies that we cannot reach M ′

3 from M′
1 in one step.

Node introduction is not allowed when it results in irregular model structures. This means that
we cannot introduce a new node to separate a latent node X from two of its neighbors if it has
only one other neighbor and that neighbor is a singly connected latent node. Moreover, we cannot
introduce a new node to separate a singly connected latent node from its two neighbors.9

4.2.2 NODE ELIMINATION

The opposite of node introduction is node elimination. We notice that a newly introduced node has
exactly three neighbors. Consequently we allow a latent node be eliminated only when it has three
neighbors. Of course, node elimination cannot be applied if there is only one latent node.

4.2.3 NEIGHBOR RELOCATION

The third search operator is called neighbor relocation. Suppose a latent node X has a neighbor Z
that is also a latent node. Then we can relocate any of the other neighbors Z ′ of X to Z, which means
to disconnect Z′ from X and reconnect it to Z. To see an example, consider the model structure M ′

2
in Figure 7. If we relocate the neighbor Y3 of X to X1, we reach structure M′

3.

For the sake of computational efficiency, we do not allow neighbor relocation between two
non-neighboring latent nodes. In Figure 6, for example, we cannot relocate neighbors of X2 to
X3 and vice versa. Moreover neighbor relocation is not allowed when it results in irregular model
structures. To be more specific, suppose X is a latent node that has a latent node neighbor Z. We
cannot relocate another neighbor Z ′ of X to Z if X has only three neighbors and the third neighbor is
a singly connected latent node. The relocation is not allowed, of course, if X has only two neighbors.
Finally note that the effects of any particular neighbor relocation can always be undone by another
application of the operator.10

9. Node introduction is similar to an operator that PROMTL, a system for inferring phylogenetic trees, uses to search
for optimal tree topologies via star decomposition (Kishino et al., 1990). The former is slightly less constrained than
the latter in that it is allowed to create singly connected nodes as by-products.

10. Neighbor relocation is related to but significantly different than an operator called branch swapping that PAUP, a sys-
tem for inferring phylogenetic trees, uses to search for optimal tree topologies (Swofford, 1998). The latter includes
what are called nearest neighbor interchange; subtree pruning and regrafting; and tree bisection/reconnection.
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4.2.4 A PROPERTY

Theorem 5 Consider the collection of regular HLC model structures for a given set of manifest
variables. One can go between any two structures in the collection without visiting irregular struc-
tures using node introduction, node elimination, and neighbor relocation.

Proof: It suffices to show that any regular structure S in the collection can be reached from the
(unrooted) LC model structure without visiting irregular structures. We do this by induction on the
number of latent nodes in S. If there is only one latent node, the proposition is trivially true. Suppose
the proposition is true for the case of n−1 latent nodes where n>1. Consider the case of n. Because
S is regular and there are more than one latent node, there must be a latent node X that has 3 or
more neighbors. We modify S by first relocating some of the neighbors of X to other (neighboring)
latent nodes such that it has only 3 neighbors afterwards. We then eliminate X . Denote the resulting
structure by S′. It is evident that S′ and all the intermediate structures are regular. By the induction
hypothesis, we can reach S′ from the LC model structure without visiting irregular structures using
node introduction, node elimination, and neighbor relocation. By the construction of S′, we know
that we can reach S from S′ without visiting irregular structures using those three operators. The
theorem is therefore proved. Q.E.D

4.3 Complexity Analysis

The description of our learning algorithm is now complete. In this subsection we analyze the worst
case complexity of the algorithm.

Let n be the number of manifest variables. According to Lemma 2, a regular HLC model with n
manifest variables has fewer than 3n latent nodes. The total number of nodes in the model is hence
bounded by 4n−1.

In each step of structural search, our algorithm applies node introduction, node elimination,
and neighbor relocation to the current model structure and produces a set of new structures. Each
application of node introduction involves a pair of neighbors of a latent nodes. Such pairs for
different applications of the operator cannot be the same. Hence the number of new structures
produced by node introduction is bounded by (4n−1)4n/2<8n2. The node-elimination operator
produces no more than 3n new structures. An application of neighbor relocation also involves a
pair of nodes, a latent node and one of its neighbors. Such pairs for different applications of the
operator are different. Hence the total number of new structures produced by neighbor relocation
is bounded by the number of edges, which is no more than 4n. The total number of new structures
produced at each search step is hence bounded by 8n2+3n+4n=8n2+7n. If the entire search process
takes N steps, then the total number of model structures that we need to examine is no more than
N(8n2+7n).

