
Journal of Machine Learning Research 1 (2000) 113-141 Submitted 5/00; Published 12/00

Reducing Multiclass to Binary:
A Unifying Approach for Margin Classifiers

Erin L. Allwein EALLWEIN@SWRI.ORG

Southwest Research Institute
6220 Culebra Road
San Antonio, TX 78228

Robert E. Schapire SCHAPIRE@RESEARCH.ATT.COM

AT&T Labs� Research
Shannon Laboratory
180 Park Avenue, Room A203
Florham Park, NJ 07932

Yoram Singer SINGER@CS.HUJI.AC.IL
School of Computer Science & Engineering
Hebrew University, Jerusalem 91904, Israel

Editor: Leslie Pack Kaelbling

Abstract
We present a unifying framework for studying the solution of multiclass categorization problems

by reducing them to multiple binary problems that are then solved using a margin-based binary
learning algorithm. The proposed framework unifies some of the most popular approaches in which
each class is compared against all others, or in which all pairs of classes are compared to each other,
or in which output codes with error-correcting properties are used. We propose a general method
for combining the classifiers generated on the binary problems, and we prove a general empirical
multiclassloss bound given the empirical loss of the individualbinary learning algorithms. The
scheme and the corresponding bounds apply to many popular classification learning algorithms
including support-vector machines, AdaBoost, regression, logistic regression and decision-tree
algorithms. We also give a multiclass generalization error analysis for general output codes with
AdaBoost as the binary learner. Experimental results with SVM and AdaBoost show that our
scheme provides a viable alternative to the most commonly used multiclass algorithms.

1. Introduction

Many supervised machine learning tasks can be cast as the problem of assigning elements to a finite
set of classes or categories. For example, the goal of optical character recognition (OCR) systems
is to determine the digit value (0; : : : ;9) from its image. The number of applications that require
multiclass categorization is immense. A few examples for such applications are text and speech
categorization, natural language processing tasks such as part-of-speech tagging, and gesture and
object recognition in machine vision.

In designing machine learning algorithms, it is often easier first to devise algorithms for dis-
tinguishing between only two classes. Some machine learning algorithms, such as C4.5 (Quinlan,
1993) and CART (Breiman, Friedman, Olshen, & Stone, 1984), can then be naturally extended to
handle the multiclass case. For other algorithms, such as AdaBoost (Freund & Schapire, 1997;

c
2000 AT&T Corp.

ALLWEIN, SCHAPIRE& SINGER

Schapire & Singer, 1999) and the support-vector machines (SVM) algorithm (Vapnik, 1995; Cortes
& Vapnik, 1995), a direct extension to the multiclass case may be problematic. Typically, in such
cases, the multiclass problem is reduced to multiple binary classification problems that can be solved
separately. Connectionist models (Rumelhart, Hinton, & Williams, 1986), in which each class is
represented by an output neuron, are a notable example: each output neuron serves as a discrimina-
tor between the class it represents and all of the other classes. Thus, this training algorithm is based
on a reduction of the multiclass problem tok binary problems, wherek is the number of classes.

There are many ways to reduce a multiclass problem to multiple binary classification problems.
In the simple approach mentioned above, each class is compared to all others. Hastie and Tibshi-
rani (1998) suggest a different approach in which all pairs of classes are compared to each other.
Dietterich and Bakiri (1995) presented a general framework in which the classes are partitioned into
opposing subsets using error-correcting codes. For all of these methods, after the binary classifi-
cation problems have been solved, the resulting set of binary classifiers must then be combined in
some way. In this paper, we study a general framework, which is a simple extension of Dietterich
and Bakiri’s framework, that unifies all of these methods of reducing a multiclass problem to a
binary problem.

We pay particular attention to the case in which the binary learning algorithm is one that is
based on themarginof a training example. Roughly speaking, the margin of a training example
is a number that is positive if and only if the example is correctly classified by a given classifier
and whose magnitude is a measure of confidence in the prediction. Several well known algorithms
work directly with margins. For instance, the SVM algorithm (Vapnik, 1995; Cortes & Vapnik,
1995) attempts to maximize the minimum margin of any training example. There are many more
algorithms that attempt to minimize some loss function of the margin. AdaBoost (Freund &
Schapire, 1997; Schapire & Singer, 1999) is one example: it can be shown that AdaBoost is
a greedy procedure for minimizing an exponential loss function of the margins. In Section 2,
we catalog many other algorithms that also can be viewed as margin-based learning algorithms,
including regression, logistic regression and decision-tree algorithms.

The simplest method of combining the binary classifiers (which we callHamming decoding)
ignores the loss function that was used during training as well as the confidences attached to
predictions made by the classifier. In Section 3, we give a new and general technique for combining
classifiers that does not suffer from either of these defects. We call this methodloss-based decoding.

We next prove some of the theoretical properties of these methods in Section 4. In particular,
for both of the decoding methods, we prove general bounds on the training error on the multiclass
problem in terms of the empirical performance on the individual binary problems. These bounds
indicate that loss-based decoding is superior to Hamming decoding. Also, these bounds depend on
the manner in which the multiclass problem has been reduced to binary problems. For the one-
against-all approach, our bounds are linear in the number of classes, but for a reduction based on
random partitions of the classes, the bounds areindependentof the number of classes. These results
generalize more specialized bounds proved by Schapire and Singer (1999) and by Guruswami and
Sahai (1999).

In Section 5, we prove a bound on the generalization error of our method when the binary learner
is AdaBoost. In particular, we generalize the analysis of Schapire et al. (1998), expressing a bound
on the generalization error in terms of the training-set margins of the combined multiclass classifier,
and showing that boosting, when used in this way, tends to aggressively increase the margins of the
training examples.

114

REDUCING MULTICLASS TO BINARY

Finally, in Section 6, we present experiments using SVM and AdaBoost with a variety of
multiclass-to-binary reductions. These results show that, as predicted by our theory, loss-based
decoding is almost always better than Hamming decoding. Further, the results show that the most
commonly used one-against-all reduction is easy to beat, but that the best method seems to be
problem-dependent.

2. Margin-based Learning Algorithms

We study methods for handling multiclass problems using a general class of binary algorithms that
attempt to minimize a margin-based loss function. In this section, we describe that class of learning
algorithms with several examples.

A binary margin-based learning algorithmtakes as input binary labeled training examples
(x1; y1); : : : ; (xm; ym) where theinstancesxi belong to some domainX and thelabels yi 2
f�1;+1g. Such a learning algorithm uses the data to generate a real-valued function orhypothesis
f : X ! R wheref belongs to somehypothesis spaceF . Themarginof an example(x; y) with
respect tof is yf(x). Note that the margin is positive if and only if the sign off(x) agrees withy.
Thus, if we interpret the sign off(x) as its prediction onx, then

1
m

mX
i=1

[[yif(xi) � 0]]

is exactly the training error off , where, in this case, we count a zero output (f(xi) = 0) as a
mistake. (Here and throughout this paper,[[�]] is 1 if predicate� holds and 0 otherwise.)

Although minimization of the training error may be a worthwhile goal, in its most general form
the problem is intractable (see for instance the work of Höffgen and Simon (1992)). It is therefore
often advantageous to instead minimize some other nonnegativeloss functionof the margin, that is,
to minimize

1
m

mX
i=1

L(yif(xi)) (1)

for some loss functionL : R ! [0;1). Different choices of the loss functionL and different
algorithms for (approximately) minimizing Eq. (1) over some hypothesis space lead to various
well-studied learning algorithms. Below we list several examples. In the present work, we are not
particularly concerned with the method used to achieve a small empirical loss since we will use
these algorithms later in the paper as “black boxes.” We focus instead on the loss function itself
whose properties will allow us to prove our main theorem on the effectiveness of output coding
methods for multiclass problems.

Support-vector Machines. For training data that may not be linearly separable, the support-
vector machines (SVM) algorithm (Vapnik, 1995; Cortes & Vapnik, 1995) seeks a linear classifier
f : Rn ! R of the formf(x) = w � x+ b that minimizes the objective function

1
2
jjwjj22 + C

mX
i=1

�i ;

for some parameterC, subject to the linear constraints

yi((xi �w) + b) � 1� �i; �i � 0 :

115

ALLWEIN, SCHAPIRE& SINGER

Put another way, the SVM solution forw is the minimizer of the regularized empirical loss function

1
2
jjwjj22 + C

mX
i=1

�
1� yi((w � xi) + b)

�
+ ;

where(z)+ = maxfz;0g. (For a more formal treatment see, for instance, the work of Schölkopf et
al. (1998).) Although the role of theL2 norm ofw in the objective function is fundamental in
order for SVM to work, the analysis presented in the next section (and the corresponding multiclass
algorithm) depends only on the loss function (which is a function of the margins). Thus, SVM can
be viewed here as a binary margin-based learning algorithm which seeks to achieve small empirical
risk for the loss functionL(z) = (1� z)+.

