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A new efficient algorithm is presented for joint diagonalization of several matrices. The algorithm
is based on the Frobenius-norm formulation of the joint diagonalization problem, and addresses di-
agonalization with a general, non-orthogonal transformation. The iterative scheme of the algorithm
is based on a multiplicative update which ensures the invertibility of the diagonalizer. The algo-
rithm’s efficiency stems from the special approximation of the cost function resulting in a sparse,
block-diagonal Hessian to be used in the computation of the quasi-Newton update step. Exten-
sive numerical simulations illustrate the performance of the algorithm and provide a comparison to
other leading diagonalization methods. The results of such comparison demonstrate that the pro-
posed algorithm is a viable alternative to existing state-of-the-art joint diagonalization algorithms.
The practical use of our algorithm is shown for blind source separation problems.

Keywords: joint diagonalization, common principle component analysis, independent component
analysis, blind source separation, nonlinear least squares, Newton method, Levenberg-Marquardt
algorithm

1. Introduction

Joint diagonalization of square matrices is an important problem of numeric computation. Many
applications make use of joint diagonalization techniques as their main algorithmic tool, for example
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independent component analysis (ICA) and blind source separation (BSS) (Comon, 1994; Molgedey
and Schuster, 1994; Belouchrani et al., 1997; Wu and Principe, 1999; Cardoso, 1999; Ziehe and
Miiller, 1998; Ziehe et al., 2003; Pham and Cardoso, 2000; Ziehe et al., 2000a; Yeredor, 2002;
Haykin, 2000; Hyvdrinen et al., 2001), common principal component analysis (CPC) (Flury, 1988;
Airoldi and Flury, 1988; Fengler et al., 2001), various signal processing applications (van der Veen
etal., 1992, 1998) and, more recently, kernel-based nonlinear BSS (Harmeling et al., 2003).

This paper pursues two goals. First, we propose a new efficient algorithm for joint approximate
matrix diagonalization. Our algorithm is based on the second-order approximation of a cost func-
tion for the simultaneous diagonalization problem. Second, we demonstrate an application of our
algorithm to BSS, which allows to perform BSS without pre-whitening the data.

Let us begin by defining the notion of joint diagonalization. It is well known that exact joint
diagonalization is in general only possible for two matrices and amounts to the generalized eigen-
value problem. Extensive literature exists on this topic (e.g. Noble and Daniel, 1977; Golub and van
Loan, 1989; Bunse-Gerstner et al., 1993; Van der Vorst and Golub, 1997, and references therein).
When more than two matrices are to be diagonalized, exact diagonalization may also be possible
if the matrices possess a certain common structure. Otherwise one can only speak of approximate
joint diagonalization. Our paper focuses on the investigation of algorithms for exact—whenever this
is possible—or otherwise approximate diagonalization of more than two matrices. In the remainder
of the paper we will refer to such problems as “joint diagonalization” problems.

A number of algorithms for joint diagonalization have been previously proposed in the literature
(Flury and Gautschi, 1986; Cardoso and Souloumiac, 1993, 1996; Hori, 1999; Pham, 2001; van der
Veen, 2001; Yeredor, 2002; Joho and Rahbar, 2002). To understand the challenges of the joint diag-
onalization problem, as well as the need for further improvement of currently known algorithms and
possible directions of such improvement some insight into the main issues of joint diagonalization
is now provided.

Let us consider a set {C!,...,CX} of real-valued symmetric matrices of size N x N.* The goal
of a joint diagonalization algorithm is to find a transformation V that in some sense “diagonalizes”
all the given matrices. The notion of diagonality and the corresponding formal statement of the joint
diagonalization problem can be defined in at least three different ways:

1. Frobenius norm formulation. This formulation is used in Cardoso and Souloumiac (1993,
1996); Joho and Rahbar (2002) and, in a generalized form, in Hori (1999). Let

Fk=vckyT (1)

denote the result of applying transformation V to matrix CX. Joint diagonalization is defined
as the following optimization problem:

K
min Mp (FK 2
VEIRNxNk; p(FY), @)

where the diagonality measure 91p is the Frobenius norm of the off-diagonal elements in FK:

Mp (FX) = off(FY) = ;(5?)2. ©)
i#]

1. The formulations and the proposed algorithm will be presented for symmetric matrices. Extensions to the unsym-
metric or complex-valued case can be obtained in a similar manner.
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A more careful look at the cost function in Equation (2) reveals a serious problem with the
Frobenius norm formulation: this cost function is obviously minimized by the trivial solution
V = 0. The problem can be avoided by additionally requiring orthogonality of V. In fact, this
assumption is very natural if the joint diagonalization problem is seen as an extension of the
eigenvalue problem to several matrices. However, restricting V to the group of orthogonal
matrices may limit the applicability and unduly degrade the performance of the method.?

. Positive definite formulation. Another reasonable assumption on the initial problem is the
positive-definiteness of the matrices CK. This assumption is motivated by the fact that in
many applications matrices CK are covariance matrices of some random variables. In this
case, as proposed in Matsuoka et al. (1995); Pham (2001) the criterion®

Mp (FX) = log det(ddiag(F¥)) — log det(FX) (4)

can be used in the cost function (2) instead of the criterion (3). The additional advantage of
this criterion is that it allows for super-efficient estimation (Pham and Cardoso, 2001). How-
ever in certain applications, such as blind source separation based on time-delayed decorre-
lation (Belouchrani et al., 1997; Ziehe and Miiller, 1998), correlation matrices are no longer
guaranteed to be positive-definite, and diagonalization based on this criterion may fail.

