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Abstract

We present a unifying framework for studying the solution of multiclass categorization problems
by reducing them to multiple binary problems that are then solved using a margin-based binary
learning algorithm. The proposed framework unifies some of the most popular approaches in which
each class is compared against all others, or in which all pairs of classes are compared to each other,
or in which output codes with error-correcting properties are used. We propose a general method
for combining the classifiers generated on the binary problems, and we prove a general empirical
multiclassloss bound given the empirical loss of the individbalary learning algorithms. The
scheme and the corresponding bounds apply to many popular classification learning algorithms
including support-vector machines, AdaBoost, regression, logistic regression and decision-tree
algorithms. We also give a multiclass generalization error analysis for general output codes with
AdaBoost as the binary learner. Experimental results with SVM and AdaBoost show that our
scheme provides a viable alternative to the most commonly used multiclass algorithms.

1. Introduction

Many supervised machine learning tasks can be cast as the problem of assigning elements to a finite
set of classes or categories. For example, the goal of optical character recognition (OCR) systems
is to determine the digit value (0..,9) from its image. The number of applications that require
multiclass categorization is immense. A few examples for such applications are text and speech
categorization, natural language processing tasks such as part-of-speech tagging, and gesture and
object recognition in machine vision.

In designing machine learning algorithms, it is often easier first to devise algorithms for dis-
tinguishing between only two classes. Some machine learning algorithms, such as C4.5 (Quinlan,
1993) and CART (Breiman, Friedman, Olshen, & Stone, 1984), can then be naturally extended to
handle the multiclass case. For other algorithms, such as AdaBoost (Freund & Schapire, 1997;
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Schapire & Singer, 1999) and the support-vector machines (SVM) algorithm (Vapnik, 1995; Cortes
& Vapnik, 1995), a direct extension to the multiclass case may be problematic. Typically, in such
cases, the multiclass problem is reduced to multiple binary classification problems that can be solved
separately. Connectionist models (Rumelhart, Hinton, & Williams, 1986), in which each class is
represented by an output neuron, are a notable example: each output neuron serves as a discrimina-
tor between the class it represents and all of the other classes. Thus, this training algorithm is based
on a reduction of the multiclass problemitdinary problems, wherk is the number of classes.

There are many ways to reduce a multiclass problem to multiple binary classification problems.
In the simple approach mentioned above, each class is compared to all others. Hastie and Tibshi-
rani (1998) suggest a different approach in which all pairs of classes are compared to each other.
Dietterich and Bakiri (1995) presented a general framework in which the classes are partitioned into
opposing subsets using error-correcting codes. For all of these methods, after the binary classifi-
cation problems have been solved, the resulting set of binary classifiers must then be combined in
some way. In this paper, we study a general framework, which is a simple extension of Dietterich
and Bakiri's framework, that unifies all of these methods of reducing a multiclass problem to a
binary problem.

We pay particular attention to the case in which the binary learning algorithm is one that is
based on thenargin of a training example. Roughly speaking, the margin of a training example
is a number that is positive if and only if the example is correctly classified by a given classifier
and whose magnitude is a measure of confidence in the prediction. Several well known algorithms
work directly with margins. For instance, the SVM algorithm (Vapnik, 1995; Cortes & Vapnik,
1995) attempts to maximize the minimum margin of any training example. There are many more
algorithms that attempt to minimize some loss function of the margin. AdaBoost (Freund &
Schapire, 1997; Schapire & Singer, 1999) is one example: it can be shown that AdaBoost is
a greedy procedure for minimizing an exponential loss function of the margins. In Section 2,
we catalog many other algorithms that also can be viewed as margin-based learning algorithms,
including regression, logistic regression and decision-tree algorithms.

The simplest method of combining the binary classifiers (which weHathming decoding
ignores the loss function that was used during training as well as the confidences attached to
predictions made by the classifier. In Section 3, we give a new and general technique for combining
classifiers that does not suffer from either of these defects. We call this mMetiseblased decoding

We next prove some of the theoretical properties of these methods in Section 4. In particular,
for both of the decoding methods, we prove general bounds on the training error on the multiclass
problem in terms of the empirical performance on the individual binary problems. These bounds
indicate that loss-based decoding is superior to Hamming decoding. Also, these bounds depend on
the manner in which the multiclass problem has been reduced to binary problems. For the one-
against-all approach, our bounds are linear in the number of classes, but for a reduction based on
random partitions of the classes, the boundsratependendf the number of classes. These results
generalize more specialized bounds proved by Schapire and Singer (1999) and by Guruswami and
Sahai (1999).

In Section 5, we prove a bound on the generalization error of our method when the binary learner
is AdaBoost. In particular, we generalize the analysis of Schapire et al. (1998), expressing a bound
on the generalization error in terms of the training-set margins of the combined multiclass classifier,
and showing that boosting, when used in this way, tends to aggressively increase the margins of the
training examples.
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Finally, in Section 6, we present experiments using SVM and AdaBoost with a variety of
multiclass-to-binary reductions. These results show that, as predicted by our theory, loss-based
decoding is almost always better than Hamming decoding. Further, the results show that the most
commonly used one-against-all reduction is easy to beat, but that the best method seems to be
problem-dependent.

2. Margin-based Learning Algorithms

We study methods for handling multiclass problems using a general class of binary algorithms that
attempt to minimize a margin-based loss function. In this section, we describe that class of learning
algorithms with several examples.

A binary margin-based learning algorithriakes as input binary labeled training examples
(z1,v1),-- -, (xm,ym) Where theinstancesz; belong to some domai®’ and thelabelsy; €
{—1, +1}. Such a learning algorithm uses the data to generate a real-valued fundtigpotiesis
f X — R wheref belongs to soméypothesis spac&. Themarginof an exampl€z, y) with
respect tof is y f(x). Note that the margin is positive if and only if the signfdfc) agrees withy.
Thus, if we interpret the sign of(z) as its prediction or;, then

% > lyif (zi) < 0]
-1

is exactly the training error of, where, in this case, we count a zero outpfitz{) = 0) as a
mistake. (Here and throughout this paget is 1 if predicater holds and 0 otherwise.)

Although minimization of the training error may be a worthwhile goal, in its most general form
the problem is intractable (see for instance the work éff¢fen and Simon (1992)). It is therefore
often advantageous to instead minimize some other nonnega&inctiorof the margin, that is,
to minimize

LS L ) 1
=1

for some loss functior. : R — [0,00). Different choices of the loss functioh and different
algorithms for (approximately) minimizing Eq. (1) over some hypothesis space lead to various
well-studied learning algorithms. Below we list several examples. In the present work, we are not
particularly concerned with the method used to achieve a small empirical loss since we will use
these algorithms later in the paper as “black boxes.” We focus instead on the loss function itself
whose properties will allow us to prove our main theorem on the effectiveness of output coding
methods for multiclass problems.