AdaBoost. The algorithm AdaBoost (Freund & Schapire, 1997; Schapire & Singer, 1999) builds
a hypothesisf that is a linear combination ofweakor base hypothesesht:

f(x) =
X
t

�tht(x):

The hypothesisf is built up in a series of rounds on each of which anht is selected by aweak
or base learning algorithmand�t 2 R is then chosen. It has been observed by Breiman (1997a,
1997b) and other authors (Collins, Schapire, & Singer, 2000; Friedman, Hastie, & Tibshirani, 2000;
Mason, Baxter, Bartlett, & Frean, 1999; Rätsch, Onoda, & M̈uller, to appear; Schapire & Singer,
1999) that theht’s and�t’s are effectively being greedily chosen so as to minimize

1
m

mX
i=1

e�yif(xi):

Thus, AdaBoost is a binary margin-based learning algorithm in which the loss function isL(z) =
e�z.

AdaBoost with randomized predictions. In a little studied variant of AdaBoost (Freund &
Schapire, 1997), we allow AdaBoost to output randomized predictions in which the predicted label
of a new examplex is chosen randomly to be+1 with probability 1=(1+e�2f(x)). The loss suffered
then is the probability that the randomly chosen predicted label disagrees with the correct labely.

Let p(x) def
= 1=(1 + e�2f(x)). Then the loss isp(x) if y = �1 and 1� p(x) if y = +1. Using a

simple algebraic manipulation, the loss can be shown to be 1=(1+ e2yf(x)). So for this variant of
AdaBoost, we setL(z) = 1=(1+ e2z). However, in this case, note that the learning algorithm is
not directly attempting to minimize this loss (it is instead minimizing the exponential loss described
above).

Regression. There are various algorithms, such as neural networks and least squares regression,
that attempt to minimize the squared error loss function(y�f(x))2. When they’s are inf�1;+1g,
this function can be rewritten as

(y � f(x))2 = y2(y � f(x))2

= (yy � yf(x))2

= (1� yf(x))2:

Thus, for binary problems, minimizing squared error fits our framework whereL(z) = (1� z)2.

116

REDUCING MULTICLASS TO BINARY

Logistic regression. In logistic regression and related methods such as Iterative Scaling (Csiszár &
Tusńady, 1984; Della Pietra, Della Pietra, & Lafferty, 1997; Lafferty, 1999), and LogitBoost (Fried-
man et al., 2000), one posits a logistic model for estimating the conditional probability of a positive
label:

Pr
�
y = +1jx� = 1

1+ e�2f(x)
:

One then attempts to maximize the likelihood of the labels in the sample, or equivalently, to minimize
the log loss

� log(Pr
�
yjx�) = log(1+ e�2yf(x)):

Thus, for logistic regression and related methods, we takeL(z) = log(1+ e�2z).

Decision trees. The most popular decision tree algorithms can also be naturally linked to loss
functions. For instance, Quinlan’s C4.5 (1993), in its simplest form, for binary classification
problems, splits decision nodes in a manner to greedily minimize

X
leafj

p+j ln

p�j + p+j

p+j

!
+ p�j ln

p�j + p+j

p�j

!!
(2)

wherep+j andp�j are the fraction of positive and negative examples reaching leafj, respectively.
The prediction at leafj is then sign(p+j � p�j). Viewed differently, imagine a decision tree that
instead outputs a real numberfj at each leaf with the intention of performing logistic regression as
above. Then the empirical loss associated with logistic regression is

X
leafj

�
p+j ln(1+ e�2fj) + p�j ln(1+ e2fj)

�
:

This is minimized, over choices offj, whenfj = (1=2) ln(p+j =p
�
j). Plugging in this choice gives

exactly Eq. (2), and thresholdingfj gives the hard prediction rule used earlier. Thus, C4.5, in this
simple form, can be viewed as a margin-based learning algorithm that is naturally linked to the loss
function used in logistic regression.

By similar reasoning, CART (Breiman et al., 1984), which splits using the Gini index, can be
linked to the square loss function, while Kearns and Mansour’s (1996) splitting rule can be linked
to the exponential loss used by AdaBoost.

The analysis we present in the next section might also hold for other algorithms that tacitly
employ a function of the margin. For instance, Freund’s BrownBoost algorithm (1999) implicitly
uses an instance potential function that satisfies the condition we impose onL. Therefore, it can also
be combined with output coding and used to solve multiclass problems. To conclude this section,
we plot in Figure 1 some of the loss functions discussed above.

3. Output Coding for Multiclass Problems

In the last section, we discussed margin-based algorithms for learning binary problems. Suppose
now that we are faced with a multiclass learning problem in which each labely is chosen from a set
Y of cardinalityk > 2. How can a binary margin-based learning algorithm be modified to handle a
k-class problem?

117

ALLWEIN, SCHAPIRE& SINGER

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

14

L(−z)

L(z)

1/2*(L(−z)+L(z))

L(0)

exp(−z)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

14

L(−z)

L(z)

1/2*(L(−z)+L(z))

L(0)

(1−z)2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

L(−z)

L(z)

1/2*(L(−z)+L(z))

L(0)

(1−z)
+

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

L(−z)

L(z)

1/2*(L(−z)+L(z))

L(0)

log(1+exp(−2*z))

Figure 1: Some of the margin-based loss functions discussed in the paper: the exponential loss
used by AdaBoost (top left); the square loss used in least-squares regression (top right);
the “hinge” loss used by support-vector machines (bottom left); and the logistic loss used
in logistic regression (bottom right).

Several solutions have been proposed for this question. Many involve reducing the multiclass
problem, in one way or another, to a set of binary problems. For instance, perhaps the simplest
approach is to create one binary problem for each of thek classes. That is, for eachr 2 Y, we apply
the given margin-based learning algorithm to a binary problem in which all examples labeledy = r
are considered positive examples and all other examples are considered negative examples. We
then end up withk hypotheses that somehow must be combined. We call this theone-against-all
approach.

Another approach, suggested by Hastie and Tibshirani (1998), is to use the given binary learning
algorithm to distinguish each pair of classes. Thus, for each distinct pairr1; r2 2 Y, we run the
learning algorithm on a binary problem in which examples labeledy = r1 are considered positive,
and those labeledy = r2 are negative. All other examples are simply ignored. Again, the

�k
2

�
hypotheses that are generated by this process must then be combined. We call this theall-pairs
approach.

A more general suggestion on handling multiclass problems was given by Dietterich and
Bakiri (1995). Their idea is to associate each classr 2 Y with a row of a “coding matrix”
M 2 f�1;+1gk�` for some`. The binary learning algorithm is then run once for each column of
the matrix on the induced binary problem in which the label of each example labeledy is mapped
toM(y; s). This yields̀ hypothesesfs. Given an examplex, we then predict the labely for which

118

REDUCING MULTICLASS TO BINARY

row y of matrixM is “closest” to(f1(x); : : : ; f`(x)). This is the method oferror correcting output
codes(ECOC).

In this section, we propose a unifying generalization of all three of these methods applicable
to any margin-based learning algorithm. This generalization is closest to the ECOC approach
of Dietterich and Bakiri (1995) but differs in that the coding matrix is taken from the larger set
f�1;0;+1gk�`. That is, some of the entriesM(r; s) may be zero, indicating that we don’t care
how hypothesisfs categorizes examples with labelr.

Thus, our scheme for learning multiclass problems using a binary margin-based learning algo-
rithmA works as follows. We begin with a givencoding matrix

M 2 f�1;0;+1gk�` :
Fors = 1; : : : ; `, the learning algorithmA is provided with labeled data of the form(xi;M(yi; s))
for all examplesi in the training set but omitting all examples for whichM(yi; s) = 0. The
algorithmA uses this data to generate a hypothesisfs : X ! R.

For example, for the one-against-all approach,M is a k � k matrix in which all diagonal
elements are+1 and all other elements are�1. For the all-pairs approach,M is ak � �k2� matrix
in which each column corresponds to a distinct pair(r1; r2). For this column,M has+1 in rowr1,
�1 in row r2 and zeros in all other rows.

As an alternative to callingA repeatedly, in some cases, we may instead wish to add the column
indexs as a distinguished attribute of the instances received byA, and then learn asinglehypothesis
on this larger learning problem rather than` hypotheses on smaller problems. That is, we provide
A with instances of the form((xi; s);M(yi; s)) for all training examplesi and all columnss for
whichM(yi; s) 6= 0. AlgorithmA then produces asinglehypothesisf : X � f1; : : : ; `g ! R.
However, for consistency with the preceding approach, we definefs(x) to bef(x; s). We call these
two approaches in whichA is called repeatedly or only once themulti-call andsingle-callvariants,
respectively.

We note in passing that there are no fundamental differences between the single and multi-call
variants. Most previous work on output coding employed the multi-call variant due to its simplicity.
The single-call variant becomes handy when an implementation of a classification learning algorithm
that outputs a single hypothesis of the formf : X � f1; : : : ; `g ! R is available. We describe
experiments with both variants in Section 6.

For either variant, the algorithmA attempts to minimize the lossL on the induced binary
problem(s). Recall thatL is a function of the margin of an example so the loss offs on an example
xi with induced labelM(yi; s) 2 f�1;+1g is L(M(yi; s) fs(xi)). WhenM(yi; s) = 0, we want
to entirely ignore the hypothesisfs in computing the loss. We can define the loss to be any constant
in this case, so, for convenience, we choose the loss to beL(0) so that the loss associated withfs
on examplei isL(M(yi; s) fs(xi)) in all cases.