For each model structure, we need to determine the cardinalities of all its latent variables. Our
algorithm does so by hill-climbing. The search starts from the model where all latent variables have
the minimum numbers of states possible and at each step a new model is generated for each latent
variable by increasing its cardinality by one. Since the number of latent variables is no larger than
3n, no more than 3n models can be generated at each step. Let k be the maximum number of states
a variable can have in all models that we encounter. Then the search takes no more than 3nk steps.
Consequently, the total number of models examined for an given model structure does not exceed
n∗3nk=3n2k.
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For each model, we need to estimate its parameters using the EM algorithm. The complexity of
inference in an HLC model is linear in the number of nodes. Since there are no more than 4n nodes,
inference takes O(4n) time. Suppose there are d distinct data records (d ≤ kn). Then each iteration
of EM takes O(4nd) time. Let M be the maximum number of EM iterations allowed on a model.
Then parameter estimation for a given model takes (4ndM) time.

Totaling up all the parts, we conclude that the time complexity of our algorithm is

O(N(8n2+7n)∗3n2k ∗4ndM) = O(96MNkdn5). (5)

5. Empirical Results on Synthetic Data

We have empirically evaluated the algorithm described in the previous section using both synthetic
and real-world data. This section discusses experiments with synthetic data. Two experiments were
conducted. We report their results separately.

5.1 Experiment 1

In this experiment, synthetic data were generated using the HLC model structure in Figure 3. The
cardinalities of all variables were set at 3. The model was randomly instantiated. Four training sets
with 5,000, 10,000, 50,000, and 100,000 records were sampled. A test set of 5,000 records was also
sampled. Each sample record consists of states for all the manifest variables.

We ran our learning algorithm on each of the four training sets, once for each of the four scoring
metrics BIC, AIC, CS, and LS. There are 16 settings in total. For the LS scoring metric, 25% of
the training data was set aside and used as validation data. Candidate models were compared using
their logarithmic scores on the validation data. During model selection, EM was terminated when
the increase in real (not expected) loglikelihood fell below 0.01. When estimating parameters for
the final model, the threshold was set at 0.0001. Irrespective of the threshold, EM was allowed to
run no more than 200 iterations on any given model. For local maxima avoidance, we used the
Chickering and Heckerman (1997) variant of the multiple-restart approach.

The experiments were conducted on a PC with a 1 GHz Pentium III processor. On the training
set with 10,000 records, the algorithm took 97 hours to terminate. The running times for other cases
are in the same scale.

The logarithmic scores of the learned models on the testing data are shown in Figure 8. The
scores are grouped into four curves according to the four scoring metrics. The score of the original
model is also shown for comparison. We see that, in the relative sense, the scores of the learned
models are quite close to that of the original model. This indicates that those models are as good as
the original model when it comes to predicting the testing set. We also see that scores do not vary
significantly across the scoring metrics.

The structures of the learned models do depend on the scoring metrics. There are 7 different
model structures. The first one is the original structure and will be denoted by M0. The other six
are shown in Figure 9. Model structures produced by our algorithm are unrooted. In this and the
next section, we root them in certain ways for readability. Table 1 gives information about which
structure was obtained in what setting and how far away the structures are from the original structure
in terms the number of structural search operations.

We see that, when combined with either BIC or CS, our algorithm obtained, from the 50k and
100k training sets, the correct structure. In the other two training sets, the model structures found
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Figure 8: Logarithmic scores of learned models on testing data.