Support-vector Machines. For training data that may not be linearly separable, the support-
vector machines (SVM) algorithm (Vapnik, 1995; Cortes & Vapnik, 1995) seeks a linear classifier
f i R" — Rof the form f(x) = w - x + b that minimizes the objective function

1 m
§||W||§+CZ& ;
i1

for some parameter, subject to the linear constraints

Yi((zi-w) +b) >1-¢, & >0.
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Put another way, the SVM solution fer is the minimizer of the regularized empirical loss function

SlIWIE+C0 (1wl )+,
where(z) . = max{z,0}. (For a more formal treatment see, for instance, the work oblkopf et
al. (1998).) Although the role of th&, norm of w in the objective function is fundamental in
order for SVM to work, the analysis presented in the next section (and the corresponding multiclass
algorithm) depends only on the loss function (which is a function of the margins). Thus, SVM can
be viewed here as a binary margin-based learning algorithm which seeks to achieve small empirical
risk for the loss functiorl.(z) = (1 —z) .

AdaBoost. The algorithm AdaBoost (Freund & Schapire, 1997; Schapire & Singer, 1999) builds
a hypothesig that is a linear combination efeakor base hypotheséds:

flz) = Zatht(w).

The hypothesig is built up in a series of rounds on each of which/ans selected by aveak

or base learning algorithnand«; € R is then chosen. It has been observed by Breiman (1997a,
1997b) and other authors (Collins, Schapire, & Singer, 2000; Friedman, Hastie, & Tibshirani, 2000;
Mason, Baxter, Bartlett, & Frean, 1999aRch, Onoda, & Nller, to appear; Schapire & Singer,
1999) that théi,'s anday’s are effectively being greedily chosen so as to minimize

m
1 Zefyif(mi)‘
mia

Thus, AdaBoost is a binary margin-based learning algorithm in which the loss functign)is=
e .

AdaBoost with randomized predictions. In a little studied variant of AdaBoost (Freund &
Schapire, 1997), we allow AdaBoost to output randomized predictions in which the predicted label
of a new example is chosen randomly to bel with probability 1/ (1+ ¢ ~2/(®)). The loss suffered

then is the probability that the randomly chosen predicted label disagrees with the corregt label
Let p(z) &' 1/(1 + e2/@). Then the loss ip(z) if y = —1 and 1— p(z) if y = +1. Using a
simple algebraic manipulation, the loss can be shown to/bg % e2/(*)). So for this variant of
AdaBoost, we sel(z) = 1/(1+ ¢?*). However, in this case, note that the learning algorithm is
not directly attempting to minimize this loss (it is instead minimizing the exponential loss described
above).

Regression. There are various algorithms, such as neural networks and least squares regression,
that attempt to minimize the squared error loss functipa f(z))%. When they’s are in{ -1, +1},
this function can be rewritten as

(y—f(2)* = ¥ly— f(x)?
(yy — yf(2))?
(1—yf(z)>

Thus, for binary problems, minimizing squared error fits our framework whégg = (1 — z)2.
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Logistic regression. Inlogistic regression and related methods such as lterative Scaling&€&isz
Tusrady, 1984; Della Pietra, Della Pietra, & Lafferty, 1997; Lafferty, 1999), and LogitBoost (Fried-
man et al., 2000), one posits a logistic model for estimating the conditional probability of a positive

label:
1

1t 2@

One then attempts to maximize the likelihood of the labels in the sample, or equivalently, to minimize
the log loss

Priy = +1]z] =

—log(Pr [y|z]) = log(1 + 2/ @),
Thus, for logistic regression and related methods, we fake = log(1 + e~2).
Decision trees. The most popular decision tree algorithms can also be naturally linked to loss

functions. For instance, Quinlan’s C4.5 (1993), in its simplest form, for binary classification
problems, splits decision nodes in a manner to greedily minimize

~apf T4t
3 (pj I (%) +pin (pf 7, >> @
leafj pj Py

Wherep;-“ andpj‘ are the fraction of positive and negative examples reachingjaakpectively.
The prediction at leaj is then sigl(lpj —p; ). Viewed differently, imagine a decision tree that
instead outputs a real numbgrat each leaf with the intention of performing logistic regression as
above. Then the empirical loss associated with logistic regression is

Z (pj' In(1+ e~2/7) +p; In(1+ esz)) .

leafj

This is minimized, over choices g¢f, whenf; = (1/2) |n(p;r/p;). Plugging in this choice gives
exactly Eq. (2), and thresholding gives the hard prediction rule used earlier. Thus, C4.5, in this
simple form, can be viewed as a margin-based learning algorithm that is naturally linked to the loss
function used in logistic regression.

By similar reasoning, CART (Breiman et al., 1984), which splits using the Gini index, can be
linked to the square loss function, while Kearns and Mansour’s (1996) splitting rule can be linked
to the exponential loss used by AdaBoost.

The analysis we present in the next section might also hold for other algorithms that tacitly
employ a function of the margin. For instance, Freund’s BrownBoost algorithm (1999) implicitly
uses an instance potential function that satisfies the condition we impdselderefore, it can also
be combined with output coding and used to solve multiclass problems. To conclude this section,
we plot in Figure 1 some of the loss functions discussed above.

3. Output Coding for Multiclass Problems

In the last section, we discussed margin-based algorithms for learning binary problems. Suppose
now that we are faced with a multiclass learning problem in which eachgabehosen from a set

Y of cardinalityk > 2. How can a binary margin-based learning algorithm be modified to handle a
k-class problem?
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exp(-2) 1 © (1-2)?

L(-z) N
NG N e 1/2*(L(-2)+L(2))
T 12U2)r) *

L(-2)

L2X(L-2)L@)
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Figure 1: Some of the margin-based loss functions discussed in the paper: the exponential loss
used by AdaBoost (top left); the square loss used in least-squares regression (top right);
the “hinge” loss used by support-vector machines (bottom left); and the logistic loss used
in logistic regression (bottom right).

Several solutions have been proposed for this question. Many involve reducing the multiclass
problem, in one way or another, to a set of binary problems. For instance, perhaps the simplest
approach is to create one binary problem for each of ttlasses. Thatis, for eache ), we apply
the given margin-based learning algorithm to a binary problem in which all examples lgbeled
are considered positive examples and all other examples are considered negative examples. We
then end up with; hypotheses that somehow must be combined. We call thisrteeagainst-all
approach.

Another approach, suggested by Hastie and Tibshirani (1998), is to use the given binary learning
algorithm to distinguish each pair of classes. Thus, for each distinct-pair € ), we run the
learning algorithm on a binary problem in which examples labgledr; are considered positive,
and those labeled = r, are negative. All other examples are simply ignored. Again,(@)e
hypotheses that are generated by this process must then be combined. We call dhipdire
approach.

A more general suggestion on handling multiclass problems was given by Dietterich and
Bakiri (1995). Their idea is to associate each class )Y with a row of a “coding matrix”

M € {—1, +1}**¢ for somel. The binary learning algorithm is then run once for each column of
the matrix on the induced binary problem in which the label of each example lapé&edapped
to M (y, s). This yields/ hypotheseg,. Given an example, we then predict the labglfor which
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row y of matrix M is “closest” to( f1(z), . . . , fe(x)). This is the method aérror correcting output
codeqECOC).