Thus, the average loss over all choices ofs and all examplesi is

1
m`

mX
i=1

X̀
s=1

L(M(yi; s) fs(xi)): (3)

We call this theaverage binary lossof the hypothesesfs on the given training set with respect to
coding matrixM and lossL. It is the quantity that the calls toA have the implicit intention of
minimizing. We will see in the next section how this quantity relates to the misclassification error
of the final classifier that we build on the original multiclass training set.

119

ALLWEIN, SCHAPIRE& SINGER

LetM(r) denote rowr of M and letf(x) be the vector of predictions on an instancex:

f(x) = (f1(x); : : : ; f`(x)):

Given the predictions of thefs’s on a test pointx, which of thek labels inY should be predicted?
While several methods of combining thefs’s can be devised, in this paper, we focus on two that are
very simple to implement and for which we can analyze the empirical risk of the original multiclass
problem. The basic idea of both methods is to predict with the labelr whose rowM(r) is “closest”
to the predictionsf(x). In other words, predict the labelr that minimizesd(M(r); f(x)) for some
distanced. This formulation begs the question, however, of how we measure distance between the
two vectors.

One way of doing this is to count up the number of positionss in which the sign of the prediction
fs(x) differs from the matrix entryM(r; s). Formally, this means our distance measure is

dH(M(r); f(x)) =
X̀
s=1

�
1� sign(M(r; s)fs(x))

2

�
(4)

where sign(z) is +1 if z > 0, �1 if z < 0, and 0 ifz = 0. This is essentially like computing
Hamming distance between rowM(r) and the signs of thefs(x)’s. However, note that if either
M(r; s) or fs(x) is zero then that component contributes 1=2 to the sum. For an instancex and a
matrixM , the predicted label ˆy 2 f1; : : : ; kg is therefore

ŷ = arg min
r

dH(M(r); f(x)) :

We call this method of combining thefs’s Hamming decoding.
A disadvantage of this method is that it ignores entirely the magnitude of the predictions which

can often be an indication of a level of “confidence.” Our second method for combining predictions
takes this potentially useful information into account, as well as the relevant loss functionL which
is ignored with Hamming decoding. The idea is to choose the labelr that is most consistent with
the predictionsfs(x) in the sense that, if examplex were labeledr, the total loss on example(x; r)
would be minimized over choices ofr 2 Y. Formally, this means that our distance measure is the
total loss on a proposed example(x; r):

dL(M(r); f(x)) =
X̀
s=1

L(M(r; s)fs(x)) : (5)

Analogous to Hamming decoding, the predicted label ˆy 2 f1; : : : ; kg is

ŷ = arg min
r

dL(M(r); f(x)) :

We call this approachloss-based decoding. An illustration of the two decoding methods is given
in Figure 2. The figure shows the decoding process for a problem with 4 classes using an output
code of length̀ = 7. For clarity we denote in the figure the entries of the output code matrix by+,
� and 0 (instead of+1,�1 and 0). Note that in the example, the predicted class of the loss-based
decoding (which, in this case, uses exponential loss) is different than that of the Hamming decoding.

We note in passing that the loss-based decoding method for log-loss is the well known and
widely used maximum-likelihood decoding which was studied briefly in the context of ECOC by
Guruswami and Sahai (1999).

120

REDUCING MULTICLASS TO BINARY

Class 3

(Prediction)

-

+

- - + - -

- + + +

+ - - - +

+--+--

-

+ - - - - - +

Sign of Binary Classifiers

0 D=3.5

0 D=4.5

+0 D=1.5

0 D=2.5

-

+

- - + - -

- + + +

+ - - - + +

+--+--

-Output of Binary Classifiers

(Prediction)

Class 4

0

0

0

0

0.5 -7 -1 -2 -10 -12 9

D= 30,133

D=192,893

D=162,757

D= 5.4

Figure 2: An illustration of the multiclass prediction procedure for Hamming decoding (top) and
loss-based decoding (bottom) for a 4-class problem using a code of length 7. The
exponential function was used for the loss-based decoding.

4. Analysis of the Training Error

In this section, we analyze the training error of the output coding methods described in the last
section. Specifically, we upper bound the training error of the two decoding methods in terms of
the average binary loss as defined in Eq. (3), as well as a measure of the minimum distance between
any pair of rows of the coding matrix. Here, we use a simple generalization of the Hamming
distance for vectors over the setf�1;0;+1g. Specifically, we define the distance between two rows
u;v 2 f�1;0;+1g` to be

∆(u;v) =
X̀
s=1

8><
>:

0 if us = vs ^ us 6= 0^ vs 6= 0
1 if us 6= vs ^ us 6= 0^ vs 6= 0
1=2 if us = 0_ vs = 0

=
X̀
s=1

1� usvs
2

=
`� u � v

2
:

Our analysis then depends on the minimum distance� between pairs of distinct rows:

� = minf∆(M(r1);M(r2)) : r1 6= r2g: (6)

For example, for the one-against-all code,� = 2. For the all-pairs code,� = (
�k

2

�� 1)=2+ 1, since
every two rowsr1; r2 have exactly one component with opposite signs (M(r1; s) = �M(r2; s)

121

ALLWEIN, SCHAPIRE& SINGER

andM(r1; s) 6= 0) and for the rest at least one component of the two is 0 (M(r1; s) = 0 or
M(r2; s) = 0). For a random matrix with components chosen uniformly over eitherf�1;+1g or
f�1;0;+1g, theexpectedvalue of∆(M(r1);M(r2)) for any distinct pair of rows is exactlỳ=2.

Intuitively, the larger�, the more likely it is that decoding will “correct” for errors made by
individual hypotheses. This was Dietterich and Bakiri’s (1995) insight in suggesting the use of
output codes with error-correcting properties. This intuition is reflected in our analysis in which a
larger value of� gives a better upper bound on the training error. In particular, Theorem 1 states
that the training error is at most`=� times worse than the average binary loss of the combined
hypotheses (after scaling the loss byL(0)). For the one-against-all matrix,`=� = `=2 = k=2 which
can be large if the number of classes is large. On the other hand, for the all-pairs matrix or for a
random matrix,̀ =� is close to the constant 2, independent ofk.

We begin with an analysis of loss-based decoding. An analysis of Hamming decoding will
follow as a corollary. Concerning the lossL, our analysis assumes only that

L(z) + L(�z)
2

� L(0) > 0 (7)

for all z 2 R. Note that this property holds ifL is convex, although convexity is by no means a
necessary condition. Note also that all of the loss functions in Section 2 satisfy this property. The
property is illustrated in Figure 1 for four of the loss functions discussed in that section.

Theorem 1 Let " be the average binary loss (as defined in Eq. (3)) of hypothesesf1; : : : ; f` on a
given training set(x1; y1); : : : ; (xm; ym) with respect to the coding matrixM 2 f�1;0;+1gk�`
and lossL, wherek is the cardinality of the label setY. Let � be as in Eq. (6). Assume thatL
satisfies Eq. (7) for allz 2 R. Then the training error using loss-based decoding is at most

`"

�L(0)
:

Proof: Suppose that loss-based decoding incorrectly classifies an example(x; y). Then there is
some labelr 6= y for which

dL(M(r); f(x)) � dL(M(y); f(x)): (8)

Let
S∆ = fs : M(r; s) 6= M(y; s) ^M(r; s) 6= 0^M(y; s) 6= 0g

be the set of columns ofM in which rowsr andy differ and are both non-zero. Let

S0 = fs : M(r; s) = 0_M(y; s) = 0g
be the set of columns in which either rowr or row y is zero. Letzs = M(y; s)fs(x) and
z0s = M(r; s)fs(x). Then Eq. (8) becomes

X̀
s=1

L(z0s) �
X̀
s=1

L(zs)

which implies X
s2S∆[S0

L(z0s) �
X

s2S∆[S0

L(zs)

122

REDUCING MULTICLASS TO BINARY

sincezs = z0s if s 62 S∆ [S0. This in turn implies that

X̀
s=1

L(zs) �
X

s2S∆[S0

L(zs)

� 1
2

X
s2S∆[S0

(L(z0s) + L(zs))

=
1
2

X
s2S∆

(L(z0s) + L(zs))

+
1
2

X
s2S0

(L(z0s) + L(zs)): (9)

If s 2 S∆ thenz0s = �zs and, by assumption,(L(�zs) + L(zs))=2 � L(0). Thus, the first term
of Eq. (9) is at leastL(0) jS∆j. If s 2 S0, then eitherzs = 0 or z0s = 0. Either case implies that
L(z0s) + L(zs) � L(0). Thus, the second term of Eq. (9) is at lastL(0) jS0j=2.

Therefore, Eq. (9) is at least

L(0)
�
jS∆j+ jS0j

2

�
= L(0)∆(M(r);M(y)) � �L(0):

In other words, a mistake on training example(xi; yi) implies that

X̀
s=1

L(M(yi; s)fs(xi)) � �L(0)

so the number of training mistakes is at most

1
�L(0)

mX
i=1

X̀
s=1

L(M(yi; s)fs(xi)) =
m`"

�L(0)

and the training error is at most`"=(�L(0)) as claimed.
As a corollary, we can give a similar but weaker theorem for Hamming decoding. Note that

we use a different assumption about the loss functionL, but one that also holds for all of the loss
functions described in Section 2.

