
Journal of Machine Learning Research 1 (2001) 161-177 Submitted 8/00; Published 3/01

Lagrangian Support Vector Machines

O. L. Mangasarian olvi@cs.wisc.edu
Computer Sciences Department
University of Wisconsin
Madison, WI 53706, USA

David R. Musicant dmusican@carleton.edu

Department of Mathematics and Computer Science

Carleton College

Northfield, MN 55057, USA

Editor: Bernhard Schölkopf (for http://www.kernel-machines.org)

Abstract

An implicit Lagrangian for the dual of a simple reformulation of the standard quadratic
program of a linear support vector machine is proposed. This leads to the minimization
of an unconstrained differentiable convex function in a space of dimensionality equal to
the number of classified points. This problem is solvable by an extremely simple linearly
convergent Lagrangian support vector machine (LSVM) algorithm. LSVM requires the
inversion at the outset of a single matrix of the order of the much smaller dimensional-
ity of the original input space plus one. The full algorithm is given in this paper in 11
lines of MATLAB code without any special optimization tools such as linear or quadratic
programming solvers. This LSVM code can be used “as is” to solve classification prob-
lems with millions of points. For example, 2 million points in 10 dimensional input space
were classified by a linear surface in 82 minutes on a Pentium III 500 MHz notebook with
384 megabytes of memory (and additional swap space), and in 7 minutes on a 250 MHz
UltraSPARC II processor with 2 gigabytes of memory. Other standard classification test
problems were also solved. Nonlinear kernel classification can also be solved by LSVM. Al-
though it does not scale up to very large problems, it can handle any positive semidefinite
kernel and is guaranteed to converge. A short MATLAB code is also given for nonlinear
kernels and tested on a number of problems.

1. Introduction

Support vector machines (SVMs) (Vapnik, 1995, Cherkassky and Mulier, 1998, Bradley and
Mangasarian, 2000, Mangasarian, 2000, Lee and Mangasarian, 2000) are powerful tools for
data classification. Classification is achieved by a linear or nonlinear separating surface
in the input space of the dataset. In this work we propose a very fast simple algorithm,
based on an an implicit Lagrangian formulation (Mangasarian and Solodov, 1993) of the
dual of a simple reformulation of the standard quadratic program of a linear support vec-
tor machine. This leads to the minimization of an unconstrained differentiable convex
function in an m-dimensional space where m is the number of points to be classified in a
given n dimensional input space. The necessary optimality condition for this unconstrained
minimization problem can be transformed into a very simple symmetric positive definite

c©2001 O. L. Mangasarian and David R. Musicant.

Mangasarian & Musicant

complementarity problem (12). A linearly convergent iterative Lagrangian support vector
machine (LSVM) Algorithm 1 is given for solving (12). LSVM requires the inversion at
the outset of a single matrix of the order of the dimensionality of the original input space
plus one: (n + 1). The algorithm can accurately solve problems with millions of points and
requires only standard native MATLAB commands without any optimization tools such as
linear or quadratic programming solvers.

As was the case in our recent active set support vector machine (ASVM) approach
(Mangasarian and Musicant, 2000), the following two simple changes were made to the
standard linear SVM: (i) The margin (distance) between the parallel bounding planes was
maximized with respect to both orientation (w) as well as location relative to the origin
(γ). Such a change was also carried out in our successive overrelaxation (SOR) approach
(Mangasarian and Musicant, 1999) as well as in the smooth support vector machine (SSVM)
approach of Lee and Mangasarian (2000). See equation (7) and Figure 1. (ii) The error in the
soft margin (y) was minimized using the 2-norm squared instead of the conventional 1-norm.
See equation (7). These straightforward, but important changes, lead to a considerably
simpler positive definite dual problem with nonnegativity constraints only. See equation
(8). Although our use of a quadratic penalty for the soft margin as indicated in (ii) above
is nonstandard, it has been used effectively in previous work (Lee and Mangasarian, 2000,
2001, Mangasarian and Musicant, 2000). In theory, this change could lead to a less robust
classifier in the presence of outliers. However, this modification to the SVM does not seem
to have a detrimental effect, as can be seen in the experimental results of Section 5.

In Section 2 of the paper we begin with the standard SVM formulation and its dual
and then give our formulation and its dual. We note that computational evidence given
in our previous work (Mangasarian and Musicant, 2000) shows that this alternative formu-
lation does not compromise on generalization ability. Section 3 gives our simple iterative
Lagrangian support vector machine (LSVM) Algorithm 1 and establishes its global linear
convergence. LSVM, stated in 11 lines of MATLAB Code 2 below, solves once at the outset
a single system of n + 1 equations in n + 1 variables given by a symmetric positive definite
matrix. It then uses a linearly convergent iterative method to solve the problem. In Sec-
tion 4 LSVM is extended to positive semidefinite nonlinear kernels. Section 5 describes our
numerical results which show that LSVM gives comparable or better testing results than
those of other SVM algorithms, and in some cases is dramatically faster than a standard
quadratic programming SVM solver.

