
Journal of Machine Learning Research 1 (2000) 1-48 Submitted 4/00; Published 10/00

Learning with Mixtures of Trees

Marina Meilă mmp@stat.washington.edu

Department of Statistics
University of Washington
Seattle, WA 98195-4322, USA

Michael I. Jordan jordan@cs.berkeley.edu

Division of Computer Science and Department of Statistics
University of California
Berkeley, CA 94720-1776, USA

Editor: Leslie Pack Kaelbling

Abstract

This paper describes the mixtures-of-trees model, a probabilistic model for discrete
multidimensional domains. Mixtures-of-trees generalize the probabilistic trees of Chow and
Liu (1968) in a different and complementary direction to that of Bayesian networks. We
present efficient algorithms for learning mixtures-of-trees models in maximum likelihood
and Bayesian frameworks. We also discuss additional efficiencies that can be obtained
when data are “sparse,” and we present data structures and algorithms that exploit such
sparseness. Experimental results demonstrate the performance of the model for both den-
sity estimation and classification. We also discuss the sense in which tree-based classifiers
perform an implicit form of feature selection, and demonstrate a resulting insensitivity to
irrelevant attributes.

1. Introduction

Probabilistic inference has become a core technology in AI, largely due to developments
in graph-theoretic methods for the representation and manipulation of complex probability
distributions (Pearl, 1988). Whether in their guise as directed graphs (Bayesian networks)
or as undirected graphs (Markov random fields), probabilistic graphical models have a num-
ber of virtues as representations of uncertainty and as inference engines. Graphical models
allow a separation between qualitative, structural aspects of uncertain knowledge and the
quantitative, parametric aspects of uncertainty—the former represented via patterns of
edges in the graph and the latter represented as numerical values associated with subsets
of nodes in the graph. This separation is often found to be natural by domain experts,
taming some of the problems associated with structuring, interpreting, and troubleshoot-
ing the model. Even more importantly, the graph-theoretic framework has allowed for the
development of general inference algorithms, which in many cases provide orders of magni-
tude speedups over brute-force methods (Cowell, Dawid, Lauritzen, & Spiegelhalter, 1999;
Shafer & Shenoy, 1990).

These virtues have not gone unnoticed by researchers interested in machine learning,
and graphical models are being widely explored as the underlying architectures in systems

c©2000 Marina Meilă and Michael I. Jordan.

Meilă & Jordan

for classification, prediction and density estimation (Bishop, 1999; Friedman, Geiger, &
Goldszmidt, 1997; Heckerman, Geiger, & Chickering, 1995; Hinton, Dayan, Frey, & Neal,
1995; Friedman, Getoor, Koller, & Pfeffer, 1996; Monti & Cooper, 1998; Saul & Jordan,
1999). Indeed, it is possible to view a wide variety of classical machine learning architectures
as instances of graphical models, and the graphical model framework provides a natural
design procedure for exploring architectural variations on classical themes (Buntine, 1996;
Smyth, Heckerman, & Jordan, 1997).

As in many machine learning problems, the problem of learning a graphical model from
data can be divided into the problem of parameter learning and the problem of structure
learning. Much progress has been made on the former problem, much of it cast within the
framework of the expectation-maximization (EM) algorithm (Lauritzen, 1995). The EM
algorithm essentially runs a probabilistic inference algorithm as a subroutine to compute
the “expected sufficient statistics” for the data, reducing the parameter learning problem
to a decoupled set of local statistical estimation problems at each node of the graph. This
link between probabilistic inference and parameter learning is an important one, allow-
ing developments in efficient inference to have immediate impact on research on learning
algorithms.

The problem of learning the structure of a graph from data is significantly harder. In
practice, most structure learning methods are heuristic methods that perform local search by
starting with a given graph and improving it by adding or deleting one edge at a time (Heck-
erman et al., 1995; Cooper & Herskovits, 1992).

There is an important special case in which both parameter learning and structure
learning are tractable, namely the case of graphical models in the form of a tree distribution.
As shown by Chow and Liu (1968), the tree distribution that maximizes the likelihood of
a set of observations on M nodes—as well as the parameters of the tree—can be found in
time quadratic in the number of variables in the domain. This algorithm is known as the
Chow-Liu algorithm.

Trees also have the virtue that probabilistic inference is guaranteed to be efficient, and
indeed historically the earliest research in AI on efficient inference focused on trees (Pearl,
1988). Later research extended this early work by first considering general singly-connected
graphs (Pearl, 1988), and then considering graphs with arbitrary (acylic) patterns of con-
nectivity (Cowell et al., 1999). This line of research has provided one useful “upgrade path”
from tree distributions to the complex Bayesian and Markov networks currently being stud-
ied.

In this paper we consider an alternative upgrade path. Inspired by the success of mixture
models in providing simple, effective generalizations of classical methods in many simpler
density estimation settings (MacLachlan & Bashford, 1988), we consider a generalization
of tree distributions known as the mixtures-of-trees (MT) model. As suggested in Figure 1,
the MT model involves the probabilistic mixture of a set of graphical components, each
of which is a tree. In this paper we describe likelihood-based algorithms for learning the
parameters and structure of such models.