. Subspace fitting formulation. The fact that exact joint diagonalization may not be possible
can be explicitly accounted for in the problem formulation. This is to say that, instead of
applying the transformation directly to the matrices C¥, another set of diagonal matrices AK is
sought for, along with the transformation so as to best approximate the target matrices. The
optimization problem resulting from this approach

K
min Cck— ANKAT |2 5
i k;\l 1E (5)

constitutes an instance of a subspace fitting problem (van der Veen, 2001; Yeredor, 2002).

Compared to the previous approaches, the algorithms based on subspace fitting have two ad-
vantages: they do not require orthogonality, positive-definiteness or any other normalizing
assumptions on the matrices A and CK, and they are able to handle non-square mixture matri-
ces. These advantages, however, come at a high computational cost: the algorithm of van der
Veen (2001) has quadratic convergence in the vicinity of the minimum but its running time
per iteration is O(KN®), whereas the AC-DC algorithm of Yeredor (2002) converges linearly
with a running time per iteration of order O(KN?).

As a short resume of the above mentioned approaches we notice the following. The algorithms using
the Frobenius norm formulation are efficient but rely on the orthogonality assumption to prevent
convergence to the trivial solution. The algorithms using the positive-definiteness assumption are
also quite efficient but they may fail if this assumption is not satisfied. Subspace fitting algorithms,
which do not require such strong prior assumptions, are computationally much more demanding. A

2. In principle, a pre-sphering step could be applied to alleviate this problem, nevertheless a performance degradation
is to be expected in this case, especially in the context of blind source separation (Cardoso, 1994a; Yeredor, 2002).
3. Here the operator ddiag(F) returns a diagonal matrix containing only the diagonal entries of F.
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natural question arises: could a single algorithm combine the positive and avoid the negative features
of the previous joint diagonalization algorithms? In this contribution we present an algorithm using
the Frobenius norm formulation that strives towards this goal. In particular, the algorithm, to be
called FFDIAG (Fast Frobenius Diagonalization), possesses the following features:

e computational efficiency: quadratic convergence (in the neighborhood of the solution) and
O(KN?) running time per iteration,

e guaranteed avoidance of the trivial solution,

e no orthogonality and no positive-definiteness assumptions; nonetheless, orthogonality can be
used to constrain the solution, which further reduces the computational complexity by a factor
of two.

On top of that, the algorithm is simple and easy to implement.

The remainder of the paper is organized as follows. In Section 2 the main idea of the FFDIAG
algorithm is proposed. The computational details regarding the algorithm’s update rule are derived
in Section 3. Section 4, in a slight digression from the main topic of the article, presents a con-
nection of our algorithm to the classical Levenberg-Marquardt algorithm, and points out the main
differences between the two. The application of the FFDIAG algorithm to blind source separation is
developed in Section 5. Extensive numerical simulations are presented in Section 6. Finally, Section
7 is devoted to the discussion and conclusions.

2. General Structure of the Algorithm

The FFDIAG algorithm is an iterative scheme to approximate the solution of the following opti-
mization problem:

K
; kT, )2
VQF:NQNK;%((VC Vi) (6)
The basic idea is to use the invertibility of the matrix V as a constraint preventing convergence of
the minimizer of the cost function in Equation (6) to the zero solution. Invertibility is tacitly assumed
in many applications of diagonalization algorithms, e.g. in blind source separation, therefore making
use of such constraint is very natural and does not limit the generality from the practical point of
view.
Invertibility can be enforced by carrying out the update of V in multiplicative form as

Vinen) < (1 +W) Vi), (7

where | denotes the identity matrix, the update matrix Wy, is constrained to have zeros on the main
diagonal, and n is the iteration number. Such update is rarely used in classical unconstrained opti-
mization algorithms; however, it is common for many successful BSS algorithms, such as relative-
gradient (Laheld and Cardoso, 1996; Amari et al., 2000), relative Newton (Akuzawa and Murata,
2001; Zibulevsky, 2003), as well as for joint diagonalization (Pham, 2001). The off-diagonal com-
ponent Wy, of the update multiplier is to be determined so as to minimize the cost function (6). In
order to maintain invertibility of V it clearly suffices to enforce invertibility of | +W,. The latter
can be carried out using the following well-known results of matrix analysis (Horn and Johnson,
1985).

780



FAST NON-ORTHOGONAL JOINT DIAGONALIZATION

Definition 1 An n x n matrix A is said to be strictly diagonally dominant if

|aji| > ;\ai”, foralli=1,...,n.
JA

Theorem 2 (Levi-Desplanques) If an n x n matrix A is strictly diagonally-dominant, then it is
invertible.

The Levi-Desplanques theorem can be used to control invertibility of I + Wy in a straightfor-
ward way. Observe that the diagonal entries in | +W ) are all equal to 1; therefore, it suffices to
ensure that

max ; Wij| = [ Wi leo < 1.
J7!