Corollary 2 Letf1; : : : ; f` be a set of hypotheses on a training set(x1; y1); : : : ; (xm; ym), and let
M 2 f�1;0;+1gk�` be a coding matrix wherek is the cardinality of the label setY. Let� be as
in Eq. (6). Then the training error using Hamming decoding is at most

1
�m

mX
i=1

X̀
s=1

�
1� sign(M(yi; s)fs(xi))

�
: (10)

Moreover, ifL is a loss function satisfyingL(z) � L(0) > 0 for z < 0 and" is the average binary
loss with respect to this loss function, then the training error using Hamming decoding is at most

2`"
�L(0)

: (11)

123

ALLWEIN, SCHAPIRE& SINGER

Proof: Consider the loss functionH(z) = (1� sign(z))=2. From Eqs. (4) and (5), it is clear that
Hamming decoding is equivalent to loss-based decoding using this loss function. Moreover,H
satisfies Eq. (7) for allz so we can apply Theorem 1 to get an upper bound on the training error of

2
�m

mX
i=1

X̀
s=1

H(M(yi; s)fs(xi)) (12)

which equals Eq. (10).
For the second part, note that ifz � 0 thenH(z) � 1 � L(z)=L(0), and if z > 0 then

H(z) = 0� L(z)=L(0). This implies that Eq. (12) is bounded above by Eq. (11).
Theorem 1 and Corollary 2 are broad generalizations of similar results proved by Schapire and

Singer (1999) in a much more specialized setting involving only AdaBoost. Also, Corollary 2
generalizes some of the results of Guruswami and Sahai (1999) that bound the multiclass training
error in terms of the training (misclassification) error rates of the binary classifiers.

The bounds of Theorem 1 and Corollary 2 depend implicitly on the fraction of zero entries in
the matrix. Intuitively, the more zeros there are, the more examples that are ignored and the harder
it should be to drive down the training error. At an extreme, ifM is all zeros, then� is fairly large
(`=2) but learning certainly should not be possible. To make this dependence explicit, let

T = f(i; s) : M(yi; s) = 0g

be the set of pairsi; s inducing examples that are ignored during learning. Letq = jT j=(m`) be the
fraction of ignored pairs. Let" be the average binary lossrestrictedto the pairs not ignored during
training:

" =
1
jT cj

X
(i;s)2T c

L(M(yi; s)fs(xi))

whereT c = f(i; s) : M(yi; s) 6= 0g. Then the bound in Theorem 1 can be rewritten

`

�L(0)
1
m`

0
@ X
(i;s)2T

L(0) +
X

(i;s) 62T

L(M(yi; s)fs(xi))

1
A =

`

�

�
q + (1� q)

"

L(0)

�
:

Similarly, let� be the fraction of misclassification errors made onT c:

� =
1
jT cj

X
(i;s)2T c

[[M(yi; s) 6= sign(fs(xi))]]:

The first part of Corollary 2 implies that the training error using Hamming decoding is bounded
above by

`

�
(q + 2(1� q)�):

We see from these bounds that there are many trade-offs in the design of the coding matrixM.
On the one hand, we want the rows to be far apart so that� will be large, and we also want there to
be few non-zero entries so thatq will be small. On the other hand, attempting to make� large and
q small may produce binary problems that are difficult to learn, yielding large (restricted) average
binary loss.

124

REDUCING MULTICLASS TO BINARY

5. Analysis of Generalization Error for Boosting with Loss-based Decoding

The previous section considered only the training error using output codes. In this section, we take
up the more difficult task of analyzing the generalization error. Because of the difficulty of obtaining
such results, we do not have the kind of general results obtained for training error which apply to a
broad class of loss functions. Instead, we focus only on the generalization error of using AdaBoost
with output coding and loss-based decoding. Specifically, we show how the margin-theoretic
analysis of Schapire et al. (1998) can be extended to this more complicated algorithm.

Briefly, Schapire et al.’s analysis was proposed as a means of explaining the empirically observed
tendency of AdaBoost to resist overfitting. Their theory was based on the notion of an example’s
marginwhich, informally, measures the “confidence” in the prediction made by a classifier on that
example. They then gave a two-part analysis of AdaBoost: First, they proved a bound on the
generalization error in terms of the margins of the training examples, a bound that is independent
of the number of base hypotheses combined, and a bound suggesting that larger margins imply
lower generalization error. In the second part of their analysis, they proved that AdaBoost tends to
aggressively increase the margins of the training examples.

In this section, we give counterparts of these two parts of their analysis for the combination of
AdaBoost with loss-based decoding. We also assume that the single-call variant is used as described
in Section 3. The result is essentially the AdaBoost.MO algorithm of Schapire and Singer (1999)
(specifically, what they called “Variant 2”).

This algorithm works as follows. We assume that a coding matrixM is given. The algorithm
works in rounds, repeatedly calling the base learning algorithm to obtain a base hypothesis. On each
roundt = 1; : : : ; T , the algorithm computes a distributionDt over pairs of training examples and
columns of the matrixM, i.e., over the setf1; : : : ;mg�LwhereL = f1; : : : ; `g. The base learning
algorithm uses the training data (with binary labels as encoded usingM) and the distributionDt to
obtain a base hypothesisht : X � L ! f�1;+1g. (In general,ht’s range may beR, but here, for
simplicity, we assume thatht is binary valued.) The error�t of ht is the probability with respect to
Dt of misclassifying one of the examples. That is,

�t = Pr(i;s)�Dt

�
M(yi; s) 6= ht(xi; s)

�
=

mX
i=1

X̀
s=1

Dt(i; s)[[M(yi; s) 6= ht(xi; s)]]:

The distributionDt is then updated using the rule

Dt+1(i; s) =
Dt(i; s)exp(��tM(yi; s)ht(xi; s))

Zt
: (13)

Here,�t = (1=2) ln((1� �t)=�t) (which is nonnegative, assuming, as we do, that�t � 1=2), andZt

is a normalization constant ensuring thatDt+1 is a distribution. It is straightforward to show that

Zt = 2
q
�t(1� �t): (14)

(The initial distribution is chosen to be uniform so thatD1(i; s) = 1=(m`).)
AfterT rounds, this procedure outputs a final classifierHwhich, because we are using loss-based

decoding, is

H(x) = arg min
y2Y

X̀
s=1

exp

�M(y; s)

TX
t=1

�tht(x; s)

!
: (15)

125

ALLWEIN, SCHAPIRE& SINGER

We begin our margin-theoretic analysis with a definition of the margin of this combined multi-
class classifier. First, let

�(f; �; x; y) = �1
�

ln

1
`

X̀
s=1

e��M(y;s)f(x;s)

!
:

If we let

� =
TX
t=1

�t; (16)

and

f(x; s) =
1
�

TX
t=1

�tht(x; s); (17)

we can then rewrite Eq. (15) as

H(x) = arg max
y2Y

�(f; �; x; y): (18)

Since we have transformed the argument of the minimum in Eq. (15) by a strictly decreasing function
(namely,x 7! �(1=�) ln(x=`)) to arrive at Eq. (18) it is clear that we have not changed the definition
of H. This rewriting has the effect of normalizing the argument of the maximum in Eq. (18) so that
it is always in the range[�1;+1]. We can now define themarginfor a labeled example(x; y) to be
the difference between the vote�(f; �; x; y) given to the correct labely, and the largest vote given
to any other label. We denote the margin byMf;�(x; y). Formally,

Mf;�(x; y) =
1
2

�
�(f; �; x; y)�max

r 6=y
�(f; �; x; r)

�
;

where the factor of 1=2 simply ensures that the margin is in the range[�1;+1]. Note that the margin
is positive if and only ifH correctly classifies example(x; y).

Although this definition of margin is seemingly very different from the one given earlier in the
paper for binary problems (which is the same as the one used by Schapire et al. in their comparatively
simple context), we show next that maximizing training-example margins translates into a better
bound on generalization error, independent of the number of rounds of boosting.

Let H be the base-hypothesis space off�1;+1g-valued functions onX � L. We let co(H)
denote theconvex hullof H:

co(H) =

(
f : x 7!

X
h

�hh(x) j �h � 0;
X
h

�h = 1

)
;

where it is understood that each of the sums above is over the finite subset of hypotheses inH for
which�h > 0. Thus,f as defined in Eq. (17) belongs to co(H).

We assume that training examples are chosen i.i.d. from some distributionD onX � Y. We
write probability or expectation with respect to a random choice of an example(x; y) according to
D as PrD [�] and ED [�]. Similarly, probability and expectation with respect to an example chosen
uniformly at random from training setS is denoted PrS [�] and ES [�].

We can now prove the first main theorem of this section which shows how the generalization
error can be usefully bounded when most of the training examples have large margin. This is very
similar to the results of Schapire et al. (1998) except for the fact that it applies to loss-based decoding
for a general coding matrixM.