In this section, we propose a unifying generalization of all three of these methods applicable
to any margin-based learning algorithm. This generalization is closest to the ECOC approach
of Dietterich and Bakiri (1995) but differs in that the coding matrix is taken from the larger set
{—1,0,+1}%*¢ That is, some of the entrig (r, s) may be zero, indicating that we don't care
how hypothesig; categorizes examples with label

Thus, our scheme for learning multiclass problems using a binary margin-based learning algo-
rithm A works as follows. We begin with a giveroding matrix

M e {—1,0,+1}F*¢

Fors =1,...,¢, the learning algorithrd is provided with labeled data of the forga;, M (y;, s))
for all examplesi in the training set but omitting all examples for whid(y;,s) = 0. The
algorithm A uses this data to generate a hypoth¢sist’ — R.

For example, for the one-against-all approab,is a k£ x k£ matrix in which all diagonal
elements are-1 and all other elements arel. For the all-pairs approach! is ak x (’5) matrix
in which each column corresponds to a distinct [pair ). For this columnM has+1 in rowrs,

—1in rowr, and zeros in all other rows.

As an alternative to callingl repeatedly, in some cases, we may instead wish to add the column
indexs as a distinguished attribute of the instances received,land then learn singlehypothesis
on this larger learning problem rather théthypotheses on smaller problems. That is, we provide
A with instances of the forni(z;, s), M (y;, s)) for all training exampleg and all columnss for
which M (y;,s) # 0. Algorithm A then produces ainglehypothesisf : X x {1,....¢/} — R.
However, for consistency with the preceding approach, we dé¢fing to bef(x, s). We call these
two approaches in whicH is called repeatedly or only once theulti-call andsingle-callvariants,
respectively.

We note in passing that there are no fundamental differences between the single and multi-call
variants. Most previous work on output coding employed the multi-call variant due to its simplicity.
The single-call variant becomes handy when an implementation of a classification learning algorithm
that outputs a single hypothesis of the fofim X x {1,...,¢} — R is available. We describe
experiments with both variants in Section 6.

For either variant, the algorithmdl attempts to minimize the losé on the induced binary
problem(s). Recall thak is a function of the margin of an example so the losg.afn an example
x; with induced labelM (y;, s) € {—1,+1} is L(M (i, s) fs(zi)). WhenM (y;,s) = 0, we want
to entirely ignore the hypothesfs in computing the loss. We can define the loss to be any constant
in this case, so, for convenience, we choose the loss Ig®eso that the loss associated with
on example is L(M (y;, s) fs(x;)) in all cases.

Thus, the average loss over all choices ahd all examplesis

m L
S S EM (i) fulan). ©
i=1s=1
We call this theaverage binary lossf the hypotheseg, on the given training set with respect to
coding matrixM and lossL. It is the quantity that the calls td have the implicit intention of
minimizing. We will see in the next section how this quantity relates to the misclassification error
of the final classifier that we build on the original multiclass training set.
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Let M(r) denote row of M and letf(z) be the vector of predictions on an instance

f(z) = (f1(@), ..., fo(x)).

Given the predictions of thé;’s on a test point;, which of thek labels in)) should be predicted?
While several methods of combining tligs can be devised, in this paper, we focus on two that are
very simple to implement and for which we can analyze the empirical risk of the original multiclass
problem. The basic idea of both methods is to predict with the latlose ronM (r) is “closest”
to the prediction€(z). In other words, predict the labelthat minimizesi(M(r), f(x)) for some
distanced. This formulation begs the question, however, of how we measure distance between the
two vectors.

One way of doing this is to count up the number of positioimswhich the sign of the prediction
fs(x) differs from the matrix entryé/ (r, s). Formally, this means our distance measure is

¢ .
an(M(r) () = 3 (AR L))

s=1

(4)

where sigiiz) is +1if z > 0, =1 if z < 0, and 0 ifz = 0. This is essentially like computing
Hamming distance between ravI(r) and the signs of thg,(z)’s. However, note that if either
M(r,s) or fs(x) is zero then that component contribute® 1o the sum. For an instaneeand a
matrix M, the predicted labe) &€ {1,...,k} is therefore

g = arg rgindH(M(r),f(x)) .

We call this method of combining th&’s Hamming decoding

A disadvantage of this method is that it ignores entirely the magnitude of the predictions which
can often be an indication of a level of “confidence.” Our second method for combining predictions
takes this potentially useful information into account, as well as the relevant loss fufictibich
is ignored with Hamming decoding. The idea is to choose the lab®t is most consistent with
the predictiongs(z) in the sense that, if examptewere labeled:, the total loss on example, r)
would be minimized over choices ofe ). Formally, this means that our distance measure is the
total loss on a proposed exampie r):

4

dr(M(r), f(z)) =D L(M(r,s)fs(x)) - (5)

s=1
Analogous to Hamming decoding, the predicted lapel{1,. .., k} is
7y = arg rr;indL(M(r),f(x)) .

We call this approacloss-based decodingAn illustration of the two decoding methods is given

in Figure 2. The figure shows the decoding process for a problem with 4 classes using an output

code of lengtlY = 7. For clarity we denote in the figure the entries of the output code matrix by

— and 0 (instead of-1, —1 and 0). Note that in the example, the predicted class of the loss-based

decoding (which, in this case, uses exponential loss) is different than that of the Hamming decoding.
We note in passing that the loss-based decoding method for log-loss is the well known and

widely used maximum-likelihood decoding which was studied briefly in the context of ECOC by

Guruswami and Sahai (1999).
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- 0 - - + - -| D=35

Sign of Binary Classifiers + - 0 + + + - | D=45
+ - - - - -+

+ 0 - - - + +| D=15

0 D=2.5

- 0 - - + - -| D=30133
Output of Binary Classifiers + - 0 + + + - | D=192,893
05 -7 -1 -2 -10 -12

+ 0 - - - + +| D=162,757

Figure 2: An illustration of the multiclass prediction procedure for Hamming decoding (top) and
loss-based decoding (bottom) for a 4-class problem using a code of length 7. The
exponential function was used for the loss-based decoding.

Class 3
(Prediction)

Class 4
(Prediction)

4. Analysis of the Training Error

In this section, we analyze the training error of the output coding methods described in the last
section. Specifically, we upper bound the training error of the two decoding methods in terms of
the average binary loss as defined in Eq. (3), as well as a measure of the minimum distance between
any pair of rows of the coding matrix. Here, we use a simple generalization of the Hamming
distance for vectors over the et 1, 0, +1}. Specifically, we define the distance between two rows

u,v € {-1,0 +1}* to be

¢ 0 if us =vs Aug Z0Avs #0
Au,v) = Z 1 if ug #£vs ANug Z0OAwvs #0
s=1| 1/2 ifus=0Vu,=0
l

_ Z 1 _;svs

s=1
_A—u-v
2
Our analysis then depends on the minimum distanisetween pairs of distinct rows:
p = Min{AM(r1), M(r)) : 71 # r2}. (6)
For example, for the one-against-all codes 2. For the all-pairs code, = ((’;) —1)/2+1, since
every two rowsry, 2 have exactly one component with opposite sighB({1,s) = —M(rz, s)
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andM(r1,s) # 0) and for the rest at least one component of the two i3Mr,s) = 0 or
M(r,,s) = 0). For a random matrix with components chosen uniformly over etthdr, +1} or
{=1,0, +1}, theexpectedralue of A(M(r1), M(r2)) for any distinct pair of rows is exactl/2.