This can be done by dividing Wy, by its infinity norm whenever the latter exceeds some fixed 6 < 1.
An even stricter condition can be imposed by using a Frobenius norm in the same way:

0
Wiy — ———Wp). (8)
O Wl
To determine the optimal updates Wy, at each iteration, first-order optimality constraints for
the objective (6) are used. A special approximation of the objective function will enable us to
efficiently compute W,). For this reason, we consider the expression for updating the matrices to
be diagonalized
k k k
Cler)  F= (14 W) Clry (1 4+ W) T ©)

Let D‘(<n> and EE(n) denote the diagonal and off-diagonal parts of C{n), respectively. In order to

simplify the optimization problem we assume that the norms of W, and Ez‘n) are small, i.e. quadratic
terms in the expression for the new set of matrices can be ignored

CE(n-&-l) = +W(n))(DI((n) + Ez(n))(l +W(n))T
~ DK k k \wT k
With these simplifications, and ignoring already diagonal terms DX, the diagonality measure (3) can
be computed using expressions linear in W .*

FK~ FK=WDX4+D"WT +EX (11)

The linearity of terms (11) allows us to explicitly compute the optimal update matrix W) minimiz-
ing the approximated diagonality criterion

K
min % ;((WD"Jr D'WT +EX);))2. (12)
k=11#]
Details of the efficient solution of problem (12) are presented in Section 3.
The simplifying assumptions used in (10) require some further discussion. The motivation
behind them is that in the neighborhood of the optimal solution, the optimal steps W that take us to

4. The iteration indices will be dropped in the following if all quantities refer to the same iteration.
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the optimum are small and the matrices CK are almost diagonal. Hence, in the neighborhood of the
optimal solution the algorithm is expected to behave similarly to Newton’s algorithm and converge
quadratically. The assumption of small EX is potentially problematic, especially in the case where
exact diagonalization is impossible. A similar derivation can be carried out with EX fully accounted
for, which leads to additional WEX and EXWT terms in the expression (12). However, the resulting
algorithm, will not give rise to a computationally efficient solution of problem (12). As for the
assumption of small W, it is crucial for the convergence of the algorithm and needs to be carefully
controlled. The latter is done by the normalization (8).
Pseudo-code describing the FFDIAG method is outlined in Algorithm 1.5

Algorithm 1 FFDIAG

INPUT: C* { Matrices to be diagonalized}

ngl) —0, V(l?(:l, n« 1 {Vq could also be initialized by a more clever guess. }
Coy Vo tVy
repeat

compute Wy, from Cz‘n) according to Equation (17) or (18)

if [[Wi|lF > 8 then
0
Wiey = g, e Wi
end if
Vint1) < (1 4+ W) Vin)
Cliiq) = (W) CF5) (1 +Wiy)T
n—n+1

until convergence
OUTPUT: V,Ck

Some remarks on convergence properties of the proposed algorithmic scheme are due at this
point. In general, Newton-like algorithms are known to converge only in the neighborhood of the
optimal solution; however, when they converge, the rate of convergence is quadratic (e.g. Kan-
torovich, 1949). Since the essential components of our algorithm—the second-order approximation
of the objective function and the computation of optimal steps by solving the linear system arising
from first-order optimality conditions—are inherited from Newton’s method, the same convergence
behavior can be expected. In practice, however, the known theoretical estimates of convergence
regions of Newton’s method, such as the ones provided, e.g., in Theorems 1 and 2 in Kantorovich
(1949), are of little utility since they provide no guidance how to reach the convergence region from
an arbitrary starting point.

3. Computation of the Update Matrix

The key to computational efficiency of the FFDIAG algorithm lies in exploiting the sparseness
introduced by the approximation (11). The special structure of the problem can be best seen in the
matrix-vector notation presented next.

5. MATLAB code for FFDIAG can be obtained at http://ww.first.fhg.de/~ziehe/research/FFDiag.
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The N(N — 1) off-diagonal entries of the update matrix W are arranged as
= (W2, War, ..., Wij,Wji,...)T. (13)

Notice that this is not the usual vectorization operation vecW, as the order of elements in w reflects
the pairwise relationship of the elements in W. In a similar way the KN (N — 1) off-diagonal entries
of the matrices EX are arranged as

e = (Ed. Bz, BN Efive o ENLEf, )T (14)
Finally, a large but very sparse, KN(N — 1) x N(N — 1) matrix J is built, in the form:
@k
1 12
J= with Jx =

|
Jk

where each Ji is block-diagonal, containing N(N — 1) /2 matrices of dimension 2 x 2

<Dk Dk

Q)k D& Dk> IvJ:177N7l7éja

1)

where DK is a short-hand notation for the ii-th entry of a diagonal matrix DX. Now the approximate
cost function can be re-written as the linear Ieast—squares problem

Z; = (w+e)"(Jw+e).
The well-known solution of this problem (Press et al., 1992) reads

—_@T) T, (16)

We can now make use of the sparseness of J and e to enable the direct computation of the elements
of w in (16). Writing out the matrix product J7J yields a block-diagonal matrix

Sk(Df) T D,
JN=
Sk(DK)T DK

whose blocks are 2 x 2 matrices. Thus the system (16) actually consists of decoupled equations

-1
Wij> <ij Zij> <yij> . ..
= - 5 I, :1,...,N, | 3
(Wji Zij  Zi Yii . 71
Zjj = ZDFDT

ylj _ZDK |J J' ZDKEK
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The matrix inverse can be computed in closed form, leading to the following expressions for the
update of the entries of W:

Wij — Ij.y.jlu_llgllj
Wi — ZYii T ZjjYi
L

1

(Here, only the off-diagonal elements (i # j) need to be computed and the diagonal terms of W
are set to zero.) Thus, instead of performing inversion and multiplication of large matrices, which
would have brought us to the same O(KN®) complexity as in van der Veen (2001), computation
of the optimal Wy, leads to a simple formula (17) which has to be evaluated for each of N(N — 1)
components of W,. Since the computation of z; and y;j also involves a loop over K, the overall
complexity of the update step is O(KN?).