Figure 9: Structures of learned models.

are quite close to the original structure. For example, the BIC scoring metric gave us M1. This
model structure is very similar to the original structure. The only thing that our algorithm failed to
recognize in M1 is that Y4 and X2 are not independent given X1. The fact that M1 is only one step
away from the generative model implies that M1 was compared with the generative model during
search. It was choosen over the generative model because it is better than the latter according to
data. This happened due to insufficient data. As a matter of fact, in the two cases where there were
50k and 100k records, the generative model was selected over M1.
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5k 10k 50k 100k

BIC 1 (M1) 1 (M1) 0 (M0) 0 (M0)
CS 1 (M1) 2 (M2) 0 (M0) 0 (M0)
LS 2 (M3) 4 (M6) 0 (M0) 0 (M0)

AIC 3 (M4) 4 (M5) 0 (M0) 0 (M0)

Table 1: Model structures found in the 16 settings and the numbers of operations it would take to
reach the original structure.

50k 100k
BIC CS LS AIC BIC CS LS AIC

X1 2 2 2 2 2 2 2 2
X2 3 3 3 3 3 3 3 4
X3 2 2 4 4 3 3 4 4

Table 2: Cardinalities of latent variables in the learned models of Experiment 1 that have the correct
structure. In the original model, all variables have 3 states.

When combined with AIC and LS, our algorithm also recovered the correct structure from the
50k and 100k training sets. In the other two training sets, however, it obtained structures that are
significantly different from the original structure.

Although the correct model structure was recovered from the 50k and 100k training sets no
matter which the scoring metric was used, different scoring metrics gave different estimates for the
cardinalities of the latent variables. As can be seen from Table 2, BIC and CS tend to produce
underestimates and with more data, they tend to give better estimates. On the other hand, AIC and
LS tend to bring about overestimates and the estimates do not seem to improve with more data.

5.2 Experiment 2

The setup of this experiment is the same as that of Experiment 1 except the way model parameters
were generated. Here we generated the parameters also in random fashion but ensured that each
conditional probability distribution has one component with mass no smaller than 0.6. The objec-
tive is to see how our algorithm would perform in cases where the parameters are more extreme
compared with those in Experiment 1.

In terms of logarithmic scores of learned models on testing data, results of this experiment are
more or less the same as in Experiment 1. When it comes to structures and cardinalities of latent
nodes, there are significant differences. With BIC and CS, our algorithm was able to recover the
correct model structure from all four training sets. Moreover, the cardinalities of X2 and X3 were
always estimated correctly. The cardinality of X1 was estimated correctly in the 100k training sets,
while it was underestimated by 1 in all other training sets. These results are significantly better than
those in Experiment 1.
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When AIC and LS was used, on the other hand, the performance is worse than in Experiment
1. The algorithm was unable to recover the correct model structure even from the 50k and 100k
training sets.

6. Empirical Results on Real-World Data

This section reports empirical results on four data sets taken from the LCA literature, namely the
Hannover rheumatoid arthritis data (Wasmus et al., 1989), the Coleman data (Coleman, 1964),
the HIV data (Alvord et al., 1988), and the housing building data (Hagenaars, 1988). For the
convenience of the reader, the data sets are reproduced in Tables 3 and 4 near the end of the paper.
These experiments were also conducted on a PC with a 1 GHz Pentium III processor. The running
times range from a few seconds to a few minutes.

6.1 The Hannover Rheumatoid Arthritis Data

The Hannover rheumatoid arthritis data was taken from a study by Wasmus et al. (1989) on the
prevalence of rheumatoid arthritis in the adult population. A random sample of 25 to 74 year old
German residents of Hannover, Germany was surveyed by means of a mailed questionnaire. Among
others, this questionnaire contained five questions about the presence of five symptoms “today”:
back pain, neck pain, pain in one or several joints, joint swelling, and morning stiffness. Each item
was to be answered in a simple yes/no response format. The data set consists of 7,162 records.

This data set has been analyzed by Kohlmann and Formann (1997). They conclude that the best
model for this data set is a four class LC model. This model fits the data well (L = 8.2, d f = 8,
p = 0.414) and is meaningful to epidemiologists.

Using scoring metrics BIC, CS, and AIC, our algorithm discovered exactly the same model as
the one obtained by Kohlmann and Formann (1997). When LS was used, however, it computed a
very different model that does not fit data well.