We now describe our notation and give some background material. All vectors will be
column vectors unless transposed to a row vector by a prime ′. For a vector x in the n-
dimensional real space Rn, x+ denotes the vector in Rn with all of its negative components
set to zero. This corresponds to projecting x onto the nonnegative orthant. The base of
the natural logarithms will be denoted by ε , and for a vector y ∈ Rm, ε−y will denote a
vector in Rm with components ε−yi , i = 1, . . . ,m. The notation A ∈ Rm×n will signify a
real m× n matrix. For such a matrix A′ will denote the transpose of A, Ai will denote the
i-th row of A and A·j will denote the j-th column of A. A vector of ones or zeroes in a real
space of arbitrary dimension will be denoted by e or 0, respectively. The identity matrix
of arbitrary dimension will be denoted by I. For two vectors x and y in Rn, x ⊥ y denotes
orthogonality, that is x′y = 0. We use := to denote definition. The 2-norm of a vector
x and a matrix Q will be denoted by ‖x‖ and ‖Q‖ respectively. A separating plane, with

162

Lagrangian Support Vector Machines

respect to two given point sets A and B in Rn, is a plane that attempts to separate Rn into
two halfspaces such that each open halfspace contains points mostly of A or B. A special
case of the Sherman-Morrison-Woodbury (SMW) identity (Golub and Van Loan, 1996) will
be utilized:

(
I

ν
+ HH ′)−1 = ν(I − H(

I

ν
+ H ′H)−1H ′), (1)

where ν is a positive number and H is an arbitrary m × k matrix. This identity, easily
verifiable by premultiplying both sides by (I

ν
+ HH ′), enables us to invert a large m × m

matrix of the form in (1) by merely inverting a smaller k × k matrix. It was also used
recently in our ASVM paper (Mangasarian and Musicant, 2000) as well as by Ferris and
Munson (2000).

2. The Linear Support Vector Machine

We consider the problem of classifying m points in the n-dimensional real space Rn, repre-
sented by the m × n matrix A, according to membership of each point Ai in the class A+
or A− as specified by a given m×m diagonal matrix D with plus ones or minus ones along
its diagonal. For this problem the standard support vector machine with a linear kernel
(Vapnik, 1995, Cherkassky and Mulier, 1998) is given by the following quadratic program
with parameter ν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y +
1

2
w′w s.t. D(Aw − eγ) + y ≥ e, y ≥ 0. (2)

Here w is the normal to the bounding planes:

x′w = γ ± 1 (3)

and γ determines their location relative to the origin. See Figure 1. The plane x ′w = γ + 1
bounds the class A+ points, possibly with some error, and the plane x′w = γ − 1 bounds
the class A− points, also possibly with some error. The linear separating surface is the
plane:

x′w = γ, (4)

midway between the bounding planes (3). The quadratic term in (2) is twice the reciprocal of
the square of the 2-norm distance 2/‖w‖ between the two bounding planes of (3) (see Figure
1). This term enforces maximization of this distance, which is often called the “margin”. If
the classes are linearly inseparable, as depicted in Figure 1, then the two planes bound the
two classes with a “soft margin”. That is, they bound each set approximately with some
error determined by the nonnegative error variable y:

Aiw + yi ≥ γ + 1, for Dii = 1,
Aiw − yi ≤ γ − 1, for Dii = −1.

(5)

Traditionally the constant ν in (2) multiplies the the 1-norm of the error variable y and
acts as a weighting factor. A nonzero y results in an approximate separation as depicted in
Figure 1. The dual to the standard quadratic linear SVM (2) (Mangasarian, 1994, Schölkopf

163

Mangasarian & Musicant

x
x

x x

x
x

xx
x

x
x

A+

A-

o oo
o
o

o
o

o
o

o

oo

o
o

o

o
o

x

x
x

o

x

o

o
o

o
o

x
x

x

PSfrag replacements

wMargin= 2
‖w‖

x
′
w = γ − 1

x
′
w = γ + 1

Separating Plane: x
′
w = γ

Figure 1: The bounding planes of a linear SVM with a soft margin (i.e. with some errors),
and the separating plane approximately separating A+ from A−.

et al., 1999, Mangasarian, 2000, Cristianini and Shawe-Taylor, 2000) is the following:

min
u∈Rm

1

2
u′DAA′Du − e′u s.t. e′Du = 0, 0 ≤ u ≤ νe. (6)

The variables (w, γ) of the primal problem which determine the separating surface (4) can
be obtained from the solution of the dual problem above (Mangasarian and Musicant, 1999,
Eqns. 5 and 7). We note immediately that the matrix DAA′D appearing in the dual objec-
tive function (6) is not positive definite in general because typically m >> n. Also, there
is an equality constraint present, in addition to bound constraints, which for large prob-
lems necessitates special computational procedures such as SMO (Platt, 1999) or SVM light

(Joachims, 1999). Furthermore, a one-dimensional optimization problem (Mangasarian and
Musicant, 1999) must be solved in order to determine the locator γ of the separating surface
(4). In order to overcome all these difficulties as well as that of dealing with the necessity
of having to essentially invert a very large matrix of the order of m × m, we propose the
following simple but critical modifications to the standard SVM formulation (2). We change
the 1-norm of y to a 2-norm squared which makes the constraint y ≥ 0 redundant. We also
append the term γ2 to w′w. This in effect maximizes the margin between the parallel sepa-
rating planes (3) by optimizing with respect to both w and γ (Mangasarian and Musicant,
1999), that is with respect to both orientation and location of the planes, rather that just
with respect to w which merely determines the orientation of the plane. This leads to the
following reformulation of the SVM:

min
(w,γ,y)∈Rn+1+m

ν
y′y

2
+

1

2
(w′w + γ2) s.t. D(Aw − eγ) + y ≥ e. (7)

The dual of this problem is (Mangasarian, 1994):

min
0≤u∈Rm

1

2
u′(

I

ν
+ D(AA′ + ee′)D)u − e′u. (8)

The variables (w, γ) of the primal problem which determine the separating surface (4) are
recovered directly from the solution of the dual (8) above by the relations:

w = A′Du, y =
u

ν
, γ = −e′Du. (9)

164

Lagrangian Support Vector Machines

We immediately note that the matrix appearing in the dual objective function is positive
definite and that there is no equality constraint and no upper bound on the dual variable
u. The only constraint present is a nonnegativity one. These facts lead us to our simple
iterative Lagrangian SVM Algorithm which requires the inversion of a positive definite
(n + 1) × (n + 1) matrix, at the beginning of the algorithm followed by a straightforward
linearly convergent iterative scheme that requires no optimization package.