An even simpler solution can be obtained if the diagonalization matrix V is assumed to be
orthogonal from the very beginning. Orthogonality of V can be preserved to the first order by
requiring W to be skew-symmetric, i.e., W = —W T. Hence only one of each pair of its entries needs
to be computed. In this case the structure of the problem is already apparent in the scalar notation,
and one can easily obtain the partial derivatives of the cost function. Equating the latter to zero
yields the following expression for the update of W:

SKEf(DF-DY) o
1] = "2 T~k —~kwo I?J:17"'7N7|7éj7 (18)
| Su(Df-Dfp?
which agrees with the result of Cardoso (1994b). To ensure orthogonality of V beyond the first
order the update (7) should be replaced by the matrix exponential update

Vini1) < eXp(Win))Vin),

where Wy, is skew-symmetric (cf. Akuzawa and Murata, 2001).

4. Comparison with the L evenberg-Marquardt Algorithm

The Levenberg-Marquardt (LM) algorithm (Levenberg, 1944; Marquardt, 1963) is one of the pow-
erful and popular algorithms for solving nonlinear least-squares problems. Interestingly, the mo-
tivation in the original article of Marquardt (1963) was somewhat similar to ours: he knew that
guadratic convergence of Newton’s method was attainable only in the neighborhood of the solution,
and therefore he looked for an efficient means of steering the algorithm to the area of quadratic con-
vergence. The particular mechanism used in the LM algorithm consists of a controllable trade-off
between Newton and gradient steps.

Although the problem of simultaneous diagonalization is essentially a nonlinear (quadratic)
least-squares problem, the LM algorithm cannot be directly applied to it. An implicit assumption
of the simultaneous diagonalization problem is the invertibility of the diagonalizing matrix, and the
classical LM algorithm does not provide for incorporation of additional constraints. In what follows
we present a modification which allows one to incorporate the additional structure of our problem
into the LM algorithm,
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A general problem of the nonlinear regression to be solved by the LM algorithm is usually
formulated as

mgn Z [y — (X []%.

The goal of the optimization is to find the parameters p of the regression function f so as to minimize
the squared deviations between fy(xx) and yy for all data points 1,...,k. The signature of the
function f can be arbitrary, with an appropriate norm to be chosen. The cost function (6) can be
seen as a nonlinear regression problem over the vector-valued function fy (C), parameterized by V,
of matrix argument C, with zero target values:

i — fy(CH| 2.
vg?épan”O v(CY]

The construction and dimensionality of the function f is explained below, and the zero vector is set
to have the appropriate dimension.

To enforce invertibility, the diagonal entries of V are set to 1 and only off-diagonal entries are
considered as free parameters. As in Section 3 such a representation of V is constructed by means

of symmetric vectorization vecsV gef V21,V12,Va1,Vi3,...] 7.8
The same vectorization is applied to construct the regression function

fy(C) : RNVN — RNIN-1x1 ooy oy T,

As a result of such vectorization, the diagonal entries of VCVT are discarded, and the Euclidean
norm of this vector is equivalent to the “off” function.

The LM algorithm requires computation of the Jacobian matrix of the regression function
(w.r.t. parameters vecsV) at all data points:

def

Jim = Duecsv fv (Ch), .., Dvecsv fv (C)]T.

The Jacobian matrices (of dimension N(N — 1) x N(N — 1)) at individual data points can be com-
puted as:
Dvecsy f (C¥) = S (Inz + K ) (VCX @ In) S

where Kyy is the commutation matrix (Litkepohl, 1996), | is the identity matrix of the appropriate
size, and ® is the Kronecker matrix product.
Denoting f = [fT(CY),..., fT(CK)]T, the main step of the LM algorithm consists of solving the
following linear system:
((Jm) T Im + A vecsV = —(Im) T f. (20)

The parameter A controls the trade-off between Newton-like and gradient-based strategies: A =0
results in the pure Newton-direction, whereas with large A, the steps approach the gradient direction.
We use the original heuristic of Marquardt to choose A: if the value of the cost function provided by
the current step vecsV decreases, A can be decreased by a factor of 10 while descent is maintained;
if the value of the cost function increases, increase A by a factor of 10 until descent is achieved. This
heuristic is very intuitive and easy to implement; however, since it doesn’t involve any line search,

6. The symmetric vectorization vecs is related to column vectorization vec by the special permutation matrix Sy such
that vecs X = Syn vec X.
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the algorithm may fail to converge. More sophisticated strategies with convergence guarantees of
Osborne (1976) and Moré (1978) can also be deployed.

From the theoretical point of view, one can draw the following parallels between the FFDIAG
and LM algorithms:

e Both algorithms pursue a Newton direction (cf. equations (16) and (20)) to compute the up-
date matrix V. Whereas the LM algorithms computes the update step directly onV, the update
of the FFDIAG is performed in a multiplicative way by computing W to be used in the update
rule (7).

e Unlike the LM algorithm using the Hessian of the original cost function, the Newton direction
in FFDIAG is computed based on the Hessian of the second-order approximation of the cost
function.” Taking advantage of the resulting special structure, this computation can be carried
out very efficiently in FFDIAG.

e Regularization in the LM algorithm results in a gradual shift from the gradient to the Newton
directions (and back when necessary). Regularization in the FFDIAG algorithm is of quite
different flavor. Since the computed direction is only approximately Newton, one cannot fully
trust it, and therefore the update heuristic (8) limits the impact of inaccurate computation of
W. On the other hand, when FFDIAG converges to a close neighborhood of the optimal
solution, the heuristic is turned off, and Newton-like convergence is no longer impeded.