126

REDUCING MULTICLASS TO BINARY

Theorem 3 Let D be a distribution overX � Y, and letS be a sample ofm examples chosen
independently at random according toD. Suppose the base-classifier spaceH has VC-dimension
d, and let� > 0. Assume thatm � d` � 1 where` is the number of columns in the coding matrix
M . Then with probability at least1�� over the random choice of the training setS, every weighted
average functionf 2 co(H) and every� > 0 satisfies the following bound for all� > 0:

PrD
�Mf;�(x; y) � 0

� � PrS
�Mf;�(x; y) � �

�
+O

0
@ 1p

m

d log2(`m=d)

�2 + log(1=�)

!1=2
1
A :

Proof: To prove the theorem, we will first need to define the notion of a sloppy cover, slightly
specialized for our purposes. For a classF of real-valued functions overX � Y, a training
setS � X � Y of sizem, and real numbers� > 0 and� � 0, we say that a function class
F̂ is an �-sloppy�-cover ofF with respect toS if, for all F in F , there existsF̂ in F̂ with
PrS

h
jF̂ (x; y)� F (x; y)j > �

i
� �. LetN (F ; �; �;m) denote the maximum, over all training sets

S of sizem, of the size of the smallest�-sloppy�-cover ofF with respect toS.

Using techniques from Bartlett (1998), Schapire et al. (1998, Theorem 4) give a theorem which
states that, for� > 0 and� > 0, the probability over the random choice of training setS that there
exists any functionF 2 F for which

PrD
�
F (x; y) � 0

�
> PrS

�
F (x; y) � �

�
+ �

is at most

2N (F ; �=2; �=8;2m)e��
2m=32: (19)

We prove Theorem 3 by applying this result to the family of functions

F = fMf;� : f 2 co(H); � > 0g:

To do so, we need to construct a relatively small set of functions that approximate all the functions
in F .

We start with a lemma that implies that any functionMf;� can be approximated byMf;�̂ for
some ˆ� in the small finite set

E� =
�

ln `
i�

: i = 1; : : : ;
�

ln `
2�2

��
:

Lemma 4 For all � > 0, there existŝ� 2 E� such that for allf 2 co(H) and for allx 2 X , r 2 Y,

j�(f; �; x; y)� �(f; �̂; x; y)j � �:

127

ALLWEIN, SCHAPIRE& SINGER

Proof: Let

Λ(�; z) =
1
�

ln

1
`

X̀
s=1

e�zs

!

for z 2 R
`. We claim first that, for anyz, and for 0< �1 � �2,

0� Λ(�2; z)� Λ(�1; z) �
�

1
�1
� 1
�2

�
ln `: (20)

For the first inequality, it suffices to show thatF (�) = Λ(�; z) is nondecreasing. Differentiating,
we find that

dF

d�
=

ln `+
P`

s=1 ps ln ps
�2 (21)

whereps = e�zs=
P`

s=1 e
�zs . Since entropy over̀ symbols cannot exceed ln`, this quantity is

nonnegative.
For the second inequality of Eq. (20), it suffices to show thatG(�) = Λ(�; z) + (ln `)=� is

nonincreasing. Again differentiating (or reusing Eq. (21)), we find that

dG

d�
=

P`
s=1 ps ln ps

�2

which is nonpositive since entropy cannot be negative.
So, if � � minE�, then let ˆ� = (ln `)=(i�) be the largest element ofE� that is no bigger than�.

If i > 1 then
ln `
i�

� � <
ln `

(i� 1)�

so

0� Λ(�; z) � Λ(�̂; z) �
�
i�

ln `
� 1
�

�
ln `

�
�
i�

ln `
� (i� 1)�

ln `

�
ln ` = �:

If i = 1, then

0� Λ(�; z) � Λ(�̂; z) �
�

�

ln `
� 1
�

�
ln ` � �:

It remains then only to handle the case that� is small. Assume thatz 2 [�1;+1]`. Then

Λ(�; z) =
1
�

ln

1
`

X̀
s=1

e�zs

!

� 1
�

ln

exp

�2

2
+
�

`

X̀
s=1

zs

!!

=
�

2
+

1
`

X̀
s=1

zs:

128

REDUCING MULTICLASS TO BINARY

This is because, as proved by Hoeffding (1963), for any random variableX with a � X � b, and
for � > 0,

E
h
e�X

i
� exp

�2(b� a)2

8
+ �E [X]

!
:

On the other hand, by Eq. (20),

Λ(�; z) � lim
�!0

Λ(�; z)

= lim
�!0

1
`

P`
s=1 e

�zszs
1
`

P`
s=1 e

�zs

=
1
`

X̀
s=1

zs

where the first equality uses l’Ĥopital’s rule. Thus, if� < minE�, then we take ˆ� = minE� � 2�
so that

1
`

X̀
s=1

zs � Λ(�; z) � Λ(�̂; z) � 1
`

X̀
s=1

zs +
�̂

2

which implies that

jΛ(�; z) � Λ(�̂; z)j � �̂

2
� �

assumingz 2 [�1;+1]`. Since�(f; �; x; r) = �Λ(�; z) with zs = �M(r; s)f(x; s) 2 [�1;+1],
this completes the lemma.

Let S be a fixed subset ofX � Y of sizem. BecauseH has VC-dimensiond, there exists a
subsetĤ of H of cardinality(e`m=d)d that includes all behaviors onS. That is, for allh 2 H,
there existŝh 2 Ĥ such thath(x; s) = ĥ(x; s) for all (x; y) 2 S and alls 2 L. Now let

CN =

(
f : (x; s) 7! 1

N

NX
i=1

hi(x; s) j hi 2 Ĥ
)

be the set of unweighted averages ofN elements inĤ, and let

F̂N;� = fMf;� : f 2 CN ; � 2 E�g :
We will show thatF̂N;� is a sloppy cover ofF .

Let f 2 co(H). Then we can write

f(x; s) =
X
j

�jhj(x; s)

where�j � 0 and
P

j �j = 1. Because we are only interested in the behavior off on points inS,
we can assume without loss of generality that eachhj 2 Ĥ.

Lemma 5 Suppose for somex 2 X and someg 2 CN , we have thatjf(x; s)� g(x; s)j � � for all
s 2 L. Let� > 0 and let�̂ 2 E� be as in Lemma 4. Then for ally 2 Y,

jMf;�(x; y)�Mg;�̂(x; y)j � 2�:

129

ALLWEIN, SCHAPIRE& SINGER

Proof: For all r 2 Y,

�(f; �; x; r)� �(g; �; x; r) =
1
�

ln

 P
s exp

���M(r; s)g(x; s)
�

P
s exp

���M(r; s)f(x; s)
�
!

� 1
�

ln
�
max
s

exp
���M(r; s)(g(x; s) � f(x; s))

��
= max

s
M(r; s)(f(x; s) � g(x; s))

� max
s
jM(r; s)jjf(x; s) � g(x; s)j � �

where the first inequality uses the simple fact that(
P

i ai)=(
P

i bi) � maxi ai=bi for positiveai’s
andbi’s. By the symmetry of this argument,

j�(f; �; x; r)� �(g; �; x; r)j � �:

Also, from Lemma 4,
j�(g; �; x; r) � �(g; �̂; x; r)j � �

so
j�(f; �; x; r)� �(g; �̂; x; r)j � 2�

for all r 2 Y. By definition of margin, this implies the lemma.
Recall that the coefficients�j are nonnegative and that they sum to one; in other words, they

define a probability distribution over̂H. It will be useful to imagine sampling from this distribution.
Specifically, suppose that̂h 2 Ĥ is chosen in this manner. Then for fixed(x; s), ĥ(x; s) is a
f�1;+1g-valued random variable with expected value of exactlyf(x; s). Consider now choosing
N such functionŝh1; : : : ; ĥN independently at random, each according to this same distribution, and
let g = (1=N)

PN
i=1 ĥi. Theng 2 CN . Let us denote byQ the resulting distribution over functions

in CN . Note that, for fixed(x; s), g(x; s) is the average ofN f�1;+1g-trials with expected value
f(x; s).

For any(x; y) 2 S,

Prg�Q
�jMf;�(x; y)�Mg;�̂(x; y)j > 2�

� � Prg�Q
�9s 2 L : jf(x; s)� g(x; s)j > �

�
�

X̀
s=1

Prg�Q
�jf(x; s)� g(x; s)j > �

�
� 2`e�N�2=2:

These three inequalities follow, respectively, from Lemma 5, the union bound and Hoeffding’s
inequality. Thus,

Eg�Q
�
PrS

�jMf;�(x; y)�Mg;�̂(x; y)j > 2�
��

= ES
�
Prg�Q

�jMf;�(x; y) �Mg;�̂(x; y)j > 2�
��

� 2`e�N�2=2:

Therefore, there existsg 2 CN such that

PrS
�jMf;�(x; y)�Mg;�̂(x; y)j > 2�

� � 2`e�N�2=2:

130

REDUCING MULTICLASS TO BINARY

We have thus shown that̂FN;� is a 2̀ e�N�2=2-sloppy 2�-cover ofF . In other words,

N (F ;2�;2`e�N�2=2;m) � jF̂N;�j �
�
e`m

d

�dN � ln `
2�2

�
:

Making the appropriate substitutions, this gives that Eq. (19) is at most

16 ln`
�2

�
2e`m
d

�(32d=�2) ln(16̀ =�)

e�m�2=32: (22)

Let

� = 16

0
@ ln

�
16 lnl
��2

�
8m

+
2d
m�2 ln

�
2e`m
d

�
ln

e`2m

d

!1A
1=2

:

Note that the quantity inside the square root is at least 2d=(m�2) � d=(me). Thus,� � 16
p
d=(me).