3. LSVM (Lagrangian Support Vector Machine) Algorithm

Before stating our algorithm we define two matrices to simplify notation as follows:

H = D[A − e], Q =
I

ν
+ HH ′. (10)

With these definitions the dual problem (8) becomes

min
0≤u∈Rm

f(u) :=
1

2
u′Qu − e′u. (11)

It will be understood that within the LSVM Algorithm, the single time that Q−1 is computed
at the outset of the algorithm, the SMW identity (1) will be used. Hence only an (n +1)×
(n + 1) matrix is inverted.

The LSVM Algorithm is based directly on the Karush-Kuhn-Tucker necessary and suf-
ficient optimality conditions (Mangasarian, 1994, KTP 7.2.4, page 94) for the dual problem
(11):

0 ≤ u ⊥ Qu − e ≥ 0. (12)

By using the easily established identity between any two real numbers (or vectors) a and b:

0 ≤ a ⊥ b ≥ 0 ⇐⇒ a = (a − αb)+, α > 0, (13)

the optimality condition (12) can be written in the following equivalent form for any positive
α:

Qu − e = ((Qu − e) − αu)+. (14)

These optimality conditions lead to the following very simple iterative scheme which con-
stitutes our LSVM Algorithm:

ui+1 = Q−1(e + ((Qui − e) − αui)+), i = 0, 1, . . . , (15)

for which we will establish global linear convergence from any starting point under the easily
satisfiable condition:

0 < α <
2

ν
. (16)

We impose this condition as α = 1.9/ν in all our experiments, where ν is the parameter
of our SVM formulation (7). It turns out, and this is the way that led us to this iterative
scheme, that the optimality condition (14), is also the necessary and sufficient condition for
the unconstrained minimum of the implicit Lagrangian (Mangasarian and Solodov, 1993)
associated with the dual problem (11):

min
u∈Rm

L(u, α) = min
u∈Rm

1

2
u′Qu − e′u +

1

2α
(‖(−αu + Qu − e)+‖

2 − ‖Qu − e‖2). (17)

165

Mangasarian & Musicant

Setting the gradient with respect to u of this convex and differentiable Lagrangian to zero
gives

(Qu − e) +
1

α
(Q − αI)((Q − αI)u − e)+ −

1

α
Q(Qu − e) = 0, (18)

or equivalently:

(αI − Q)((Qu − e) − ((Q − αI)u − e)+) = 0, (19)

which is equivalent to the optimality condition (14) under the assumption that α is positive
and not an eigenvalue of Q.

We establish now the global linear convergence of the iteration (15) under condition
(16).

Algorithm 1 LSVM Algorithm & Its Global Convergence Let Q ∈ Rm×m be the
symmetric positive definite matrix defined by (10) and let (16) hold. Starting with an
arbitrary u0 ∈ Rm, the iterates ui of (15) converge to the unique solution ū of (11) at the
linear rate:

‖Qui+1 − Qū‖ ≤ ‖I − αQ−1‖ · ‖Qui − Qū‖. (20)

Proof Because ū is the solution of (11), it must satisfy the optimality condition (14) for
any α > 0. Subtracting that equation with u = ū from the iteration (15) premultiplied by
Q and taking norms gives:

‖Qui+1 − Qū‖ = ‖(Qui − e − αui)+ − (Qū − e − αū)+‖ (21)

Using the Projection Theorem (Bertsekas, 1999, Proposition 2.1.3) which states that the
distance between any two points in Rm is not less than the distance between their projections
on any convex set (the nonnegative orthant here) in Rm, the above equation gives:

‖Qui+1 − Qū‖ ≤ ‖(Q − αI)(ui − ū)‖
≤ ‖I − αQ−1‖ · ‖Q(ui − ū)‖.

(22)

All we need to show now is that ‖I −αQ−1‖ < 1. This follows from (16) as follows. Noting
the definition (10) of Q and letting λi, i = 1, . . . ,m, denote the nonnegative eigenvalues of
HH ′, all we need is:

−1 < 1 − α(
1

ν
+ λi)

−1 < 1, (23)

or equivalently:

2 > α(
1

ν
+ λi)

−1 > 0, (24)

which is satisfied under the assumption (16).2
We give now a complete MATLAB (The MathWorks, Inc., 1994-2001) code of LSVM

which is capable of solving problems with millions of points using only native MATLAB
commands. The input parameters, besides A, D and ν of (10), which define the problem,
are: itmax, the maximum number of iterations and tol, the tolerated nonzero error in
‖ui+1 − ui‖ at termination. The quantity ‖ui+1 − ui‖ bounds from above:

‖Q‖−1 · ‖Qui − e − ((Qui − e) − αui)+‖, (25)

166

Lagrangian Support Vector Machines

which measures the violation of the optimality criterion (14). It follows (Mangasarian and
Ren, 1994) that ‖ui+1 − ui‖ also bounds ‖ui − ū‖, and by (9) it also bounds ‖wi − w̄‖ and
|γi − γ̄|, where (w̄, γ̄, ȳ) is the unique solution of the primal SVM (7).