It is interesting to compare performance of the LM and FFDIAG algorithms experimentally. We
use two criteria: the cost function and the convergence ratio

convergence ratio = M
[ — £

The zero value of the convergence ratio indicates super-linear convergence. The evolution of
our criteria in two runs of the algorithms are shown in Figure 1. In the cost function plot one
can see that convergence of both algorithms is linear for the most part of their operation, with a
gradual shift to quadratic convergence as the optimal solution is approached. The same conclusion
can be drawn from the convergence ratio plot, in which one can see that this criterion approaches
zero in the neighborhood of the optimal solution. Thus one can conclude that, similarly to the
LM algorithm, the heuristic (8) steers the algorithm to the area where Newton-like convergence
is achieved. Furthermore, we note that due to the use of the special structure, the per-iteration
complexity of the FFDIAG algorithm is significantly lower than that of the LM algorithm.

5. Application to Blind Source Separ ation

First, we recall the definition of the blind source separation (BSS) problem (Jutten and Herault,
1991). We are given the instantaneous linear mixtures x;(t) of a number of source signals sj(t),
obeying the model

m

xi(t):Zaijsj(t), (i=1,...,n,j=1,...,m), (21)

]:
7. In fact, in both algorithms, the Hessians are approximated by the product of the Jacobian matrices.
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— FFDIAG
- - M

cost function
=
o

0 5 10 15 20 25
iteration

convergence ratio

iteration

Figure 1: Comparison of the LM and the FFDIAG algorithms. The data matrices are generated as
described in Section 6.1 with K = 10, N = 10. Two illustrative runs are shown.

with A being non-singular and s;(t) statistically independent. The goal is to estimate both A and
s(t) from x(t).

Linear BSS methods have been successfully applied to a variety of problems. An example of
such an application is the reduction of artifacts in electroencephalographic (EEG) and magnetoen-
cephalographic (MEG) measurements. Due to the fact that the electromagnetic waves superimpose
linearly and virtually instantaneously (because of the relatively small distance from sources to sen-
sors) the model (21) is valid (Makeig et al., 1996; Vigario et al., 1998; Wiibbeler et al., 2000; Ziehe
etal., 2000a). Note, however, that in other applications, such as the so called cocktail-party problem
in auditory perception (von der Malsburg and Schneider, 1986), the model from Equation (21) may
be too simplistic, since time-delays in the signal propagation are no longer negligible. Extended
models to deal with such convolutive mixtures have been considered (e.g. Parra and Spence, 1998;
Lee etal., 1998; Murata et al., 2001). We will in the following only discuss how to solve the linear,
instantaneous BSS problem stated in Equation (21). The usual approach is to define an appropriate
cost function that can subsequently be optimized. Here our goal is to use the general joint diagonal-
ization cost function (6) and to construct certain matrices in such a way that their approximate joint
diagonalizer is an estimate for the demixing matrix V (up to an arbitrary permutation and scaling of
its rows).

Let us consider for example the spatial covariance matrix of the mixed signals x(t),

Cg = E{XX®)T} = E{(As(t))(As(t)) T} = AE{s()s(t) T} AT,

where the expectation is taken over t. We see that theoretically C(y) = ACy AT is similar to a di-
agonal matrix, because the cross-correlation terms that form the off-diagonal part of Cy) are zero
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for independent signals. There are many more possibilities to define matrices that have the same
property as the covariance matrix, namely that they are diagonal for the source signals and “similar
to diagonal’ for the observed mixtures and, most important, that the inverse V = A~ of the mixing
matrix A diagonalizes them all simultaneously. Examples are time-lagged covariances (Molgedey
and Schuster, 1994; Belouchrani et al., 1997; Ziehe and Miiller, 1998), covariance matrices of dif-
ferent segments of the data (Pham and Cardoso, 2000; Choi et al., 2001), matrices obtained from
spatial time-frequency distributions (Pham, 2001), slices of the cumulant tensor (Cardoso, 1999) or
Hessians of the characteristic function (Yeredor, 2000). Generally, for stationary and temporally
correlated signals we can define a set of matrices CK with entries

;
(Caoll = 3 T X530+ (@4x) 1), (23
=

where x denotes convolution and d)"(t), k=1,...,K are linear filters (Ziehe et al., 2000b).

We note that in the popular special case where the @K are simple time-shift operators ®*(t) = &
(cf. Tong et al., 1991; Molgedey and Schuster, 1994; Belouchrani et al., 1997) the matrices defined
by Equation (23) may become indefinite for certain choices of 1. Furthermore, in practice, the above
target matrices have always to be estimated from the available data which inevitably gives rise to
estimation errors. Hence the best we can do is to find the matrix which diagonalizes the estimated
target set “as good as possible”. Since we are able to perform the approximate joint diagonalization
with a non-orthogonal transformation, we avoid the problematic pre-whitening step and obtain an
estimate of the mixing matrix A =V 1 by applying our FFDIAG algorithm directly to the empirical
matrices (23). Algorithm 2 summarizes the typical steps in an application to BSS.