One can also consider probabilistic mixtures of more general graphical models; indeed,
the general case is the Bayesian multinet introduced by Geiger and Heckerman (1996).
The Bayesian multinet is a mixture model in which each mixture component is an arbitrary
graphical model. The advantage of Bayesian multinets over more traditional graphical mod-

2

Learning with Mixtures of Trees

ed

ca

ed

b

ca

ed

b

ca

z=1 z=2

z

z=3

b

Figure 1: A mixture of trees over a domain consisting of random variables V = {a, b, c, d, e},
where z is a hidden choice variable. Conditional on the value of z, the depen-
dency structure is a tree. A detailed presentation of the mixture-of-trees model
is provided in Section 3.

els is the ability to represent context-specific independencies—situations in which subsets
of variables exhibit certain conditional independencies for some, but not all, values of a
conditioning variable. (Further work on context-specific independence has been presented
by Boutilier, Friedman, Goldszmidt, & Koller, 1996). By making context-specific inde-
pendencies explicit as multiple collections of edges, one can obtain (a) more parsimonious
representations of joint probabilities and (b) more efficient inference algorithms.

In the machine learning setting, however, the advantages of the general Bayesian multi-
net formalism are less apparent. Allowing each mixture component to be a general graph-
ical model forces us to face the difficulties of learning general graphical structure. More-
over, greedy edge-addition and edge-deletion algorithms seem particularly ill-suited to the
Bayesian multinet, given that it is the focus on collections of edges rather than single edges
that underlies much of the intuitive appeal of this architecture.

We view the mixture of trees as providing a reasonable compromise between the simplic-
ity of tree distributions and the expressive power of the Bayesian multinet, while doing so
within a restricted setting that leads to efficient machine learning algorithms. In particular,
as we show in this paper, there is a simple generalization of the Chow-Liu algorithm that
makes it possible to find (local) maxima of likelihoods (or penalized likelihoods) efficiently
in general MT models. This algorithm is an iterative Expectation-Maximization (EM) al-
gorithm, in which the inner loop (the M step) involves invoking the Chow-Liu algorithm to
determine the structure and parameters of the individual mixture components. Thus, in a
very concrete sense, this algorithm searches in the space of collections of edges.

In summary, the MT model is a multiple network representation that shares many of
the basic features of Bayesian and Markov network representations, but brings new features
to the fore. We believe that these features expand the scope of graph-theoretic probabilistic

3

Meilă & Jordan

representations in useful ways and may be particularly appropriate for machine learning
problems.

1.1 Related work

The MT model can be used both in the classification setting and the density estimation
setting, and it makes contact with different strands of previous literature in these two guises.

In the classification setting, the MT model builds on the seminal work on tree-based
classifiers by Chow and Liu (1968), and on recent extensions due to Friedman et al. (1997)
and Friedman, Goldszmidt, and Lee (1998). Chow and Liu proposed to solve M -way
classification problems by fitting a separate tree to the observed variables in each of the
M classes, and classifying a new data point by choosing the class having maximum class-
conditional probability under the corresponding tree model. Friedman et al. took as their
point of departure the Naive Bayes model, which can be viewed as a graphical model in
which an explicit class node has directed edges to an otherwise disconnected set of nodes
representing the input variables (i.e., attributes). Introducing additional edges between
the input variables yields the Tree Augmented Naive Bayes (TANB) classifier (Friedman
et al., 1997; Geiger, 1992). These authors also considered a less constrained model in which
different patterns of edges were allowed for each value of the class node—this is formally
identical to the Chow and Liu proposal.

If the choice variable of the MT model is identified with the class label then the MT
model is identical to the Chow and Liu approach (in the classification setting). However, we
do not necessarily wish to identify the choice variable with the class label, and, indeed, in
our experiments on classification we treat the class label as simply another input variable.
This yields a more discriminative approach to classification in which all of the training data
are pooled for the purposes of training the model (Section 5, Meilă & Jordan, 1998). The
choice variable remains hidden, yielding a mixture model for each class. This is similar in
spirit to the “mixture discriminant analysis” model of Hastie and Tibshirani (1996), where
a mixture of Gaussians is used for each class in a multiway classification problem.

In the setting of density estimation, clustering and compression problems, the MT model
makes contact with the large and active literature on mixture modeling. Let us briefly
review some of the most salient connections. The Auto-Class model (Cheeseman & Stutz,
1995) is a mixture of factorial distributions (MF), and its excellent cost/performance ratio
motivates the MT model in much the same way as the Naive Bayes model motivates the
TANB model in the classification setting. (A factorial distribution is a product of factors
each of which depends on exactly one variable). Kontkanen, Myllymaki, and Tirri (1996)
study a MF in which a hidden variable is used for classification; this approach was extended
by Monti and Cooper (1998). The idea of learning tractable but simple belief networks
and superimposing a mixture to account for the remaining dependencies was developed
independently of our work by Thiesson, Meek, Chickering, and Heckerman (1997), who
studied mixtures of Gaussian belief networks. Their work interleaves EM parameter search
with Bayesian model search in a heuristic but general algorithm.