Using this approximation for the first occurrence of�, it follows that Eq. (22) is at most�.
We have thus proved the bound of the theorem for a single given choice of� > 0 with high

probability. To prove that the bound holds simultaneously for all� > 0, we can use exactly the
same argument used by Schapire and Singer (1999) in the very last part of their Theorem 8.

Thus, we have shown that large training-set margins imply a better bound on the generalization
error, independent of the number of rounds of boosting. We turn now to the second part of our
analysis in which we prove that AdaBoost.MO tends to increase the margins of the training examples,
assuming that the binary errors�t of the base hypotheses are bounded away from the trivial error
rate of 1=2 (see the discussion that follows the proof). The theorem that we prove below is a direct
analog of Theorem 5 of Schapire et al. (1998) for binary AdaBoost. Note that we focus only on
coding matrices that do not contain zeros. A slightly weaker result can be proved in the more
general case.

Theorem 6 Suppose the base learning algorithm, when called by AdaBoost.MO using coding
matrix M 2 f�1;+1gk�`, generates hypotheses with weighted binary training errors�1; : : : ; �T .
Let� be as in Eq. (6). Then for any� � 0, we have that

PrS
�Mf;�(x; y) � �

� � `

�

TY
t=1

�
2
q
�1��
t (1� �t)1+�

�

wheref and� are as in Eqs. (16) and (17).

Proof: Suppose, for some labeled example(x; y),Mf;�(x; y) � �. Then, by definition of margin,
there exists a labelr 2 Y � fyg for which

1
2
(�(f; �; x; y) � �(f; �; x; r)) � �;

that is X̀
s=1

e��M(r;s)f(x;s) � e2��
X̀
s=1

e��M(y;s)f(x;s): (23)

131

ALLWEIN, SCHAPIRE& SINGER

Let zs = �M(y; s)f(x; s) � �� andz0s = �M(r; s)f(x; s) + ��. Let S∆ = fs 2 L : M(r; s) 6=
M(y; s)g. Then Eq. (23) implies X̀

s=1

e�zs �
X̀
s=1

e�z
0

s

and so

X̀
s=1

e�zs �
X̀
s=1

e�zs + e�z
0

s

2

�
X
s2S∆

e�zs + e�z
0

s

2

=
X
s2S∆

e�zs + ezs

2
� jS∆j � �:

This is because, ifs 2 S∆ thenz0s = �zs, and becausex+ 1=x � 2 for all x > 0.
Therefore, ifMf;�(x; y) � � then

X̀
s=1

e��M(y;s)f(x;s) � �e���:

Thus, the fraction of training examplesi for whichMf;�(xi; yi) � � is at most

e��

�m

mX
i=1

X̀
s=1

e��M(yi;s)f(xi;s)

=
`e��

�

mX
i=1

X̀
s=1

1
m`

exp

�

TX
t=1

�tM(yi; s)ht(xi; s)

!
(24)

=
`e��

�

mX
i=1

X̀
s=1

TY
t=1

Zt

!
DT+1(i; s) (25)

=
`e��

�

TY
t=1

Zt

!
: (26)

Here, Eq. (24) uses the definition off and� as in Eqs. (16) and (17). Eq. (25) uses the definition
of DT+1 as defined recursively in Eq. (13). Eq. (26) uses the fact thatDT+1 is a distribution. The
theorem now follows by plugging in Eq. (14) and applying straightforward algebra.

As noted by Schapire et al. (1998), this bound can be usefully understood if we assume that
�t � 1=2�
 for all t. Then the upper bound simplifies to

`

�

�q
(1� 2
)1��(1+ 2
)1+�

�T
:

If � <
, then the expression inside the parentheses is smaller than one so that the fraction of
training examples with margin below� drops to zero exponentially fast inT .

132

REDUCING MULTICLASS TO BINARY

0

10

20

30

40

50

60

70

80

3 4 5 6 7 8

Number of classes

avg. binary error
loss-based decoding

Hamming decoding

0

10

20

30

40

50

60

70

80

3 4 5 6 7 8

Number of classes

avg. binary error
loss-based decoding

Hamming decoding

Figure 3: Comparison of the average binary error, the multiclass error using Hamming decoding,
and the multiclass error using loss-based decoding with AdaBoost on synthetic data,
using a complete code (left) and the one-against-all code (right).

6. Experiments

In this section, we describe and discuss experiments we have performed with synthetic data
and with natural data from the UCI repository. We run both sets of experiments with two base-
learners: AdaBoost and SVM. Two primary goals of the experiments are to compare Hamming
decoding to loss-based decoding and to compare the performance of different output codes. We
start with a description of an experiment with real-valued synthetic data which underscores the
tradeoff between the complexity of the binary problems induced by a given output code and its error
correcting properties.

In the experiments with synthetic data, we generated instances according to the normal distribu-
tion with zero mean and a unit variance. To create a multiclass problem withk classes, we setk+1
thresholds, denoted�0; �1; : : : ; �k, where�0 = 0 and�k = 1. An instancex is associated with
classj if and only if �j�1 � jxj < �j. For eachk 2 f3; : : : ;8g we generated 10 sets of examples,
where each set was of size 100k. The thresholds were set so that exactly 100 examples will be
associated with each class. Similarly, we generated the same number of test sets (of the same size)
using the thresholds obtained for the training data to label the test data. We used AdaBoost as the
base learner and set the number of rounds of boosting for each binary problem to 10 and called
AdaBoost repeatedly for each column (multi-call variant). For weak hypotheses, we used the set of
all possible threshold functions. That is, a weak hypothesis based on a thresholdt would label an
instancex as+1 if jxj < t and�1 otherwise.

In Figure 3, we plot the test error rate as the function ofk for two output coding matrices.
The first is a complete code whose columns correspond to all the non-trivial partitions of the set
f1; : : : ; kg into two subsets. Thus, this code is a matrix of sizek � (2k�1� 1). The second code
was the one-against-all code. For each code, we plot the average binary test error, the multiclass
errors using Hamming decoding, and the multiclass errors using loss-based decoding. The graphs
clearly show that Hamming decoding is inferior to loss-based decoding and yields much higher error
rates. The multiclass errors of the two codes using loss-based decoding are comparable. While the
multiclass error rate with the complete code is slightly lower than the error rate for the one-against-
all code, the situation is reversed for the average binary errors. This phenomenon underscores the

133

ALLWEIN, SCHAPIRE& SINGER

#Examples
Problem Train Test #Attributes #Classes
dermatology 366 - 34 6
satimage 4435 2000 36 6
glass 214 - 9 7
segmentation 2310 - 19 7
ecoli 336 - 8 8
pendigits 7494 3498 16 10
yeast 1484 - 8 10
vowel 528 462 10 11
soybean 307 376 35 19
thyroid 9172 - 29 20
audiology 226 - 69 24
isolet 6238 1559 617 26
letter 16000 4000 16 26

Table 1: Description of the datasets used in the experiments.

tradeoff between the redundancy and correcting properties of the output codes and the difficulty of
the binary learning problems it induces. The complete code has good error correcting properties;
the distance between each pair of rows is� = (l + 1)=2 = 2k�2. However, many of the binary
problems that the complete code induces are difficult to learn. The distance between each pair of
rows in the one-against-all code is small:� = 2. Hence, its empirical error bound according to
Theorem 1 seems inferior. However, the binary problems it induces are simpler and thus its average
binary loss" is lower than the average binary loss of the complete code and the overall result is
comparable performance.

Next, we describe experiments we performed with multiclass data from the UCI repository (Merz
& Murphy, 1998). We used two different popular binary learners, AdaBoost and SVM. We chose
the following datasets (ordered according to the number of classes): Dermatology, Satimage, Glass,
Segmentation, E-coli, Pendigits, Yeast, Vowel, Soybean-large, Thyroid, Audiology, Isolet, Letter-
recognition. The properties of the datasets are summarized in Table 1. In the SVM experiments, we
skipped Audiology, Isolet, Letter-recognition, Segmentation, and Thyroid, because these datasets
were either too big to be handled by our current implementation of SVM or contained many nominal
features with missing values which are problematic for SVM. All datasets have at least six classes.
When available, we used the original partition of the datasets into training and test sets. For the
other datasets, we used 10-fold cross validation. For SVM, we used polynomial kernels of degree
4 with the multi-call variant. For AdaBoost, we used decision stumps for base hypotheses. By
modifying an existing package of AdaBoost.MH (Schapire & Singer, 1999) we were able to devise
a simple implementation of the single-call variant that was described in Section 5. Summaries of
the results using the different output codes described below are given in Tables 2 and 3.