Algorithm 2 The FFSEP algorithm

INPUT: x(t), ®K

CKk= ... {Estimate a number of matrices CX according to Equation (23)}
V = FFDIAG(C¥) {Apply joint diagonalization method}

u(t) =Vx(t) {unmix signals}

OUTPUT: u(t), V

6. Numerical Simulations

The experiments in this Section are intended to compare the FFDI1AG algorithm with state-of-the-art
algorithms for simultaneous diagonalization and to illustrate the performance of our algorithm in
BSS applications. As we mentioned in the introduction, there exist at least three alternative formu-
lations of the simultaneous diagonalization problem. The most successful algorithms representing
the respective approaches were chosen for comparison.

We present the results of five progressively more complex experiments. First, we perform a
“sanity check” experiment on a relatively easy set of perfectly diagonalizable matrices. This ex-
periment is intended to emphasize that for small-size diagonalizable matrices the algorithm’s per-
formance matches the expected quadratic convergence. In the second experiment we compare the
FFDIAG algorithm with the extended Jacobi method as used in the JADE algorithm of Cardoso
and Souloumiac (1993) (orthogonal Frobenius norm formulation), Pham’s algorithm for positive-
definite matrices (Pham, 2001) and Yeredor’s AC-DC algorithm (Yeredor, 2002) (non-orthogonal,
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subspace fitting formulation). In the third experiment we investigate the scaling behavior of our al-
gorithm as compared to AC-DC. Furthermore, the performance of the FFDIAG algorithm is tested
and compared with the AC-DC algorithm on noisy, non-diagonalizable matrices. Finally, the appli-
cation of our algorithm to BSS is illustrated.

6.1 “Sanity Check” Experiment

The test data in this experiment is generated as follows. We use K = 15 diagonal matrices DX of
size 5 x 5 where the elements on the diagonal are drawn from a uniform distribution in the range
[—1,...,1] (cf. Joho and Rahbar, 2002). These matrices are ‘mixed’ by an orthogonal matrix A
according to ADXAT to generate the set of target matrices {C*} to be diagonalized.® The FFDIAG
algorithm is initialized with the identity matrix V() = I, and the skew-symmetric update rule (18) is
used.

The convergence behavior of the algorithm in 10 runs is shown in Figure 2. The diagonalization
error is measured by the off(-) function. One can see that the algorithm has converged to the correct
solution after less than 10 iterations in all trials. The quadratic convergence is observed from early
iterations.

diagonalization error

1 2 3 4 5 6 7 8
iterations

Figure 2: Diagonalization errors of the FFDIAG algorithm for a diagonalizable problem.

6.2 Comparison with the State-of-the-Art Algorithms

Two scenarios are considered for a comparison of the four selected algorithms: FFDIAG, the ex-
tended Jacobi method, Pham’s algorithm and AC-DC. First, we test these algorithms on diagonal-
izable matrices under the conditions satisfying the assumptions of all of them. Such conditions are:
positive-definiteness of the target matrices CX and orthogonality of the true transformation A used
to generate those matrices. These conditions are met by generating the target matrices CX = ADKAT
where DX are diagonal matrices with positive entries on the main diagonal. The data set consists of
100 random matrices of size 10 x 10 satisfying the conditions above.

8. The orthogonal matrix was obtained from a singular value decomposition of a random 5 x 5 matrix, where the entries
are drawn from a standard normal distribution.
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A comparison of the four algorithms on orthogonal positive-definite matrices is shown in Figure
3. Two runs of the algorithms are presented, for the AC-DC algorithm 5 AC steps were interlaced
with 1 DC step at each iteration. Although the algorithms optimize different objective functions, the
off(-) function is still an adequate evaluation criterion provided that the arbitrary scale is properly
normalized.

To achieve this, we evaluate ¥, off(A~*CKA~T) where A is the normalized estimated mixing ma-
trix. At the true solution the criterion must attain zero. One can see that the convergence of Pham’s
algorithm, the extended Jacobi method and FFDIAG is quadratic, whereas the AC-DC algorithm
converges linearly. The average iteration complexity of the four algorithms is shown in Table 1. It

—— orth. FFDIAG

10° - - - ext. Jacobi
- - Pham’'s
. AC-DC
10 ° ¢
S
c
c 10
il
I
g -15
8 107°°
(=]
[o2]
]
kel 10—20
10*257
2 4 6 8 10 12 14

iterations

Figure 3: Comparison of the FFDIAG, the extended Jacobi method, Pham’s algorithm and AC-DC
in the orthogonal, positive-definite case: diagonalization error per iteration measured by
the off(-) criterion.

follows from this table that the FFDIAG algorithm indeed lives up to its name: its running time per
iteration is superior to both Pham’s algorithm and AC-DC, and is comparable to the extended Jacobi
method algorithm.®

\ FFDIAG \ ext. Jacobi \ Pham’s \ AC-DC \
0025 | 0030 | 0168 | 2430 |

Table 1: Comparison of the FFDIAG, ext. Jacobi, Pham’s and AC-DC algorithms in the orthogonal,
positive-definite case: average running time per iteration in seconds.

In the second scenario, the comparison of the FFDIAG and the AC-DC algorithms is repeated
for non-positive-definite matrices obtained from a non-orthogonal mixing matrix. This case cannot
be handled by the other two algorithms, therefore they are omitted from the comparison. The
convergence plots are shown in Figure 4; average running time per iteration is reported in Table 2.

9. In all experiments, MATLAB implementations of the algorithms were run on a standard PC with a 750MHz clock.
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Convergence behavior of the two algorithms is the same as in the orthogonal, positive-definite case;
the running time per iteration of FFDIAG increases due to the use of non-skew-symmetric updates.