6.2 The Coleman Data

The Coleman data summarize responses of 3,398 schoolboys, each was asked to respond to the
following question and statement at two different points in time: (1) “Are you a member of the
leading crowd?” (2) “If a fellow wants to be a part of the leading crowd around here, he sometimes
has to go against his principles.” There are four binary manifest variables A, B, C, and D. The
variable A stands for the answer to the question in October 1957 and C that in May 1958. The
variable B stands for the response to the statement in October 1957 and D that in May 1958. The
value of 0 means “yes” and 1 means “no”.

This data set has been previously analyzed by Goodman (1974a) and Hagenaars (1988). Good-
man started with a 2-class LC model and found that it does not fit the data well (L = 249.50, d f = 6,
p < 0.001). He went on to consider the loglinear model that is represented by the path diagram M1
in Figure 10. In the model, both X1 and X2 are binary variables. This model fits data well (L = 1.27,
d f = 4, p = 0.87). Hagenaars examined several possible models and reached the conclusion that
the loglinear model M2, where X is a binary variable, best explains the data. This model also fits
the data very well (L = 1.43, d f = 5, p = 0.92).

Using scoring metrics AIC, BIC, and CS, our algorithm found the model M3, where X1 and X2

are both binary variables. It’s obvious that M3 is equivalent to M1 and hence fit data equally well.
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Figure 10: Models for the Coleman data.

Figure 11: Model for the HIV data.

Our algorithm does not examine model M2 because it is not an HLC model. This is, however, no
problem because M2 and M3 are almost identical as generative models for the manifest variables.

Using LS, our algorithm found a model that is the same as M3 except the cardinality of X1 is 3.
This model does not fit data well (L = 1.27, d f = 0, p = 0.0).

6.3 The HIV Test Data

This data set consists of results on 428 subjects of four diagnostic tests for human HIV virus: “ra-
dioimmunoassay of antigen ag121” (A); “radioimmunoassay of HIV p24” (B); “radioimmunoassay
of HIV gp120” (C); and “enzyme-linked immunosorbent assay” (D). A negative result is repre-
sented by 0 and a positive result by 1.

Alvord et al. (1988) reasoned that there should be two latent classes, corresponding to the
presence and absence of the HIV virus. However, the two-class LC model does not fit data well
(L = 16.23, d f = 6, p = 0.01). This indicates the presence of local dependence.

The performance of our algorithm on this data set is similar to that on the Coleman data set.
Using AIC, BIC, and CS, it found the model in Figure 11, where both latent variables are binary
variables. The model is identical to one of the equivalent models Uebersax (2000) reached using
some heuristic techniques. The model fit data well (L = 3.056, d f = 4, p = 0.548).

With LS score, our algorithm produced the same model structure. However, the cardinalities of
both latent variables are overestimated by 2. The model fits data poorly.

6.4 The House Building Data

The house building data are taken from a study by Hagenaars on people’s view about what a new
government should do. Again there are four binary manifest variables A, B, C, and D. Roughly
speaking, A and C represent answers by respondents, in November and December 1970 respectively,
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Figure 12: Models for the house building data.

to the question whether house building was an important problem. B and D represent the views of
respondents, in November and December 1970 respectively, on how important house building was
in relation to several other issues. We refer the reader to Hagenaars (1988) for the details.

When analyzing the data, Hagenaars started with the model M1 shown in Figure 12. In M1
and all the other three models, all latent variables are binary. The idea behind M1 is to capture
the test-retest effects between the two interviews. This model does not fit data well (L = 45.37,
d f = 4, p = 0.000). Hagenaars went on to examine the standardized residuals and concluded that
an direct effect should be added between A and B. This led to the model M2. This model fit data
well (L = 1.94, d f = 3, p = 0.59). Starting from some other initial models and adding direct effects
properly among manifest variables, Hagenaars also derived the models M3 and M4, which fit data
as well as M2.

It is clear that models M2, M3, and M4 are not close to any HLC models. Consequently, we
cannot expect our algorithm to find satisfactory models for this data set. This turned out to be the
case. Regardless of the scoring metric, our algorithm always found LC models. With BIC and CS
it found 3-class LC models. With AIC and LS, it found 4-class LC models. None of the models fit
data well.

To summarize the experiments with real-world data, we note that the performance of our algo-
rithm on the Hannover rheumatoid arthritis data supports the claim made in the introduction that the
algorithm would return LC models when there is no local dependence. The performances on the
Coleman and HIV data sets support that claim that when local dependence is present, the algorithm
would return HLC models with local dependence properly encoded. Finally, the performance on
the housing building data shows the limitation of HLC models.