Intuitively, the largerp, the more likely it is that decoding will “correct” for errors made by
individual hypotheses. This was Dietterich and Bakiri's (1995) insight in suggesting the use of
output codes with error-correcting properties. This intuition is reflected in our analysis in which a
larger value ofp gives a better upper bound on the training error. In particular, Theorem 1 states
that the training error is at mogfp times worse than the average binary loss of the combined
hypotheses (after scaling the lossibi0)). For the one-against-all matri&/p = ¢/2 = k/2 which
can be large if the number of classes is large. On the other hand, for the all-pairs matrix or for a
random matrix¢/p is close to the constant 2, independent of

We begin with an analysis of loss-based decoding. An analysis of Hamming decoding will
follow as a corollary. Concerning the logs our analysis assumes only that

L(z) + L(—=)
2
for all z € R. Note that this property holds i is convex, although convexity is by no means a

necessary condition. Note also that all of the loss functions in Section 2 satisfy this property. The
property is illustrated in Figure 1 for four of the loss functions discussed in that section.

> L(0)>0 (7)

Theorem 1 Lete be the average binary loss (as defined in Eq. (3)) of hypothgses., f, on a
given training set(z1,y1), .. ., (m, ¥m) With respect to the coding matrdd € {—1,0, +1}**¢
and lossL, wherek is the cardinality of the label s€p. Letp be as in Eq. (6). Assume théat
satisfies Eq. (7) for alt € R. Then the training error using loss-based decoding is at most

le
pL(0)’

Proof: Suppose that loss-based decoding incorrectly classifies an exéample Then there is
some labet # y for which

dr,(M(r), £(z)) < dp(M(y),f(z)). (8)

Let
Sn=A{s:M(r,s) # M(y,s) N M(r,s) #0A M(y,s) # O}

be the set of columns &1 in which rowsr andy differ and are both non-zero. Let
So={s:M(r,s) =0V M(y,s) =0}

be the set of columns in which either rowor row y is zero. Letz, = M(y,s)fs(z) and
2t = M(r,s)fs(x). Then Eq. (8) becomes

S:l S:l
which implies
Y LE) < Y Liz)
SESAUSH sE€SpUSH
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sincez; = z. if s & Sp U Sp. This in turn implies that

4

ZL(zs)Z Z L(zs)

s=1 s€SpUSp
1
> 5 > (L(%) + L(z))
s€SpUSp
= = Z ) + L(z5))
SESA
+5 Z ) + L(zs))- 9)
SESO

If s € Sathenz, = —z; and, by assumptionL(—zs) + L(z5))/2 > L(0). Thus, the first term
of Eq. (9) is at leasL(0) |Sa|. If s € S, then eitherz;, = 0 or 2z, = 0. Either case implies that
L(z.) + L(z5) > L(0). Thus, the second term of Eq. (9) is at 14$0) |So|/2.

Therefore, Eq. (9) is at least

£(0) (158l + 52 = Lo, M) 2 p20)

In other words, a mistake on training exampig, y;) implies that

4

> L(M(y;, s)fs(zi)) = pL(0)

s=1

so the number of training mistakes is at most

1 i i ) fu(z1)) = mle
pL(0) & 2 MW 910 = Lry
and the training error is at moét/(pL(0)) as claimed. m

As a corollary, we can give a similar but weaker theorem for Hamming decoding. Note that
we use a different assumption about the loss funcliphut one that also holds for all of the loss
functions described in Section 2.

Corollary 2 Let f1,..., fo be a set of hypotheses on a training &et, y1), . . . , (zm, ym ), and let
M € {—1,0,+1}**¢ be a coding matrix wherg is the cardinality of the label sét. Letp be as
in Eq. (6). Then the training error using Hamming decoding is at most

m L

S5 (= sign(M (yi, 5) f (i) - (10)

1
P s—1

Moreover, ifL is a loss function satisfyin§j(z) > L(0) > 0for z < 0 ande is the average binary
loss with respect to this loss function, then the training error using Hamming decoding is at most

2le
pL(0)

(13)
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Proof: Consider the loss functioH (z) = (1 — sign(z))/2. From Egs. (4) and (5), it is clear that
Hamming decoding is equivalent to loss-based decoding using this loss function. MorEover,
satisfies Eq. (7) for alt so we can apply Theorem 1 to get an upper bound on the training error of

2 m l

= > H(M(yi,s) fs(xi) (12)

L |

which equals Eq. (10).

For the second part, note that4f < 0 thenH(z) < 1 < L(z)/L(0), and if = > 0 then
H(z) = 0< L(z)/L(0). This implies that Eq. (12) is bounded above by Eq. (11)m

Theorem 1 and Corollary 2 are broad generalizations of similar results proved by Schapire and
Singer (1999) in a much more specialized setting involving only AdaBoost. Also, Corollary 2
generalizes some of the results of Guruswami and Sahai (1999) that bound the multiclass training
error in terms of the training (misclassification) error rates of the binary classifiers.

The bounds of Theorem 1 and Corollary 2 depend implicitly on the fraction of zero entries in
the matrix. Intuitively, the more zeros there are, the more examples that are ignored and the harder
it should be to drive down the training error. At an extrem@ifis all zeros, themp is fairly large
(¢/2) but learning certainly should not be possible. To make this dependence explicit, let

T ={(i,5) : M(yi,s) = 0}

be the set of pairg s inducing examples that are ignored during learning.q¢.et|T'| /(m/¥) be the
fraction of ignored pairs. Let be the average binary logsstrictedto the pairs not ignored during
training:

Z L yza fs(xz))

| (i,5)€T*

whereT* = {(i, s) : M(y;,s) # 0}. Then the bound in Theorem 1 can be rewritten

12 ; .
pL( ( Z L + Z L yla fs($z))) :;<q+(l—q)m> .

(4,8)€T (i,8)¢T

Similarly, lete be the fraction of misclassification errors madersn

Z [M{(yi, s) # sign(fs(z:))]-

| (z s)eTe

The first part of Corollary 2 implies that the training error using Hamming decoding is bounded

above by

§<q+2(1—q>e>.

We see from these bounds that there are many trade-offs in the design of the codinguinatrix
On the one hand, we want the rows to be far apart soithdlt be large, and we also want there to
be few non-zero entries so thawill be small. On the other hand, attempting to makarge and
g small may produce binary problems that are difficult to learn, yielding large (restricted) average
binary loss.
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5. Analysis of Generalization Error for Boosting with Loss-based Decoding

The previous section considered only the training error using output codes. In this section, we take
up the more difficult task of analyzing the generalization error. Because of the difficulty of obtaining
such results, we do not have the kind of general results obtained for training error which apply to a
broad class of loss functions. Instead, we focus only on the generalization error of using AdaBoost
with output coding and loss-based decoding. Specifically, we show how the margin-theoretic
analysis of Schapire et al. (1998) can be extended to this more complicated algorithm.