We tested five different types of output codes: one-against-all, complete (in which there is one
column for every possible (non-trivial) split of the classes), all-pairs, and two types of random
codes. The first type of random code hasd10 log2(k)e columns for a problem withk classes. Each

134

REDUCING MULTICLASS TO BINARY

Hamming Decoding

Problem One-vs-all Complete All-Pairs Dense Sparse
dermatology 5.0 4.2 3.1 3.9 3.6
satimage 14.9 12.3 11.7 12.3 13.2
glass 31.0 31.0 28.6 28.6 27.1
segmentation 0.0 0.1 0.0 0.1 0.1
ecoli 21.5 18.5 19.1 17.6 19.7
pendigits 8.9 8.6 3.0 9.3 6.2
yeast 44.7 41.9 42.5 43.9 49.5
vowel 67.3 59.3 50.2 62.6 54.5
soybean 8.2 – 9.0 5.6 8.0
thyroid 7.8 – – 12.3 8.1
audiology 26.9 – 23.1 23.1 23.1
isolet 9.2 – – 10.8 10.1
letter 27.7 – 7.8 30.9 27.1

Loss-based Decoding (L1)

dermatology 4.2 4.2 3.1 3.9 3.6
satimage 12.1 12.4 11.2 11.9 11.9
glass 26.7 31.0 27.1 27.1 26.2
segmentation 0.0 0.1 0.0 0.1 0.7
ecoli 17.3 17.6 18.8 18.5 19.1
pendigits 4.6 8.6 2.9 8.8 6.8
yeast 41.6 42.0 42.6 43.2 49.8
vowel 56.9 59.1 50.9 61.9 54.1
soybean 7.2 – 8.8 4.8 8.2
thyroid 6.5 – – 12.0 8.0
audiology 19.2 – 23.1 19.2 23.1
isolet 5.3 – – 10.1 9.8
letter 14.6 – 7.4 29.0 26.6

Loss-based Decoding (Exp.)

dermatology 4.2 3.9 3.1 4.2 3.1
satimage 12.1 12.3 11.4 12.0 12.0
glass 26.7 28.6 27.6 25.2 29.0
segmentation 0.0 0.0 0.0 0.0 0.0
ecoli 15.8 16.4 18.2 17.0 17.9
pendigits 4.6 7.2 2.9 8.1 4.8
yeast 41.6 42.1 42.3 43.0 49.3
vowel 56.9 54.1 51.7 60.0 49.8
soybean 7.2 – 8.8 4.8 5.6
thyroid 6.5 – – 11.4 7.2
audiology 19.2 – 23.1 19.2 19.2
isolet 5.3 – – 9.4 9.7
letter 14.6 – 7.1 28.3 22.3

Table 2: Results of experiments with output codes with datasets from the UCI repository using
AdaBoost as the base binary learner. For each problem five output codes were used
and then evaluated (see text) with three decoding methods: Hamming decoding, loss-
based decoding using AdaBoost with randomized predictions (denotedL1), and loss-based
decoding using the exponential loss function (denotedExp).

135

ALLWEIN, SCHAPIRE& SINGER

Hamming Decoding

Problem One-vs-all Complete All-Pairs Dense Sparse
dermatology 4.2 3.6 3.1 3.6 2.5
satimage 40.9 14.3 50.4 15.0 27.4
glass 37.6 34.3 29.5 34.8 32.4
ecoli 15.8 14.2 13.9 15.2 14.2
pendigits 3.9 2.0 26.2 2.5 2.6
yeast 73.9 42.4 40.8 42.5 48.1
vowel 60.4 53.0 39.2 53.5 50.2
soybean 20.5 – 9.6 9.0 9.0

Loss-based Decoding

dermatology 3.3 3.6 3.6 3.9 3.1
satimage 40.9 13.9 27.8 14.3 13.3
glass 38.6 34.8 31.0 34.8 32.4
ecoli 16.1 13.6 13.3 14.8 14.8
pendigits 2.5 1.9 3.1 2.1 2.7
yeast 72.9 40.5 40.9 39.7 47.2
vowel 50.9 51.3 39.0 51.7 47.0
soybean 21.0 – 10.4 8.8 9.0

Table 3: Results of experiments with output codes with datasets from the UCI repository using the
support-vector machine (SVM) algorithm as the base binary learner. For each problem five
different classes of output codes were tested were used and then evaluated with Hamming
decoding and the appropriate loss-based decoding for SVM.

element in the code was chosen uniformly at random fromf�1;+1g. For brevity, we call these
dense random codes. We generated a dense random code for each multiclass problem by examining
10,000 random codes and choosing the code that had the largest� and did not have any identical
columns. The second type of code, called a sparse code, was chosen at random fromf�1;0;+1g.
Each element in a sparse code is 0 with probability1

2 and�1 or+1 with probability 1
4 each. The

sparse codes haved15 log2(k)e columns. For each problem, we picked a code with high value of�
by examining 10,000 random codes as before. However, now we also had to check that no code had
a column or a row containing only zeros. Note that for some of the problems with many classes,
we could not evaluate the complete and all-pairs codes since they were too large.

We compared Hamming decoding to loss-based decoding for each of the five families of codes.
The results are plotted in Figures 4 and 5. Each of the tested UCI datasets is plotted as a bar
in the figures where height of the bar (possibly negative) is proportional to the test error rate of
loss-based decoding minus the test error rate of Hamming decoding. The datasets are indexed
1;2; : : : and are plotted in the order listed above. We tested AdaBoost with two loss functions
for decoding: the exponential loss (denoted “Exp” in the figure and drawn in black) and the loss
function 1=(1+ e2yf(x)) (denoted “L1” and drawn in gray) which is the result of using AdaBoost

136

REDUCING MULTICLASS TO BINARY

One-vs-all Complete All-Pairs Dense Sparse

 6 6 7 7 8 10 10 11 19 21 24 26 26
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

L1
Exp

 6 6 7 7 8 10 10 11 19 21 24 26 26
−6

−5

−4

−3

−2

−1

0

1

T
es

t e
rr

or
 d

iff
er

en
ce

L1
Exp

 6 6 7 7 8 10 10 11 19 21 24 26 26
−14

−12

−10

−8

−6

−4

−2

0

L1
Exp

 6 6 7 7 8 10 10 11 19 21 24 26 26
−1.5

−1

−0.5

0

0.5

1

1.5

2

L1
Exp

 6 6 7 7 8 10 10 11 19 21 24 26 26
−5

−4

−3

−2

−1

0

1

2

T
es

t e
rr

or
 d

iff
er

en
ce

L1
Exp

Figure 4: Comparison of the test error using Hamming decoding and loss-based decoding when the
binary learners are trained using AdaBoost. Two loss functions for decoding are plotted:
the exponential loss (“Exp”, in black) and 1=(1 + e2yf(x)) when using AdaBoost with
randomized predictions (“L1”, in gray).

One-vs-all Complete All-Pairs Dense Sparse

 6 6 7 8 10 10 11 19
−10

−8

−6

−4

−2

0

2

 6 6 7 8 10 10 11 19
−25

−20

−15

−10

−5

0

5

 6 6 7 8 10 10 11 19
−2

−1.5

−1

−0.5

0

0.5

 6 6 7 8 10 10 11 19
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

 6 6 7 8 10 10 11 19
−16

−14

−12

−10

−8

−6

−4

−2

0

2

Figure 5: Comparison of the test error using Hamming decoding and loss-based decoding when the
binary learner is support vector machines.

with randomized predictions. It is clear from the plots that loss-based decoding often gives better
results than Hamming decoding for both SVM and AdaBoost. The difference is sometimes very
significant. For instance, for the dataset Satimage, with the all-pairs code, SVM achieves 27:5%
error with loss-based decoding while Hamming decoding results in an error rate of 50:4%. Similar
results are obtained for AdaBoost. The difference is especially significant for the one-against-all and
random dense codes. Note, however, that loss-based decoding based on AdaBoost with randomized
predictions does not yield as good results as the straightforward use of loss-based decoding for
AdaBoost with the exponential loss. This might be partially explained by the fact that AdaBoost
with randomized predictions is not directly attempting to minimize the loss it uses for decoding.

To conclude the section, we discuss a set of experiments that compared the performance of
the different output codes. In Figures 6 and 7, we plot the test error difference for pairs of codes
using loss-based decoding with SVM and AdaBoost as the binary learners. Each plot consist of a
5�5 matrix of bar graphs. The rows and columns correspond, in order, to the five coding methods,
namely, one-against-all, all-pairs, complete, random dense and random sparse. The bar graph in
row i and columnj shows the difference between the test error of coding methodi minus the test
error of coding methodj for the datasets tested.