Code 2 LSVM MATLAB M-File

function [it, opt, w, gamma] = svml(A,D,nu,itmax,tol)

% lsvm with SMW for min 1/2*u’*Q*u-e’*u s.t. u=>0,

% Q=I/nu+H*H’, H=D[A -e]

% Input: A, D, nu, itmax, tol; Output: it, opt, w, gamma

% [it, opt, w, gamma] = svml(A,D,nu,itmax,tol);

[m,n]=size(A);alpha=1.9/nu;e=ones(m,1);H=D*[A -e];it=0;

S=H*inv((speye(n+1)/nu+H’*H));

u=nu*(1-S*(H’*e));oldu=u+1;

while it<itmax & norm(oldu-u)>tol

z=(1+pl(((u/nu+H*(H’*u))-alpha*u)-1));

oldu=u;

u=nu*(z-S*(H’*z));

it=it+1;

end;

opt=norm(u-oldu);w=A’*D*u;gamma=-e’*D*u;

function pl = pl(x); pl = (abs(x)+x)/2;

4. LSVM for Nonlinear Kernels

In this section of the paper we show how LSVM can be used to solve classification problems
with positive semidefinite nonlinear kernels. Algorithm 1 and its convergence can be ex-
tended for such nonlinear kernels as we show below. The only price paid for this extension is
that problems with large datasets can be handled using the Sherman-Morrison-Woodbury
(SMW) identity (1) only if the inner product terms of the kernel (Mangasarian, 2000, Equa-
tion (3)) are explicitly known, which in general they are not. Nevertheless LSVM may be a
useful tool for classification with nonlinear kernels because of its extreme simplicity as we
demonstrate below with the simple MATLAB code for which it does not make use of the
Sherman-Morrison-Woodbury identity nor any optimization package.

We shall use the notation of Mangasarian (2000). For A ∈ Rm×n and B ∈ Rn×`, the
kernel K(A,B) maps Rm×n × Rn×` into Rm×`. A typical kernel is the Gaussian kernel
ε−µ‖A′

i−B·j‖
2

, i, j = 1, . . . ,m, ` = m, where ε is the base of natural logarithms, while a
linear kernel is K(A,B) = AB. For a column vector x in Rn, K(x′, A′) is a row vector in
Rm, and the linear separating surface (4) is replaced by the nonlinear surface

K([x′ − 1],

[

A′

−e′

]

)Du = 0, (26)

where u is the solution of the dual problem (11) with Q re-defined for a general nonlinear
kernel as follows:

G = [A − e], Q =
I

ν
+ DK(G,G′)D. (27)

167

Mangasarian & Musicant

Note that the nonlinear separating surface (26) degenerates to the linear one (4) if we let
K(G,G′) = GG′ and make use of (9).

To justify the nonlinear kernel formulation (27) we refer the reader to (Mangasarian,
2000, Equation (8.9)) for a similar result and give a brief derivation here. If we rewrite our
dual problem for a linear kernel (8) in the equivalent form:

min
0≤u∈Rm

1

2
u′(

I

ν
+ DGG′D)u − e′u, (28)

and replace the linear kernel GG′ by a general nonlinear positive semidefinite symmetric
kernel K(G,G′) we obtain:

min
0≤u∈Rm

1

2
u′(

I

ν
+ DK(G,G′)D)u − e′u. (29)

This is the formulation given above in (27). We note that the Karush-Kuhn-Tucker neces-
sary and sufficient optimality conditions for this problem are:

0 ≤ u ⊥ (
I

ν
+ DK([A − e],

[

A′

−e′

]

)D)u − e ≥ 0, (30)

which underly LSVM for a nonlinear positive semidefinite kernel K(G,G′). The positive
semidefiniteness of the nonlinear kernel K(G,G′) is needed in order to ensure the existence
of a solution to both (29) and (30).

All the results of the previous section remain valid, with Q re-defined as above for any
positive semidefinite kernel K. This includes the iterative scheme (15) and the conver-
gence result given under the Algorithm 1. However, because we do not make use of the
Sherman-Morrison-Woodbury identity for a nonlinear kernel, the LSVM MATLAB Code 3
is somewhat different and is as follows:

168

Lagrangian Support Vector Machines

Code 3 LSVM MATLAB M-File for Nonlinear Kernel K(·, ·)

function [it, opt,u] = svmlk(nu,itmax,tol,D,KM)

% lsvm with nonlinear kernel for min 1/2*u’*Q*u-e’*u s.t. u=>0

% Q=I/nu+DK(G,G’)D, G=[A -e]

% Input: nu, itmax, tol, D, KM=K(G,G’)

% [it, opt,u] = svmlk(nu,itmax,tol,D,KM);

m=size(KM,1);alpha=1.9/nu;e=ones(m,1);I=speye(m);it=0;

Q=I/nu+D*KM*D;P=inv(Q);

u=P*e;oldu=u+1;

while it<itmax & norm(oldu-u)>tol

oldu=u;

u=P*(1+pl(Q*u-1-alpha*u));

it=it+1;

end;

opt=norm(u-oldu);[it opt]

function pl = pl(x); pl = (abs(x)+x)/2;

Since we cannot use the Sherman-Morrison-Woodbury identity in the general nonlinear
case, we note that this code for a nonlinear kernel is effective for moderately sized problems.
The sizes of the matrices P and Q in Code 3 scale quadratically with the number of data
points.