Briefly, Schapire et al.'s analysis was proposed as a means of explaining the empirically observed
tendency of AdaBoost to resist overfitting. Their theory was based on the notion of an example’s
marginwhich, informally, measures the “confidence” in the prediction made by a classifier on that
example. They then gave a two-part analysis of AdaBoost: First, they proved a bound on the
generalization error in terms of the margins of the training examples, a bound that is independent
of the number of base hypotheses combined, and a bound suggesting that larger margins imply
lower generalization error. In the second part of their analysis, they proved that AdaBoost tends to
aggressively increase the margins of the training examples.

In this section, we give counterparts of these two parts of their analysis for the combination of
AdaBoost with loss-based decoding. We also assume that the single-call variant is used as described
in Section 3. The result is essentially the AdaBoost.MO algorithm of Schapire and Singer (1999)
(specifically, what they called “Variant 2").

This algorithm works as follows. We assume that a coding maifiis given. The algorithm
works in rounds, repeatedly calling the base learning algorithm to obtain a base hypothesis. On each
roundt = 1,...,T, the algorithm computes a distributidp, over pairs of training examples and
columns of the matri, i.e., overthe sefl, ..., m} x Lwherel = {1,...,¢}. The base learning
algorithm uses the training data (with binary labels as encoded Mjrand the distributiorD; to
obtain a base hypothedis: X x £ — {—1, +1}. (In generalj;’s range may b&, but here, for
simplicity, we assume tha; is binary valued.) The erras; of h; is the probability with respect to
D, of misclassifying one of the examples. That is,

e = Plisop, [M(yi,s) # hi(xi, )]

m {
= ZZDt(i,S)[[M(yi,s);éht(xi’s)]]‘

i=1s=1

The distributionD, is then updated using the rule

Dy (i, s) exp(—ay M (y;, s)hi(x;, )
Zy '

Here,a; = (1/2) In((1— €;)/€;) (wWhich is nonnegative, assuming, as we do, ¢éhat 1/2), andZ,
is a normalization constant ensuring tliat, ; is a distribution. It is straightforward to show that

Zt = 2\/ Et(l - Et). (14)

(The initial distribution is chosen to be uniform so ttiat(i, s) = 1/(m?).)
After T rounds, this procedure outputs a final classifievhich, because we are using loss-based
decoding, is

Diya(i, ) = (13)

¢ T
H(z) = argyrrgijpz exp (—M(y, $) Y arhy(z, s)) . (15)
s=1 t=1
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We begin our margin-theoretic analysis with a definition of the margin of this combined multi-
class classifier. First, let

If we let
T
n= Z O, (16)
t=1
and
1 T
f((II,S) = _Zatht(was)a (17)
M3
we can then rewrite Eq. (15) as
H(z) = argmaxv(f,n, z,y). (18)
yey

Since we have transformed the argument of the minimum in Eq. (15) by a strictly decreasing function
(namely,z — —(1/n) In(z/£)) to arrive at Eq. (18) it is clear that we have not changed the definition
of H. This rewriting has the effect of normalizing the argument of the maximum in Eqg. (18) so that
it is always in the rangg-1, +1]. We can now define thmarginfor a labeled examplér, y) to be

the difference between the vat¢f, n, z, y) given to the correct label, and the largest vote given

to any other label. We denote the marginfy; , (z,y). Formally,

1
Mf,ﬂ(xay) = E V(fﬂnaxay) - T;’%XV(fanaﬁUar) )

where the factor of A2 simply ensures that the margin is in the rafgé, +-1]. Note that the margin
is positive if and only ifH correctly classifies example;, ).

Although this definition of margin is seemingly very different from the one given earlier in the
paper for binary problems (which is the same as the one used by Schapire et al. in their comparatively
simple context), we show next that maximizing training-example margins translates into a better
bound on generalization error, independent of the number of rounds of boosting.

Let H be the base-hypothesis space{efl, +1}-valued functions ot x L. We let cdH)
denote theconvex hullof #:

CO(H) = {f:wHZahh(x)|ah20,2ah:1},
h h

where it is understood that each of the sums above is over the finite subset of hypotl#¢des in
which ay, > 0. Thus,f as defined in Eq. (17) belongs to(@o).

We assume that training examples are chosen i.i.d. from some distrilidtomt x ). We
write probability or expectation with respect to a random choice of an exafmpig according to
D as Pp[-] and B> [-]. Similarly, probability and expectation with respect to an example chosen
uniformly at random from training sét is denoted Py[-] and E [-].

We can now prove the first main theorem of this section which shows how the generalization
error can be usefully bounded when most of the training examples have large margin. This is very
similar to the results of Schapire et al. (1998) except for the fact that it applies to loss-based decoding
for a general coding matrik1.
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Theorem 3 Let D be a distribution overX x ), and letS be a sample ofn examples chosen
independently at random accordingZa Suppose the base-classifier spatdas VC-dimension
d, and let§ > 0. Assume thatn > d¢ > 1 where/ is the number of columns in the coding matrix
M. Then with probability at least — 6 over the random choice of the training sgtevery weighted
average functiorf € co(#) and every, > 0 satisfies the following bound for &l > 0:

’ 1/2

Proof: To prove the theorem, we will first need to define the notion of a sloppy cover, slightly
specialized for our purposes. For a classof real-valued functions ovet’ x ), a training
sets C X x Y of sizem, and real number8 > 0 ande > 0, we say that a functlon class
F is an e-sloppy#-cover of F with respect toS if, for all F in F, there existsf’ in F with

Prg [|F(m,y) F(z,y)| > 9] <e. Let N (F,0,¢e,m) denote the maximum, over all training sets
S of sizem, of the size of the smallestsloppyd-cover of F with respect taS.

Using techniques from Bartlett (1998), Schapire et al. (1998, Theorem 4) give a theorem which
states that, foe > 0 andé > 0, the probability over the random choice of training Sehat there
exists any functio¥ € F for which

PrD [F(]:,y) < 0] > PrS [F(ZE,y) < 0] +e

is at most
2N'(F,0/2,¢/8,2m)e <™/32. (19)

We prove Theorem 3 by applying this result to the family of functions
F={My,: fecoH),n>0}.
To do so, we need to construct a relatively small set of functions that approximate all the functions

in F.
We start with a lemma that implies that any functitm;, can be approximated y1; ; for

somer’in the small finite set
In¢ In¢
6.9— {ﬁ .'L—l,..., ’VTOZ“}

Lemma 4 For all > 0, there exists) € & such that for allf € co(#) and forallz € X',r € ),

|’/(fa7],$,y) _V(faﬁaway” SH
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Proof: Let
1, (1<
N(n,z)=—In| =) 7
=5 (f 2 >
for z € RY. We claim first that, for any, and for 0< 1 < 75,

0 < Al,2) — AN, 7) < (n—ll - n—12> Ine. (20)

For the first inequality, it suffices to show th&{n) = A(n, z) is nondecreasing. Differentiating,
we find that
dF  Int+ ¢ psInps

dn i @)

wherep, = e/ Zﬁ:l es. Since entropy ovef symbols cannot exceed Anthis quantity is
nonnegative.