For SVM, it is clear that the widely used one-against-all code is inferior to all the other codes we
tested. (Note that many of the bars in the top row of Figure 6 correspond to large positive values.)
One-against-all often results in error rates that are much higher than the error rates of other codes.
For instance, for the dataset Yeast, the one-against-all code has an error rate of 72% while the error
rate of all the other codes is no more than 47:1% (random sparse) and can be as low as 39:6%
(random dense). On the very few cases that the one-against-all performs better than one of the other

137

ALLWEIN, SCHAPIRE& SINGER

One-vs-all

 6 6 7 8 10 10 11 19
−5

0

5

10

15

20

25

30

35

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 8 10 10 11 19
−5

0

5

10

15

20

25

30

35

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 8 10 10 11 19
−5

0

5

10

15

20

25

30

35

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 8 10 10 11 19
−5

0

5

10

15

20

25

30

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 8 10 10 11 19
−35

−30

−25

−20

−15

−10

−5

0

5

Complete

 6 6 7 8 10 10 11 19
−15

−10

−5

0

5

10

15

 6 6 7 8 10 10 11 19
−15

−10

−5

0

5

10

15

 6 6 7 8 10 10 11 19
−10

−5

0

5

10

15

 6 6 7 8 10 10 11 19
−35

−30

−25

−20

−15

−10

−5

0

5

 6 6 7 8 10 10 11 19
−15

−10

−5

0

5

10

15

All-Pairs

 6 6 7 8 10 10 11 19
−1.5

−1

−0.5

0

0.5

1

 6 6 7 8 10 10 11 19
−8

−6

−4

−2

0

2

4

6

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 8 10 10 11 19
−35

−30

−25

−20

−15

−10

−5

0

5

 6 6 7 8 10 10 11 19
−15

−10

−5

0

5

10

15

 6 6 7 8 10 10 11 19
−1

−0.5

0

0.5

1

1.5

Dense

 6 6 7 8 10 10 11 19
−8

−6

−4

−2

0

2

4

6

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 8 10 10 11 19
−30

−25

−20

−15

−10

−5

0

5

 6 6 7 8 10 10 11 19
−15

−10

−5

0

5

10

 6 6 7 8 10 10 11 19
−6

−4

−2

0

2

4

6

8

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 8 10 10 11 19
−6

−4

−2

0

2

4

6

8

T
es

t e
rr

or
 d

iff
er

en
ce

Sparse

Figure 6: The difference between the test errors for pairs of error correcting matrices using support
vector machines as the binary learners.

codes, the difference is not statistically significant. However, there is no clear winner among the
four other output codes. For AdaBoost, none of the codes is persistently better than the other and
it seems that the best code to use is problem dependent. These results suggest that an interesting
direction for research would be methods for designing problem specific output codes. Some recent
progress in this direction was made by Crammer and Singer (2000).

Acknowledgment

Most of the research on this paper was done while all three authors were at AT&T Labs. Thanks to
the anonymous reviewers for their careful reading and helpful comments. Part of this research was
supported by the Binational Science Foundation under grant number 1999038.

References

Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: the
size of the weights is more important than the size of the network.IEEE Transactions on

138

REDUCING MULTICLASS TO BINARY

One-vs-all

 6 6 7 7 8 10 10 11 19 21 24 26 26
−4

−3

−2

−1

0

1

2

3

4

5

6

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 7 8 10 10 11 19 21 24 26 26
−4

−2

0

2

4

6

8

10

12

14

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 7 8 10 10 11 19 21 24 26 26
−5

0

5

10

15

20

25

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 7 8 10 10 11 19 21 24 26 26
−8

−6

−4

−2

0

2

4

6

8

10

12

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 7 8 10 10 11 19 21 24 26 26
−6

−5

−4

−3

−2

−1

0

1

2

3

4

T
es

t e
rr

or
 d

iff
er

en
ce

Complete

 6 6 7 7 8 10 10 11 19 21 24 26 26
−3

−2

−1

0

1

2

3

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 7 8 10 10 11 19 21 24 26 26
−2

−1

0

1

2

3

4

5

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 7 8 10 10 11 19 21 24 26 26
−8

−6

−4

−2

0

2

4

6

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 7 8 10 10 11 19 21 24 26 26
−14

−12

−10

−8

−6

−4

−2

0

2

4

 6 6 7 7 8 10 10 11 19 21 24 26 26
−3

−2

−1

0

1

2

3

T
es

t e
rr

or
 d

iff
er

en
ce

All-Pairs

 6 6 7 7 8 10 10 11 19 21 24 26 26
−4

−2

0

2

4

6

8

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 7 8 10 10 11 19 21 24 26 26
−8

−6

−4

−2

0

2

4

6

8

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 7 8 10 10 11 19 21 24 26 26
−25

−20

−15

−10

−5

0

5

 6 6 7 7 8 10 10 11 19 21 24 26 26
−5

−4

−3

−2

−1

0

1

2

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 7 8 10 10 11 19 21 24 26 26
−8

−6

−4

−2

0

2

4

T
es

t e
rr

or
 d

iff
er

en
ce

Dense

 6 6 7 7 8 10 10 11 19 21 24 26 26
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

 6 6 7 7 8 10 10 11 19 21 24 26 26
−12

−10

−8

−6

−4

−2

0

2

4

6

8

 6 6 7 7 8 10 10 11 19 21 24 26 26
−6

−4

−2

0

2

4

6

8

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 7 8 10 10 11 19 21 24 26 26
−8

−6

−4

−2

0

2

4

6

8

T
es

t e
rr

or
 d

iff
er

en
ce

 6 6 7 7 8 10 10 11 19 21 24 26 26
−4

−2

0

2

4

6

8

10

12

14

16

T
es

t e
rr

or
 d

iff
er

en
ce

Sparse

Figure 7: The difference between the test errors for pairs of error correcting matrices using Ada-
Boost for the binary learner.

Information Theory, 44(2), 525–536.

Breiman, L. (1997a). Arcing the edge. Tech. rep. 486,Statistics Department, University of California
at Berkeley.

Breiman, L. (1997b). Prediction games and arcing classifiers. Tech. rep. 504, Statistics Department,
University of California at Berkeley.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984).Classification and Regression
Trees. Wadsworth & Brooks.

Collins, M., Schapire, R. E., & Singer, Y. (2000). Logistic regression, AdaBoost and Bregman
distances. InProceedings of the Thirteenth Annual Conference on Computational Learning
Theory.

Cortes, C., & Vapnik, V. (1995). Support-vector networks.Machine Learning, 20(3), 273–297.

139

ALLWEIN, SCHAPIRE& SINGER

Crammer, K., & Singer, Y. (2000). On the learnability and design of output codes for multiclass
problems. InProceedings of the Thirteenth Annual Conference on Computational Learning
Theory.

Csisźar, I., & Tusńady, G. (1984). Information geometry and alternating minimization procedures.
Statistics and Decisions, Supplement Issue, 1, 205–237.

Della Pietra, S., Della Pietra, V., & Lafferty, J. (1997). Inducing features of random fields.IEEE
Transactions Pattern Analysis and Machine Intelligence, 19(4), 1–13.

Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting
output codes.Journal of Artificial Intelligence Research, 2, 263–286.

Freund, Y. (1999). An adaptive version of the boost by majority algorithm. InProceedings of the
Twelfth Annual Conference on Computational Learning Theory, pp. 102–113.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and
an application to boosting.Journal of Computer and System Sciences, 55(1), 119–139.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of
boosting.The Annals of Statistics, 38(2), 337–374.

Guruswami, V., & Sahai, A. (1999). Multiclass learning, boosting, and error-correcting codes.
In Proceedings of the Twelfth Annual Conference on Computational Learning Theory, pp.
145–155.

Hastie, T., & Tibshirani, R. (1998). Classification by pairwise coupling.The Annals of Statistics,
26(2), 451–471.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.Journal of
the American Statistical Association, 58(301), 13–30.

Höffgen, K.-U., & Simon, H.-U. (1992). Robust trainability of single neurons. InProceedings of
the Fifth Annual ACM Workshop on Computational Learning Theory, pp. 428–439.

Kearns, M., & Mansour, Y. (1996). On the boosting ability of top-down decision tree learning
algorithms. InProceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing.

Lafferty, J. (1999). Additive models, boosting and inference for generalized divergences. In
Proceedings of the Twelfth Annual Conference on Computational Learning Theory, pp. 125–
133.

Mason, L., Baxter, J., Bartlett, P., & Frean, M. (1999). Functional gradient techniques for combining
hypotheses. In Smola, A. J., Bartlett, P. J., Schölkopf, B., & Schuurmans, D. (Eds.),Advances
in Large Margin Classifiers. MIT Press.

Merz, C. J., & Murphy, P. M. (1998). UCI repository of machine learning databases.
www.ics.uci.edu/�mlearn/MLRepository.html.

Quinlan, J. R. (1993).C4.5: Programs for Machine Learning. Morgan Kaufmann.

140

REDUCING MULTICLASS TO BINARY

Rätsch, G., Onoda, T., & M̈uller, K.-R. (to appear). Soft margins for AdaBoost.Machine Learning.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error
propagation. In Rumelhart, D. E., & McClelland, J. L. (Eds.),Parallel Distributed Processing
– Explorations in the Microstructure of Cognition, chap. 8, pp. 318–362. MIT Press.

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new explanation
for the effectiveness of voting methods.The Annals of Statistics, 26(5), 1651–1686.

Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predic-
tions. Machine Learning, 37(3), 297–336.

Scḧolkopf, B., Smola, A., Williamson, R., & Bartlett, P. (1998). New support vector algorithms.
Tech. rep. NC2-TR-1998-053, NeuroColt2.

Vapnik, V. N. (1995).The Nature of Statistical Learning Theory. Springer.

141