10°

T T
— FFDIAG
AC-DC

10° B

107 B

-10

10 q

10k B

diagonalization error

100 B

1070 R

-30 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
iterations

10

Figure 4: Comparison of the FFDIAG and AC-DC algorithms in the non-orthogonal, non-positive-
definite case: diagonalization error per iteration measured by the off(-) criterion.

| FFDIAG | AC-DC |
| 0.034 | 2.64 |

Table 2: Comparison of the FFDIAG and AC-DC algorithms in the non-orthogonal, non-positive-
definite case: average running time per iteration in seconds.

6.3 Scaling Behavior of FFDIAG

Scalability is essential for application of an algorithm to real-life problems. The most important
parameter of the simultaneous diagonalization problem affecting the scalability of an algorithm is
the size of the matrices. Figure 5 shows the running time per iteration of the FFDIAG and the
AC-DC algorithms for problems with increasing matrix sizes, plotted at logarithmic scale. One can
see that both algorithm exhibit running times of O(NZ); however, in absolute terms the FFDIAG
algorithm is almost two orders of magnitude faster.°

6.4 Non-diagonalizable Matrices

We now investigate the impact of non-diagonalizability of the set of matrices on the performance
of the FFDIAG algorithm. Again, two scenarios are considered: the one of the “sanity check” ex-
10. This seemingly controversial result—theoretically expected scaling factor of AC-DC is O(N3)—is due to high con-

stants hidden in the setup phase of AC-DC. The setup phase has O(N?2) complexity, but because of the constants it
outweighs the main part of the algorithm in our experiment.
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Figure 5: Scaling of the FFDIAG and AC-DC algorithms with respect to the matrix size. Two
repetitions of the experiment have been performed.

periment and the comparative analysis against the established algorithms. Non-diagonalizability is
modeled by adding a random non-diagonal symmetric “noise” matrix to each of the input matrices:

Ck :ADkAT —|—02(Rk)(Rk)T,

where the elements of R¥ are drawn from a standard normal distribution. The parameter o allows
one to control the impact of the non-diagonalizable component. Another example, with a more
realistic noise model, will be presented in subsection 6.5.

Figure 6 shows the convergence plots of FFDIAG for various values of o. The experimental
setup is the same as in Section 6.1, apart from the additive noise. The impact of the latter can be
quantified by computing the off(-) function on the noise terms only (averaged over all runs), which
is shown by the dotted line in Figure 6. One can see that the algorithm converges quadratically to
the level determined by the noise factor.

Similar to the second scenario in Section 6.2, the previously mentioned algorithms are tested
on the problem of approximate joint diagonalization with non-orthogonal transforms. (Only the
extended Jacobi algorithm had to be excluded from the comparison since it is not designed to work
with non-orthogonal diagonalizers.) However, in contrast to Section 6.2, positive-definite target
matrices were generated in order to enable a comparison with Pham’s method.

Furthermore, we introduce another measure to assess the algorithms’ performance in the non-
orthogonal, non-diagonalizable case. In synthetic experiments with artifical data the distance from
the true solution is a good evaluation criterion. To be meaningful, this distance has to be invariant
w.r.t. the irrelevant scaling and permutation ambiguities. For this reason, we choose a performance
index that is commonly used in the context of ICA/BSS where the same invariances exist (see e.g. in
Amari and Cichocki, 1998; Cardoso, 1999). Following the formulation of Moreau (2001) a suitable

performance index is defined on the normalized “global” matrix G EAV7 according to
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Figure 6: Diagonalization errors of the FFDIAG algorithm on non-diagonalizable matrices.
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Clearly, this non-negative index attains zero iff G is a product of an invertible diagonal matrix D
and of a permutation matrix P, i.e., G = DP.

The results of the comparison of the FFDIAG, Pham’s and AC-DC algorithms on a non-orthogonal
positive-definite problem (5 matrices of dimension 5 x 5) at various noise levels are shown in Figure
7 for three typical runs. The graphs illustrate some interesting ascpects of the convergence behav-
ior of the algorithms. Both the FFDIAG and Pham’s algorithm converge within a small number
of iterations to approximately the same error level. The AC-DC algorithm converges linearly, and
occasionally convergence can be very slow, as can be seen in each of the plots in Figure 7. How-
ever, when AC-DC converges, it exhibits better performance as measured by the score function; the
higher the noise level, the stronger the difference.

s a=0 s 0=0.001 s 0=0.01 ) 0=0.1
10 10 10 10 AC-DC
— FFDIAG
10° 10° , . - - PHAM's
| | 10 107§
I I
107 |1 107 | f
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Figure 7: Comparison of the FFDIAG, Pham’s and AC-DC algorithms in the non-diagonalizable,
non-orthogonal, positive-definite case at various noise levels: performance index as mea-
sured by the score function (24).
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6.5 Blind Source Separation

Finally, we apply our method to a blind source separation task. The signal matrix S contains seven
audio signals containing 10000 points recorded at 8kHz and one Gaussian noise source of the same
length. These signals are mixed by a 8 x 8 Hadamard matrix,

1 1 1 1 1 1 1
-1 1 -1 1 -1 1 -1
1 -1 -1 1 1 -1 -1

-1 -1 1 1 -1 -1 1
1 1 1 -1 -1 -1 -1
-1 1 -1 -1 1 -1 1
1 -1 -1 -1 -1 1 1
-1 -1 1 -1 1 1 -1

>
Il
PREPRPRPRR

This scaled orthogonal matrix produces a complete mixture, in the sense that each observation
contains a maximal contribution from each source. We compute 50 symmetrized, time-lagged cor-
relation matrices according to Equation (23) with ®*(t) = &, and apply the FFDIAG algorithm with
V(o) = I Figure 8 shows the evolution of performance measure defined in (24) and of the entries
of the (normalized) global system V() A. One can see that the difference from the true solution, in
terms of the score function, approaches zero and that V(,)A converges to a permutation matrix (as
shown in the middle and the right panels).