For the second inequality of Eq. (20), it suffices to show @&y) = A(n,z) + (In2)/n is
nonincreasing. Again differentiating (or reusing Eq. (21)), we find that

dG _ Yi_apsInp,
dn 7
which is nonpositive since entropy cannot be negative.

So, ifn > miné&y, then lety"= (In £)/(i0) be the largest element 6§ that is no bigger than.
If i > 1then

In_é< < In¢
0 =TS -1e
SO
0<AmD) ~AGD) < (f->)ine
Ui
i -10y,
< <m_7ln€ >In£_t9.
If : =1, then
. 0 1
OS/\(n,Z)—/\(n,Z)S<W—E>IMS0.

It remains then only to handle the case that small. Assume that € [—1, +1]¢. Then

l
A(n,z) = }In (% Ze”“)
s=1

Ui

}In ex 7]_2+Q§:
n P 2 Eszlzs

n 1<
=ty

IN
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This is because, as proved by Hoeffding (1963), for any random varé&héh « < X < b, and
forn > 0,

E [e"X] < exp <772(b78_a)2 + nE[X]> .

On the other hand, by Eq. (20),
Nn,z) = limA(n,z)

n—0

im 121
n—0 %Zﬁ:l enzs
1 e

= Z Zzs

s=1

where the first equality uses I8gital’s rule. Thus, ifp < min&y, then we take) = min&y ~ 26
so that

1< . 1 i
ZZZS S/\(U,Z) S/\(U,Z) < Zzzs‘i‘g
s=1

which implies that
IA(n,z) — N7,z

assuming: € [—1,+1]%. Sincev(f,n,z,r) = —\(n,2)
this completes the lemma.m

Let S be a fixed subset ot x Y of sizem. Because{ has VC-dimensioml, there exists a
subseti{ of H of cardinality (e/mn/d)? that includes all behaviors ofi. That is, for allh € H,
there existd € # such that(z, s) = h(z, s) for all (z,y) € S and alls € £. Now let

IN

ith zy = —M(r,s)f(z,s) € [-1,+1],

1Y -
Cn = {f:(:v,s) HNZhi(x,sHhiE’H}

i=1
be the set of unweighted averages\btlements i, and let
Fno={Mysyn:f€Cn,n€&}.

We will show thatFy 4 is a sloppy cover ofF.
Let f € co(#H). Then we can write

flz,s) = ajhj(z,s)
J
wherea; > 0 and}”; a; = 1. Because we are only interested in the behavigt ofi points inS,
we can assume without loss of generality that gach H.

Lemma5 Suppose for somee X and someg € Cy, we have thatf(z, s) — g(z, s)| < 6 for all
s € L. Letn > 0and lety) € & be asin Lemma 4. Then for alle ),

|Mpn(z,y) — Mgz, y)| < 20.
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Proof: Forallr € ),

Y exp(—nM(r,s)f(z,s))

- (maxeXp( nM (r, ($,8)—f($,3))))
= maXM(r s)(f(x,s) — (:Jc s))
< maxM(r )12 5) — g, 5)| <0

v(f,n,z,r) —v(g,n,x,r) = %n(zseXpE nM (r x,s)))

IA

where the first inequality uses the simple fact tfat a;)/(>°; b;) < max a;/b; for positivea;’s
andb;’s. By the symmetry of this argument,

|V(f77]7$7’r) —V(9a77,$,7")| So

Also, from Lemma 4,

v(g,n,z,7) —v(g,0,z,7)] <0
SO

lwv(f,m,z,r) —vig,n,z,7)| <20

for all » € Y. By definition of margin, this implies the lemma.m

Recall that the coefficients; are nonnegative and that they sum to one; in other words, they
define a probability dlstrlbutlon ovét It will be useful to imagine sampling from this distribution.
Specifically, suppose thdt € 7 is chosen in this manner. Then for fixéd, s), h(z, s) is a
{=1, +1}-valued random variable with expected value of exaffly, s). Consider now choosing
N such functlonfhl, .. ﬁN independently at random, each according to this same distribution, and
letg = (1/N) SN, hs. Theng € Cn. Let us denote by the resulting distribution over functions
in Cy. Note that, for fixedz, s), g(z, s) is the average aV {—1, +1}-trials with expected value

f(z,3).
For any(z,y) € S,

Plno [[IMyy(z,y) — Mgi(z,y)| > 20] < Proglds€ L:|f(z,s) —g(z,s)] > 0]
¢

< Y Pl [If(z,5) = g(x,5)| > 0]
s=1

< 20 NO?/2,

These three inequalities follow, respectively, from Lemma 5, the union bound and Hoeffding’s
inequality. Thus,

Ej~o [PrS HMf,q(:E,y) — Myalz,y)| > 20]]
= Es [Pryg [[Myy(z,y) — Mya(z,y)| > 20]]
< 2We N2

Therefore, there exisise C such that

Prs [| M (3, y) — My(w,y)| > 20] < 20e™N/2,
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We have thus shown thé\tN,g isa Ze—NGZ/Z—sIoppy d-cover of F. In other words,

g2 e!m\ Y Tine
N (F,20,20e N/2, )<|7Na|<( d) [WW

Making the appropriate substitutions, this gives that Eq. (19) is at most

(324/62) In(16¢/e)
16 |n€ <2€£m> e_m52/32. (22)

62 d

Let
1/2

_ 16 In (lgelgl) n 2d In (2@€m> In el’m
€= 8m o2 d d

Note that the quantity inside the square rootis atle@gti262) > d/(me). Thuse > 16,/d/(me).
Using this approximation for the first occurrencespit follows that Eq. (22) is at most

We have thus proved the bound of the theorem for a single given chotte-00 with high
probability. To prove that the bound holds simultaneously fodat 0, we can use exactly the
same argument used by Schapire and Singer (1999) in the very last part of their Theormm 8.

Thus, we have shown that large training-set margins imply a better bound on the generalization
error, independent of the number of rounds of boosting. We turn now to the second part of our
analysis in which we prove that AdaBoost.MO tends to increase the margins of the training examples,
assuming that the binary errarsof the base hypotheses are bounded away from the trivial error
rate of 1/2 (see the discussion that follows the proof). The theorem that we prove below is a direct
analog of Theorem 5 of Schapire et al. (1998) for binary AdaBoost. Note that we focus only on
coding matrices that do not contain zeros. A slightly weaker result can be proved in the more
general case.

Theorem 6 Suppose the base learning algorithm, when called by AdaBoost.MO using coding
matrixM € {—1,4+1}**¢ generates hypotheses with weighted binary training eregys. . , e
Letp be asin Eq. (6). Then for ary> 0, we have that

ﬁ { Fer—

¢
Prg [an(x y) < 9 < =
P i1

wheref andn are as in Egs. (16) and (17).