5. Numerical Implementation and Comparisons

The implementation of LSVM is straightforward, as shown in the previous sections. Our
first “dry run” experiments were on randomly generated problems just to test the speed and
effectiveness of LSVM on large problems. We first used a Pentium III 500 MHz notebook
with 384 megabytes of memory (and additional swap space) on 2 million randomly generated
points in R10 with ν = 1

m
and α = 1.9

ν
. LSVM solved the problem in 6 iterations in 81.52

minutes to an optimality criterion of 9.398e − 5 on a 2-norm violation of (14). The same
problem was solved in the same number of iterations and to the same accuracy in 6.74
minutes on a 250 MHz UltraSPARC II processor with 2 gigabytes of memory. After these
preliminary encouraging tests we proceeded to more systematic numerical tests as follows.

Most of the rest of our experiments were run on the Carleton College workstation “gray”,
which utilizes a 700 MHz Pentium III Xeon processor and a maximum of 2 Gigabytes of
memory available for each process. This computer runs Redhat Linux 6.2, with MATLAB
6.0. The one set of experiments showing the checkerboard were run on the UW-Madison
Data Mining Institute “locop2” machine, which utilizes a 400 MHz Pentium II Xeon and
a maximum of 2 Gigabytes of memory available for each process. This computer runs
Windows NT Server 4.0, with MATLAB 5.3.1. Both gray and locop2 are multiprocessor
machines. However, only one processor was used for all the experiments shown here as
MATLAB is a single threaded application and does not distribute any effort across pro-
cessors (The MathWorks, Inc., 2000). We had exclusive access to these machines, so there
were no issues with other users inconsistently slowing the computers down.

169

Mangasarian & Musicant

The first results we present are designed to show that our reformulation of the SVM (7)
and its associated algorithm LSVM yield similar performance to the standard SVM (2), re-
ferred to here as SVM-QP. Results are also shown for our active set SVM (ASVM) algorithm
(Mangasarian and Musicant, 2000). For six datasets available from the UCI Machine Learn-
ing Repository (Murphy and Aha, 1992), we performed tenfold cross validation in order to
compare test set accuracies between the methodologies. Furthermore, we utilized a tuning
set for each algorithm to find the optimal value of the parameter ν. For both LSVM and
ASVM, we used an optimality tolerance of 0.001 to determine when to terminate. SVM-QP
was implemented using the high-performing CPLEX barrier quadratic programming solver
(ILOG, Inc., 1999) with its default stopping criterion. Altering the CPLEX default stopping
criterion to match that of LSVM did not result in significant change in timing relative to
LSVM, but did reduce test set correctness for SVM-QP.

We also tested SVM-QP with the well-known optimized algorithm SVMlight (Joachims,
1998). Joachims, the author of SVMlight, graciously provided us with the newest version
of the software (Version 3.10b) and advice on setting the parameters. All features for
all experiments were normalized to the range [−1,+1] as recommended in the SVMlight

documentation. Such normalization was used in all experiments that we present, and is
recommended for the LSVM algorithm due to the penalty on the bias parameter γ which
we have added to our objective (7). We chose to use the default termination error criterion
in SVMlight of 0.001. We also present an estimate of how much memory each algorithm used,
as well as the number of support vectors. The number of support vectors was determined
here as the number of components of the dual vector u that were nonzero. Moreover, we
also present the number of components of u larger than 0.001 (referred to in the table as
“SVs with tolerance”).

The results demonstrate that LSVM performs comparably to SVM-QP with respect to
generalizability, and shows running times comparable to or better than SVMlight. LSVM
and ASVM show nearly identical generalization performance, as they solve the same op-
timization problem. Any differences in generalization observed between the two are only
due to different approximate solutions being found at termination. LSVM and ASVM usu-
ally run in roughly the same amount of time, though there are some cases where ASVM
is noticeably faster than LSVM. Nevertheless, this is impressive performance on the part
of LSVM, which is a dramatically simpler algorithm than ASVM, CPLEX, and SVMlight.
LSVM utilizes significantly less memory than the SVM-QP algorithms as well, though it
does require more support vectors than SVM-QP. We address this point in the conclusion.

We next compare LSVM with SVMlight on the Adult dataset (Murphy and Aha, 1992),
which is commonly used to compare SVM algorithms (Platt, 1999, Mangasarian and Mu-
sicant, 1999). These results, shown in Table 2, demonstrate that for the largest training
sets LSVM performs faster than SVMlight with similar test set accuracies. Note that the
“iterations” column takes on very different meanings for the two algorithms. SVMlight de-
fines an iteration as solving an optimization problem over a a small number, or “chunk,” of
constraints. LSVM, on the other hand, defines an iteration as a matrix calculation which
updates all the dual variables simultaneously. These two numbers are not directly compa-
rable, and are included here only for purposes of monitoring scalability. In this experiment,
LSVM uses significantly more memory than SVMlight.

170

Lagrangian Support Vector Machines

Dataset Training Testing Time Memory # of SVs # of SVs
m x n Algorithm Correctness Correctness (CPU sec) (Kilobytes) (w/ tolerance)
Liver Disorders CPLEX 70.76% 68.41% 3.806 4,427 310.5 268.7

SVMlight 70.76% 68.41% 0.252 1,451 225.7 225.7
ASVM 70.14% 68.68% 0.007 2 299.4 299.4

345 x 6 LSVM 70.14% 68.68% *0.053 5 305.3 299.4
Cleveland Heart CPLEX 87.73% 85.91% 2.453 3,406 267.3 96.3

SVMlight 87.73% 85.91% 0.057 1,376 96.1 96.1
ASVM 87.36% 85.89% 0.011 0 169.7 169.5

297 x 13 LSVM 87.36% 85.89% *0.048 0 220.5 169.5
Pima Diabetes CPLEX 77.36% 76.95% 90.360 20,978 687.8 454.8