7. Conclusions and Future Directions

We have introduced a new class of models for cluster analysis, namely HLC models. HLC models
are significantly more general than LC models and can accommodate local dependence. Yet they
remain computationally attractive because of simplicity of their structures.

A search-based algorithm has been developed for learning HLC models from data. Both syn-
thetic and real-world data have been used to evaluate the algorithm with four different scoring
metrics, namely AIC, BIC, CS, and LS. The results indicate that the algorithm works well with BIC
and CS.

The models that our algorithm, with BIC or CS, reconstructed from synthetic data predicate test
data as well as the original model. Their structures are the same or equivalent to that of the original
model, except in a couple of cases where minor differences exist (probably due to insufficient data).
The cardinalities of latent variables were, however, often underestimated. On three of the four real-
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world data sets, our algorithm found models that are considered optimal or close to optimal in the
literature. However, it failed on the fourth data set, owing to the limitations of HLC models.

We end the paper with a list of issues that should be addressed. On top of the list is the issue
of complexity. The focus of this paper has been on developing a principled search-based method
for learning HLC models. Not much consideration was given to computational complexity. It is
clear from Section 4.3 that our algorithm is computationally expensive because it, at each step of
search, examines a large number of models and runs the EM algorithm on each of the models. To
improve scability, we need to reduce the number of candidate models and to reduce the number
of times the EM algorithm is called. Although not straightforward, both tasks are possible. For
example, the number of calls to the EM algorithm can be reduced by applying the idea of struc-
tural EM (Friedman, 1997). We have recently developed a new algorithm based on this and other
ideas. The algorithm was tested on, among others, a data set derived from the CoIL Challenge 2000
benchmark data (van der Putten and van Someren, 2000). There are 42 mostly binary attributes
and 5822 records. The new algortihm finished analyzing the data in 121 hours on a PC with a 2.4
GHz Pentium 4 processor and it obtained a very interesting model. The details will be reported in
upcoming papers.

The second issue concerns scoring metric. It has been shown that the BIC score is a consistent
model selection criterion for Bayesian networks with no latent variables in the sense that, given suf-
ficient data, the BIC score of the generative model, i.e., the model from which data were sampled,
is larger than those of any other models that are not equivalent to the generative model (Geiger et
al., 2001). Although our empirical studies suggest that the BIC score is well-behaved in practice for
the task of learning HLC models, BIC has not been proved to be consistent for latent variable mod-
els. The use of effective dimensions makes BIC a better approximation of the marginal likelihood
(Geiger et al., 1996); and a method for effectively computing effective dimensions of HLC models
has been found (Kočka and Zhang, 2002). However, the marginal likelihood itself has not been
shown to be consistent for latent variable models. Finding a consistent model selection criterion for
HLC models in particular and for latent variable models in general is an important research topic.

Finally, we choose to study HLC models because they significantly generalize LC models and
are computationally attractive. As we have seen in Section 6, HLC models are well suited for
some applications while inadequate for others. Sometimes more complex models are needed. The
challenge is to keep computation feasible while considering more and more complex models.
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Back Pain Neck Pain Joint Pain Swelling Stiffness Frequency

no no no no no 3,634
no no no no yes 73
no no no yes no 87
no no no yes yes 10
no no yes no no 440
no no yes no yes 89
no no yes yes no 106
no no yes yes yes 75
no yes no no no 295
no yes no no yes 25
no yes no yes no 15
no yes no yes yes 5
no yes yes no no 137
no yes yes no yes 42
no yes yes yes no 35
no yes yes yes yes 39
yes no no no no 489
yes no no no yes 37
yes no no yes no 23
yes no no yes yes 7
yes no yes no no 255
yes no yes no yes 116
yes no yes yes no 71
yes no yes yes yes 65
yes yes no no no 306
yes yes no no yes 48
yes yes no yes no 16
yes yes no yes yes 11
yes yes yes no no 229
yes yes yes no yes 162
yes yes yes yes no 44
yes yes yes Yes yes 176

Table 3: The Hannover rheumatoid arthritis data.
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