Proof. Suppose, for some labeled examftey), M, (z,y) < 6. Then, by definition of margin,
there exists a label € Y — {y} for which

1
E(V(fanaxay) —V(faﬂ,%r)) Soa

that is

l J4
Z e—nM(T,S)f(CU,S) S 62770 Z e—nM(y:S)f(l":s) . (23)
s=1 s=1
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Letz; = nM(y, s)f(z,s) —n@ andz, = nM(r,s)f(z,s) + nb. LetSy = {s € L : M(r,s) #
M(y,s)}. Then Eq. (23) implies

s=1
and so
V4 ! —z —
. e 4 e
e = > _
N T
s=1 s=1
i
e % e s
- 2
s€Sp
e % 4 g%
= Y sz
SESp

This is because, i € Sy thenz, = —z,, and because + 1/x > 2 for allz > 0.
Therefore, itM; , (z,y) < 6 then

Ze nM(y,s) f(z,s) > pe” no

Thus, the fraction of training examplé$or which M, (x;, y;) < @ is at most

e” 3 f M (i,5)f (255)
P i1 5=
ten® b1 T
= —Zz_exp _ZatM(yias)ht($i78) (24)
poioam =1
ten?
- R (M) e

T
_ Ma (H zt> (26)

Here, Eq. (24) uses the definition gfandn as in Egs. (16) and (17). Eq. (25) uses the definition
of Dr, 1 as defined recursively in Eq. (13). Eq. (26) uses the factiihat; is a distribution. The
theorem now follows by plugging in Eq. (14) and applying straightforward algebma.

As noted by Schapire et al. (1998), this bound can be usefully understood if we assume that
e, <1/2 —~forallt. Then the upper bound simplifies to

T

 (Va= 2 2y)

If & < ~, then the expression inside the parentheses is smaller than one so that the fraction of
training examples with margin belotvdrops to zero exponentially fastif
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Figure 3: Comparison of the average binary error, the multiclass error using Hamming decoding,
and the multiclass error using loss-based decoding with AdaBoost on synthetic data,
using a complete code (left) and the one-against-all code (right).

6. Experiments

In this section, we describe and discuss experiments we have performed with synthetic data
and with natural data from the UCI repository. We run both sets of experiments with two base-
learners: AdaBoost and SVM. Two primary goals of the experiments are to compare Hamming
decoding to loss-based decoding and to compare the performance of different output codes. We
start with a description of an experiment with real-valued synthetic data which underscores the
tradeoff between the complexity of the binary problems induced by a given output code and its error
correcting properties.

In the experiments with synthetic data, we generated instances according to the normal distribu-
tion with zero mean and a unit variance. To create a multiclass problenk witlsses, we sét+ 1
thresholds, denotefh, 64, ..., 6, wherefg = 0 andf, = co. An instancer is associated with
classj ifand only if6,_1 < |z| < ;. For eacht € {3,...,8} we generated 10 sets of examples,
where each set was of size Z00The thresholds were set so that exactly 100 examples will be
associated with each class. Similarly, we generated the same number of test sets (of the same size)
using the thresholds obtained for the training data to label the test data. We used AdaBoost as the
base learner and set the number of rounds of boosting for each binary problem to 10 and called
AdaBoost repeatedly for each column (multi-call variant). For weak hypotheses, we used the set of
all possible threshold functions. That is, a weak hypothesis based on a threslmitti label an
instancer as+1 if |z| < ¢t and—1 otherwise.

In Figure 3, we plot the test error rate as the functiork dbr two output coding matrices.
The first is a complete code whose columns correspond to all the non-trivial partitions of the set
{1,...,k} into two subsets. Thus, this code is a matrix of dize (2*~1— 1). The second code
was the one-against-all code. For each code, we plot the average binary test error, the multiclass
errors using Hamming decoding, and the multiclass errors using loss-based decoding. The graphs
clearly show that Hamming decoding is inferior to loss-based decoding and yields much higher error
rates. The multiclass errors of the two codes using loss-based decoding are comparable. While the
multiclass error rate with the complete code is slightly lower than the error rate for the one-against-
all code, the situation is reversed for the average binary errors. This phenomenon underscores the
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#Examples
Problem Train | Test | #Attributes| #Classes
dermatology 366 - 34 6
satimage 4435| 2000 36 6
glass 214 - 9 7
segmentation 2310 - 19 7
ecoli 336 - 8 8
pendigits 7494 | 3498 16 10
yeast 1484 - 8 10
vowel 528 | 462 10 11
soybean 307| 376 35 19
thyroid 9172 - 29 20
audiology 226 - 69 24
isolet 6238 | 1559 617 26
letter 16000 | 4000 16 26

Table 1: Description of the datasets used in the experiments.

tradeoff between the redundancy and correcting properties of the output codes and the difficulty of
the binary learning problems it induces. The complete code has good error correcting properties;
the distance between each pair of rowgis- (I + 1)/2 = 2=2. However, many of the binary
problems that the complete code induces are difficult to learn. The distance between each pair of
rows in the one-against-all code is small:= 2. Hence, its empirical error bound according to
Theorem 1 seems inferior. However, the binary problems it induces are simpler and thus its average
binary losse is lower than the average binary loss of the complete code and the overall result is
comparable performance.

Next, we describe experiments we performed with multiclass data from the UCI repository (Merz
& Murphy, 1998). We used two different popular binary learners, AdaBoost and SVM. We chose
the following datasets (ordered according to the number of classes): Dermatology, Satimage, Glass,
Segmentation, E-coli, Pendigits, Yeast, Vowel, Soybean-large, Thyroid, Audiology, Isolet, Letter-
recognition. The properties of the datasets are summarized in Table 1. In the SVM experiments, we
skipped Audiology, Isolet, Letter-recognition, Segmentation, and Thyroid, because these datasets
were either too big to be handled by our currentimplementation of SVM or contained many nominal
features with missing values which are problematic for SVM. All datasets have at least six classes.
When available, we used the original partition of the datasets into training and test sets. For the
other datasets, we used 10-fold cross validation. For SVM, we used polynomial kernels of degree
4 with the multi-call variant. For AdaBoost, we used decision stumps for base hypotheses. By
modifying an existing package of AdaBoost.MH (Schapire & Singer, 1999) we were able to devise
a simple implementation of the single-call variant that was described in Section 5. Summaries of
the results using the different output codes described below are given in Tables 2 and 3.