SVMlight 77.36% 76.95% 0.121 1,364 454.8 454.5
ASVM 78.04% 78.12% 0.023 41 610.0 610.0

768 x 8 LSVM *78.04% 78.12% 0.126 207 651.1 610.0
Ionosphere CPLEX 92.81% 88.60% 4.335 13,230 301.7 98.8

SVMlight 92.81% 88.60% 0.161 1,340 98.4 98.4
ASVM 93.29% 87.75% 0.070 193 167.0 166.8

351 x 34 LSVM 93.29% 87.75% *0.089 183 216.6 166.8
Tic Tac Toe CPLEX 65.34% 65.34% 178.844 32,681 862.2 862.2

SVMlight 65.34% 65.34% 0.208 1,344 608.3 608.2
ASVM 70.27% 69.72% 0.015 136 862.2 862.2

958 x 9 LSVM *70.27% 69.72% *0.004 140 862.2 862.2
Votes CPLEX 96.02% 95.85% 9.929 6,936 391.5 57.7

SVMlight 96.02% 95.85% 0.038 1,344 57.8 57.4
ASVM 96.73% 96.07% 0.025 69 128.8 123.1

435 x 16 LSVM *96.73% 96.07% 0.047 245 245.4 123.2

Table 1: LSVM compared with conventional SVM-QP (CPLEX and SVMlight) and ASVM
on six UCI datasets. LSVM test correctness is comparable to SVM-QP, with
timing much faster than CPLEX and faster than or comparable to SVMlight. An
asterisk in the first three columns indicates that the LSVM results are significantly
different from SVMlight at significance level α = 0.05. The column “w/ tolerance”
indicates the number of support vectors with dual variable u > 0.001.

171

Mangasarian & Musicant

Training CPU Iterations Test Set Memory # of SVs # of SVs
Set Size Sec Accuracy (Kilobytes) (w/ tolerance)

LSVM LSVM LSVM LSVM LSVM LSVM
1605 0.3 256 84.05% 1340 708 706

1.4 38 84.27% 2816 1364 1069
2265 0.5 389 84.37% 1340 1012 1011

2.1 40 84.66% 4672 1924 1540
3185 0.8 495 84.22% 2444 1316 1312

3.2 43 84.55% 6148 2662 2040
4781 1.5 724 84.33% 3388 1906 1904

5.3 46 84.55% 9044 3933 3026
6414 2.7 966 84.47% 3684 2490 2488

7.6 47 84.68% 12584 5220 3985
11221 11.6 1588 84.58% 5536 4222 4220

15.3 50 84.84% 22368 9008 6879
16101 28.2 2285 84.81% 7508 6003 5999

23.8 52 85.01% 32544 12935 9803
22697 55.9 3389 85.16% 10212 8385 8381

36.5 54 85.35% 44032 18048 13721
32562 112.7 4850 85.03% 15500 11782 11777

56.1 55 85.05% 70416 25769 19448

SVMlight SVMlight SVMlight SVMlight SVMlight SVMlight

Table 2: Comparison of LSVM with SVMlight on the UCI adult dataset. LSVM test cor-
rectness is comparable to that of SVMlight, but is faster on large datasets. The
column “w/ tolerance” indicates the number of support vectors with dual variable
u > 0.001. (ν = 0.03)

of # of Training Testing Time Memory
Points Attributes Iterations Correctness Correctness (CPU min) (Kilobytes)

2 million 10 81 69.80% 69.44% 22.4 918,256

Table 3: Performance of LSVM on NDC generated dataset (ν = 0.1). SVMlight failed on
this dataset.

172

Lagrangian Support Vector Machines

Table 3 shows results from running LSVM on a massively sized dataset. This dataset
was created using our own NDC Data Generator (Musicant, 1998) as suggested by Usama
Fayyad. The results show that LSVM can be used to solve massive problems quickly,
which is particularly intriguing given the simplicity of the LSVM Algorithm. Note that
for these experiments, all the data was brought into memory. As such, the running time
reported consists of the time used to actually solve the problem to termination excluding I/O
time. This is consistent with the measurement techniques used by other popular approaches
(Joachims, 1999, Platt, 1999). Putting all the data in memory is simpler to code and results
in faster running times. However, it is not a fundamental requirement of our algorithm —
block matrix multiplications, incremental evaluations of Q−1 using another application of
the Sherman-Morrison-Woodbury identity, and indices on the dataset can be used to create
an efficient disk based version of LSVM. We note that we tried to run SVMlight on this
dataset, but after running for more than six hours it did not terminate.

We now demonstrate the effectiveness of LSVM in solving nonlinear classification prob-
lems through the use of kernel functions. One highly nonlinearly separable but simple
example is the “tried and true” checkerboard dataset (Ho and Kleinberg, 1996), which has
often been used to show the effectiveness of nonlinear kernel methods on a dataset for which
a linear separation clearly fails. The checkerboard dataset contains 1000 points randomly
sampled from a checkerboard. These points are used as a training set in LSVM to try to
reproduce an accurate rendering of a checkerboard. For this problem, we used the following
Gaussian kernel:

K(G,G′) = ε−2·10−4‖Gi−Gj‖2

, i, j = 1, . . . ,m (31)

Our results, shown in Figure 2, demonstrate that LSVM shows similar or better gener-
alization capability on this dataset when compared to other methods (Kaufman, 1999,
Mangasarian and Musicant, 2001, Lee and Mangasarian, 2000). Total time for the checker-
board problem using LSVM with a Gaussian kernel was 2.85 hours on the Locop2 Pentium
II Xeon machine on the 1000-point training set in R2 after 100,000 iterations. Test set
accuracy was 97.0% on a 39,000-point test set. However, within 58 seconds and after 100 it-
erations, a quite reasonable checkerboard was obtained (http://www.cs.wisc.edu/~olvi/
lsvm/check100iter.eps) with a 95.9% accuracy on the same test set.