0.5

0.4

0.3

channel #

0.2

score
entries of global system

0.1

0

0 2 6 8 2

iteratié‘ns

4 6
channel #

L4 6
iterations

Figure 8: Convergence progress of the FFSEP algorithm on the BSS task. The middle panel shows
the evolution of the entries of the normalized global matrix G. The right panel shows
those entries for the final (8th) iteration in matrix form and indicates that the cross-talk is
minimized since the matrix G resembles a scaled and permutated identity matrix. Here,
black, white and gray squares correspond to values -1, 1 and 0, respectively.

In order to study the behavior of the FFDIAG algorithm in a more realistic noisy scenario the fol-
lowing experiment is conducted. The data is generated by mixing three stationary, time-correlated

sources with the fixed matrix A = (% é Z) . The sources are generated by feeding an i.i.d. random

noise signal into a randomly chosen, auto-regressive (AR) model of order 5 whose coefficients are
drawn from a standard normal distribution and are sorted in decreasing order (to ensure stability).
The generated signals have a total length of 50000 samples. To separate the sources we estimate
10 symmetrized, time-lagged correlation matrices of the mixed signals according to Equation (23)
with ®T(t) = & and perform simultaneous diagonalization of these matrices.

Clearly, the quality of the estimation depends on the number T of samples used to estimate
these correlation matrices. By varying T we can simulate different noise levels corresponding to
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the variance of the estimates, which is more realistic than corrupting the target matrices with small
i.i.d. additive noise.

The results of the experiment are shown in Figure 9. Performance of the FFDIAG and the
AC-DC algorithms, as measured by the score (24), is displayed for four different sample sizes, the
smaller samples corresponding to the higher noise level. 100 repetitions are performed for each
sample size, and the 25%, 50% and 75% quantiles of the log-score are shown in the plots. Two
observations can be made from Figure 9: FFDIAG converges much faster than AC-DC, and when
converged, FFDIAG yields a better score (on average), with the difference more pronounced for
samples sizes 10000 and 30000 in our experiment.

sample size 500 sample size 10000 sample size 30000 sample size 50000

== AC-DC == AC-DC == AC-DC == AC-DC
== FFDIAG == FFDIAG == FFDIAG == FFDIAG

-1 -1 : -1 -1
-2 -2 -2 -2

log score
log score
log score
log score

] 50 100 150 200 250 0 50 100 150 200 250 [ 50 100 150 200 250 “o 50 100 150 200 250
iterations iterations iterations iterations

Figure 9: Performance of FFDIAG and AC-DC measured by the log of the score (24) for different
sample sizes and 100 trials each. 25% (lower edge of the shaded region), 50% (thick line
in the middle) and 75% quantiles (upper edge of the shaded region) are shown.

7. Discussion and Conclusions

We have presented a new algorithm FFDIAG for simultaneous diagonalization of a set of matrices.
The algorithm is based on the Frobenius norm formulation of the simultaneous diagonalization
problem and provides an efficient means of diagonalization in the absence of additional constraints,
such as orthogonality or positive-definiteness. The important feature of our algorithm is the direct
enforcement of invertibility of the diagonalizer; in previous work this was usually achieved by an
orthogonality constraint which reduces the space of solutions.

The efficiency of the FFDIAG algorithm lies in the special second-order approximation of the
cost function, which yields a block-diagonal Hessian and thus allows for highly efficient compu-
tation of the Newton update step. Although, theoretically, such approximation can be seen as a
weakness of the approach—and raise the question of whether the point of the algorithm’s con-
vergence is indeed an optimizer of the full cost function—we have empirically observed that the
solution found by the algorithm is of good quality for practical applications.

A series of comparisons of the FFDIAG algorithm with state-of-the-art diagonalization algo-
rithms is presented under a number of conditions that can or cannot be handled by other algorithms.
The main conclusions of this comparative evaluation is that our algorithm is competitive with the
best algorithms (i.e. Jacobi-based and Pham’s algorithm) that impose additional constraints either
on the class of solutions or the type of input data. FFDIAG is significantly more efficient—as far as
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both the scaling factors and the absolute constants are concerned—than the AC-DC algorithm, the
only general algorithm applicable under the same conditions as ours. The FFDIAG algorithm can
be applied to matrices of dimensions in the hundreds of rows/columns, under no additional assump-
tions. It also performs reliably on non-diagonalizable data, for which only an approximate solution
is possible.

Several interesting research topics can be anticipated. From a theoretical point of view, con-
vergence analysis could yield further insights into the numerical behavior of FFDIAG as well as a
better understanding of the general techniques for optimization over nonholonomic manifolds that
the algorithm belongs to. Further investigation of the robustness of joint diagonalization algorithms
in the presence of various forms of noise is a very interesting practical issue. Numerous applications
of the algorithm to real-life problems can be clearly foreseen.
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