We tested five different types of output codes: one-against-all, complete (in which there is one
column for every possible (non-trivial) split of the classes), all-pairs, and two types of random
codes. The first type of random code ha8 log,(k)] columns for a problem witlk classes. Each
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| Hamming Decoding |

Problem One-vs-all| Complete | All-Pairs Dense Sparse
dermatology 5.0 4.2 3.1 3.9 3.6
satimage 14.9 12.3 11.7 12.3 13.2
glass 31.0 31.0 28.6 28.6 27.1
segmentation 0.0 0.1 0.0 0.1 0.1
ecoli 215 18.5 19.1 17.6 19.7
pendigits 8.9 8.6 3.0 9.3 6.2
yeast 44.7 41.9 42.5 43.9 49.5
vowel 67.3 59.3 50.2 62.6 545
soybean 8.2 - 9.0 5.6 8.0
thyroid 7.8 - - 12.3 8.1
audiology 26.9 - 23.1 23.1 23.1
isolet 9.2 - - 10.8 10.1
letter 27.7 - 7.8 30.9 27.1

| Loss-based Decodind.{) |
dermatology 4.2 4.2 3.1 3.9 3.6
satimage 12.1 12.4 11.2 11.9 11.9
glass 26.7 31.0 27.1 27.1 26.2
segmentation 0.0 0.1 0.0 0.1 0.7
ecoli 17.3 17.6 18.8 18.5 19.1
pendigits 4.6 8.6 2.9 8.8 6.8
yeast 41.6 42.0 42.6 43.2 49.8
vowel 56.9 59.1 50.9 61.9 54.1
soybean 7.2 - 8.8 4.8 8.2
thyroid 6.5 - - 12.0 8.0
audiology 19.2 - 23.1 19.2 23.1
isolet 5.3 - - 10.1 9.8
letter 14.6 - 7.4 29.0 26.6

| Loss-based Decoding (Exp.) |
dermatology 4.2 3.9 3.1 4.2 3.1
satimage 12.1 12.3 11.4 12.0 12.0
glass 26.7 28.6 27.6 25.2 29.0
segmentation 0.0 0.0 0.0 0.0 0.0
ecoli 15.8 16.4 18.2 17.0 17.9
pendigits 4.6 7.2 2.9 8.1 4.8
yeast 41.6 42.1 42.3 43.0 49.3
vowel 56.9 541 51.7 60.0 49.8
soybean 7.2 - 8.8 4.8 5.6
thyroid 6.5 - - 11.4 7.2
audiology 19.2 - 23.1 19.2 19.2
isolet 5.3 - - 9.4 9.7
letter 14.6 - 7.1 28.3 22.3

Table 2: Results of experiments with output codes with datasets from the UCI repository using
AdaBoost as the base binary learner. For each problem five output codes were used
and then evaluated (see text) with three decoding methods: Hamming decoding, loss-
based decoding using AdaBoost with randomized predictions (dehgteahd loss-based
decoding using the exponential loss function (denéeg).
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| Hamming Decoding |

Problem | One-vs-all Complete| All-Pairs Dense Sparse
dermatology 4.2 3.6 3.1 3.6 2.5
satimage 40.9 14.3 50.4 15.0 27.4
glass 37.6 34.3 29.5 34.8 324
ecoli 15.8 14.2 13.9 15.2 14.2
pendigits 3.9 2.0 26.2 2.5 2.6
yeast 73.9 42.4 40.8 42.5 48.1
vowel 60.4 53.0 39.2 53.5 50.2
soybean 20.5 - 9.6 9.0 9.0
\ Loss-based Decoding |
dermatology, 3.3 3.6 3.6 3.9 3.1
satimage 40.9 13.9 27.8 14.3 13.3
glass 38.6 34.8 31.0 34.8 32.4
ecoli 16.1 13.6 13.3 14.8 14.8
pendigits 2.5 1.9 3.1 2.1 2.7
yeast 72.9 40.5 40.9 39.7 47.2
vowel 50.9 51.3 39.0 51.7 47.0
soybean 21.0 - 10.4 8.8 9.0

Table 3: Results of experiments with output codes with datasets from the UCI repository using the
support-vector machine (SVM) algorithm as the base binary learner. For each problem five
different classes of output codes were tested were used and then evaluated with Hamming
decoding and the appropriate loss-based decoding for SVM.

element in the code was chosen uniformly at random ffer, +1}. For brevity, we call these

dense random codes. We generated a dense random code for each multiclass problem by examining
10,000 random codes and choosing the code that had the largastdid not have any identical
columns. The second type of code, called a sparse code, was chosen at randdrm TrOmt-1}.

Each element in a sparse code is 0 with probabgia/nd—l or +1 with probability%1 each. The

sparse codes hayé5log,(k)] columns. For each problem, we picked a code with high valye of

by examining 10,000 random codes as before. However, now we also had to check that no code had
a column or a row containing only zeros. Note that for some of the problems with many classes,
we could not evaluate the complete and all-pairs codes since they were too large.

We compared Hamming decoding to loss-based decoding for each of the five families of codes.
The results are plotted in Figures 4 and 5. Each of the tested UCI datasets is plotted as a bar
in the figures where height of the bar (possibly negative) is proportional to the test error rate of
loss-based decoding minus the test error rate of Hamming decoding. The datasets are indexed
1,2,... and are plotted in the order listed above. We tested AdaBoost with two loss functions
for decoding: the exponential loss (denoted “Exp” in the figure and drawn in black) and the loss
function 1/(1 + ¢%/(®)) (denoted L;1” and drawn in gray) which is the result of using AdaBoost
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Figure 4. Comparison of the test error using Hamming decoding and loss-based decoding when the
binary learners are trained using AdaBoost. Two loss functions for decoding are plotted:
the exponential loss (“Exp”, in black) and (. + ¢%/(*)) when using AdaBoost with

randomized predictions 1", in gray).

One-vs-all Complete All-Pairs Dense Sparse

Figure 5: Comparison of the test error using Hamming decoding and loss-based decoding when the
binary learner is support vector machines.

with randomized predictions. It is clear from the plots that loss-based decoding often gives better
results than Hamming decoding for both SVM and AdaBoost. The difference is sometimes very
significant. For instance, for the dataset Satimage, with the all-pairs code, SVM achied¥s 27

error with loss-based decoding while Hamming decoding results in an error rated&b 58imilar

results are obtained for AdaBoost. The difference is especially significant for the one-against-all and
random dense codes. Note, however, that loss-based decoding based on AdaBoost with randomized
predictions does not yield as good results as the straightforward use of loss-based decoding for
AdaBoost with the exponential loss. This might be partially explained by the fact that AdaBoost
with randomized predictions is not directly attempting to minimize the loss it uses for decoding.

To conclude the section, we discuss a set of experiments that compared the performance of
the different output codes. In Figures 6 and 7, we plot the test error difference for pairs of codes
using loss-based decoding with SVM and AdaBoost as the binary learners. Each plot consist of a
5 x 5 matrix of bar graphs. The rows and columns correspond, in order, to the five coding methods,
namely, one-against-all, all-pairs, complete, random dense and random sparse. The bar graph in
row ¢ and columry shows the difference between the test error of coding metimoidus the test
error of coding method for the datasets tested.

For SVM, itis clear that the widely used one-against-all code is inferior to all the other codes we
tested. (Note that many of the bars in the top row of Figure 6 correspond to large positive values.)
One-against-all often results in error rates that are much higher than the error rates of other codes.
For instance, for the dataset Yeast, the one-against-all code has an error rate of 72% while the error
rate of all the other codes is ho more thanl48 (random sparse) and can be as low a$%0
(random dense). On the very few cases that the one-against-all performs better than one of the other
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Figure 6: The difference between the test errors for pairs of error correcting matrices using support
vector machines as the binary learners.

codes, the difference is not statistically significant. However, there is no clear winner among the
four other output codes. For AdaBoost, hone of the codes is persistently better than the other and
it seems that the best code to use is problem dependent. These results suggest that an interesting
direction for research would be methods for designing problem specific output codes. Some recent
progress in this direction was made by Crammer and Singer (2000).
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