The final set of experiments, shown in Table 4, demonstrates the effectiveness of non-
linear kernel functions with LSVM on UCI datasets (Murphy and Aha, 1992) specialized as
follows for purposes of our tests:

• The liver-disorders dataset contains 345 points, each consisting of six features. Class
1 contains 145 points, and class -1 contains 200 points.

• The letter-recognition dataset is used for recognizing letters of the alphabet. Tradi-
tionally, this dataset is used for multi-category classification. We used it here in a two
class situation by taking a subset of those points which correspond to the letter “A,”
and a subset of those points which correspond to the letter “B.” This resulted in a
dataset of 600 points with 6 features, where each class contained 300 points.

• The mushroom dataset is a two class dataset which contains eight categorical at-
tributes. We transformed each categorical attribute into a series of binary attributes,
one attribute for each distinct value. For example, this dataset contains an attribute

173

Mangasarian & Musicant

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Figure 2: Gaussian kernel LSVM performance on checkerboard training dataset. (ν = 105)

called “cap surface,” which can take one one of four categories, namely “fibrous,”
“grooves,” “scaly,” or “smooth.” We represented this as four binary attributes. A 1
is assigned to the attribute that corresponds to the actual category, and a 0 to the
rest. Thus the categorical value “fibrous” would be represented by [1 0 0 0], while the
value “smooth” would be represented by [0 0 0 1]. A subset of the entire mushroom
dataset was used, so as to shorten the running times of our experiments. The final
dataset we used contained 22 features with 200 points in class 1 and 300 points in
class -1.

• The tic-tac-toe dataset is a two class dataset that contains incomplete tic-tac-toe
games. All those games with a possible winning move for “X” end up in category
1, and all other games end up in category -1. We have intentionally represented this
problem with a poor representation scheme to show the power of non-linear kernels in
overcoming this difficulty. Each tic-tac-toe game is represented by 9 attributes, where
each attribute corresponds to a spot on the tic-tac-toe board. An “X” is represented
by 1, an “O” is represented by 0, and a blank is represented by -1. We used a subset
of this dataset with 9 attributes, 200 points in class 1, and 100 points in class -1.

We chose which kernels to use and appropriate values of ν via tuning sets and ten-
fold cross-validation techniques. The results show that nonlinear kernels produce test set
accuracies that improve on those obtained with linear kernels.

6. Conclusion

A fast and extremely simple algorithm, LSVM, considerably easier to code than SVMlight

(Joachims, 1999), SMO (Platt, 1999), SOR (Mangasarian and Musicant, 1999) and ASVM
(Mangasarian and Musicant, 2000), capable of classifying datasets with millions of points
has been proposed and implemented in a few lines of MATLAB code. For a linear kernel,

174

Lagrangian Support Vector Machines

Dataset Kernel Training Testing Time Memory # of SVs # of SVs
m x n Algorithm Type Correctness Correctness (secs) (Kilobytes) (w/ tolerance)
Liver Disorders Linear 70.76% 68.41% 0.239 1448 225.7 225.7

Quadratic 76.30% 72.79% 0.197 42413 218.6 218.6
LSVM Linear 70.15% 68.68% *0.051 4 305.3 299.4

345 x 6 Quadratic *75.17% 72.78% *0.345 2418 304.4 298.5
Tic-Tac-Toe Linear 66.67% 66.67% 0.036 1375 182.8 0.0

Quadratic 98.30% 95.33% 17.575 42424 73.5 73.4
LSVM Linear 66.67% 66.67% *0.001 23 270.0 0.0

300 x 9 Quadratic *99.52% 95.00% *0.377 1852 122.4 115.3
Letter Recognition Linear 85.48% 85.00% 0.124 1234 240.3 240.3

Cubic 89.31% 88.67% 0.374 1374 217.0 216.9
LSVM Linear *81.69% 81.50% *0.029 76 537.7 535.3

600 x 6 Cubic 88.56% 87.83% *1.639 6976 472.2 400.7
Mushroom Linear 77.24% 76.20% 0.536 1340 241.9 240.3

Cubic 90.91% 88.40% 0.261 1340 174.5 163.6
LSVM Linear 77.96% 76.80% *0.053 124 438.7 428.1

500 x 22 Cubic 90.91% 88.20% *0.570 4724 366.7 250.5

SVMlight

SVMlight

SVMlight

SVMlight

Table 4: LSVM performance with linear, quadratic, and cubic kernels (polynomial kernels
of degree 1, 2, and 3 respectively). An asterisk in the first three columns indicates
that the LSVM results are significantly different from SVMlight at significance level
α = 0.05. The column “w/ tolerance” indicates the number of support vectors
with dual variable u > 0.001.

LSVM is an iterative method which requires nothing more complex than the inversion of a
single matrix of the order of the input space plus one, and thus has the ability to handle
massive problems. For a positive semidefinite nonlinear kernel, a single matrix inversion is
required in the space of dimension equal to the number of points classified. Hence, for such
nonlinear classifiers LSVM can handle only intermediate size problems.

There is room for future work in reducing the number of support vectors in the solutions
yielded by LSVM. One method would be to augment the quadratic term in y in the objective
function of (7) by a 1-norm in y. This should decrease the number of support vectors as in
work by Bradley and Mangasarian (1998) where the 1-norm was used to effectively suppress
features. Additionally, the iterative algorithm itself could be modified so that dual variables
with values smaller than a tolerance would be automatically set to zero.

Further future work includes extensions to parallel processing of the data and handling
very large datasets directly from disk as well as extending nonlinear kernel classification to
very large datasets.

Acknowledgements

Research described in this Data Mining Institute Report 00-06, June 2000, was supported by
National Science Foundation Grants CCR-9729842 and CDA-9623632, by Air Force Office
of Scientific Research Grant F49620-00-1-0085 and by Microsoft. We wish to thank our
colleague Thorsten Joachims for supplying us with his latest code for SVMlight and for
advice on how to run it efficiently.

c© 2001 Olvi L. Mangasarian and David R. Musicant.
The LSVM Algorithm 1 and the LSVM Codes 2 and 3 are copyrighted and may not be
used for any commercial purpose without written authorization from the authors.

175

Mangasarian & Musicant

References

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, second edition,
1999.

P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and
support vector machines. In J. Shavlik, editor, Machine Learning Proceedings of the
Fifteenth International Conference(ICML ’98), pages 82–90, San Francisco, California,
1998. Morgan Kaufmann. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-03.

ps.

P. S. Bradley and O. L. Mangasarian. Massive data discrimination via linear support vector
machines. Optimization Methods and Software, 13:1–10, 2000. ftp://ftp.cs.wisc.edu/
math-prog/tech-reports/98-03.ps.

V. Cherkassky and F. Mulier. Learning from Data - Concepts, Theory and Methods. John
Wiley & Sons, New York, 1998.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cam-
bridge University Press, Cambridge, 2000.

M. C. Ferris and T. S. Munson. Interior point methods for massive support vector machines.
Technical Report 00-05, Computer Sciences Department, University of Wisconsin, Madi-
son, Wisconsin, May 2000. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-05.

ps.

G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins University
Press, Baltimore, Maryland, 3rd edition, 1996.

T. K. Ho and E. M. Kleinberg. Checkerboard dataset, 1996. http://www.cs.wisc.edu/

math-prog/mpml.html.

ILOG, Inc. ILOG CPLEX 6.5 Reference Manual. ILOG CPLEX Division, Incline Village,
Nevada, 1999.

T. Joachims. SVMlight, 1998. http://ais.gmd.de/˜thorsten/svm light.

T. Joachims. Making large-scale support vector machine learning practical. In Schölkopf
et al. (1999), pages 169–184.

L. Kaufman. Solving the quadratic programming problem arising in support vector classi-
fication. In Schölkopf et al. (1999), pages 147–167.

Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines. In Proceedings
of the First SIAM International Conference on Data Mining, 2001. To appear. ftp:
//ftp.cs.wisc.edu/pub/dmi/tech-reports/00-07.ps.

Yuh-Jye Lee and O. L. Mangasarian. SSVM: A smooth support vector machine. Computa-
tional Optimization and Applications, 2000. To appear. ftp://ftp.cs.wisc.edu/pub/
dmi/tech-reports/99-03.ps.

176

Lagrangian Support Vector Machines

O. L. Mangasarian. Nonlinear Programming. SIAM, Philadelphia, PA, 1994.

O. L. Mangasarian. Generalized support vector machines. In A. Smola, P. Bartlett,
B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages
135–146, Cambridge, MA, 2000. MIT Press. ftp://ftp.cs.wisc.edu/math-prog/

tech-reports/98-14.ps.

O. L. Mangasarian and D. R. Musicant. Successive overrelaxation for support vector ma-
chines. IEEE Transactions on Neural Networks, 10:1032–1037, 1999. ftp://ftp.cs.

wisc.edu/math-prog/tech-reports/98-18.ps.

O. L. Mangasarian and D. R. Musicant. Active support vector machine classification.
Advances in Neural Information Processing Systems (NIPS 2000), 2000. To appear.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-04.ps.

O. L. Mangasarian and D. R. Musicant. Data discrimination via nonlinear generalized
support vector machines. In M. C. Ferris, O. L. Mangasarian, and J.-S. Pang, editors,
Complementarity: Applications, Algorithms and Extensions, pages 233–251, Dordrecht,
January 2001. Kluwer Academic Publishers. ftp://ftp.cs.wisc.edu/math-prog/

tech-reports/99-03.ps.

O. L. Mangasarian and J. Ren. New improved error bounds for the linear complementarity
problem. Mathematical Programming, 66:241–255, 1994.

O. L. Mangasarian and M. V. Solodov. Nonlinear complementarity as unconstrained and
constrained minimization. Mathematical Programming, Series B, 62:277–297, 1993.

P. M. Murphy and D. W. Aha. UCI repository of machine learning databases, 1992.
http://www.ics.uci.edu/˜mlearn/MLRepository.html.

D. R. Musicant. NDC: Normally Distributed Clustered Datasets, 1998. http://www.cs.
wisc.edu/˜musicant/data/ndc.

J. Platt. Sequential minimal optimization: A fast algorithm for train-
ing support vector machines. In Schölkopf et al. (1999), pages 185–208.
http://www.research.microsoft.com/˜jplatt/smo.html.

B. Schölkopf, C. Burges, and A. Smola. Advances in Kernel Methods: Support Vector
Machines. MIT Press, Cambridge, MA, 1999.

The MathWorks, Inc. MATLAB User’s Guide. The MathWorks, Inc., Natick, MA 01760,
1994-2001.

The MathWorks, Inc. MATLAB Solution Number 1913: Can one session of MATLAB
take advantage of multiple processors on the same PC or UNIX machine?, 2000. http:

//www.mathworks.com/support/solutions/data/1913.shtml.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

177