4

Learning with Mixtures of Trees

2. Tree distributions

In this section we introduce the tree model and the notation that will be used throughout
the paper. Let V denote a set of n discrete random variables of interest. For each random
variable v ∈ V let Ω(v) represent its range, xv ∈ Ω(v) a particular value, and rv the (finite)
cardinality of Ω(v). For each subset A of V , let Ω(A) =

⊗
v∈A Ω(v) and let xA denote an

assignment to the variables in A. To simplify notation xV will be denoted by x and Ω(V)
will be denoted simply by Ω. Sometimes we need to refer to the maximum of rv over V ; we
denote this value by rmax .

We begin with undirected (Markov random field) representations of tree distributions.
Identifying the vertex set of a graph with the set of random variables V , consider a graph
G = (V,E), where E is a set of undirected edges. We allow a tree to have multiple connected
components (thus our “trees” are generally called forests). Given this definition, the number
of edges |E| and the number of connected components p are related as follows:

|E|+ p = |V |,

implying that adding an edge to a tree reduces the number of connected components by 1.
Thus, a tree can have at most |V | − 1 = n− 1 edges. In this latter case we refer to the tree
as a spanning tree.

We parameterize a tree in the following way. For u, v ∈ V and (u, v) ∈ E, let Tuv

denote a joint probability distribution on u and v. We require these distributions to be
consistent with respect to marginalization, denoting by Tu(xu) the marginal of Tuv(xu, xv)
or Tvu(xv , xu) with respect to xv for any v 6= u. We now assign a distribution T to the
graph (V,E) as follows:

T (x) =

∏
(u,v)∈E Tuv(xu, xv)∏
v∈V Tv(xv)deg v−1

, (1)

where deg v is the degree of vertex v; i.e., the number of edges incident to v ∈ V . It can be
verified that T is in fact a probability distribution; moreover, the pairwise probabilities Tuv

are the marginals of T .
A tree distribution T is defined to be any distribution that admits a factorization of the

form (1).
Tree distributions can also be represented using directed (Bayesian network) graphical

models. Let GD = (V,ED) denote a directed tree (possibly a forest), where ED is a set
of directed edges and where each node v has (at most) one parent, denoted pa(v). We
parameterize this graph as follows:

T (x) =
∏
v∈V

Tv|pa(v)(xv|xpa(v)) (2)

where Tv|pa(v)(xv|xpa(v)) is an arbitrary conditional distribution. It can be verified that T
indeed defines a probability distribution; moreover, the marginal conditionals of T are given
by the conditionals Tv|pa(v).

We shall call the representations (1) and (2) the undirected and directed tree represen-
tations of the distribution T respectively. We can readily convert between these representa-
tions; for example, to convert (1) to a directed representation we choose an arbitrary root

5

Meilă & Jordan

"!

1

"!

2

"!

3 "!

4 "!

5

@
@@

�
��

"!

1

"!

2

"!

3 "!

4 "!

5

@
@@I

�
��	

� -

T (x) = T13(x1x3) T23(x2x3) T34(x3x4) T45(x4x5)
T 2
3 (x3)T4(x4)

T (x) = T4(x4)
T34(x3x4)

T4(x4)
T54(x5x4)

T4(x4)
T13(x1x3)

T3(x3)
T23(x2x3)

T3(x3)

= T4(x4)T5|4(x5|x4)T3|4(x3|x4)T1|3(x1|x3)T2|3(x2|x3)
(a) (b)

Figure 2: A tree in its undirected (a) and directed (b) representations.

in each connected component and direct each edge away from the root. For (u, v) ∈ E
with u closer to the root than v, let pa(v) = u. Now compute the conditional probabilities
corresponding to each directed edge by recursively substituting Tvpa(v)/Tpa(v) by Tv|pa(v)

starting from the root. Figure 2 illustrates this process on a tree with 5 vertices.
The directed tree representation has the advantage of having independent parameters.

The total number of free parameters in either representation is:∑
(u,v)∈E

rurv −
∑
v∈V

(deg v − 1)rv − p =
∑

(u,v)∈E

(ru − 1)(rv − 1) +
∑
v∈V

rv − n (3)

The right-hand side of (3) shows that each edge (u, v) increases the number of parameters
by (ru − 1)(rv − 1).

The set of conditional independencies associated with a tree distribution are readily
characterized (Lauritzen, Dawid, Larsen, & Leimer, 1990). In particular, two subsets A,B ⊂
V are independent given C ⊂ V if C intersects every path (ignoring the direction of edges
in the directed case) between u and v for all u ∈ A and v ∈ B.

2.1 Marginalization, inference and sampling in tree distributions

The basic operations of computing likelihoods, conditioning, marginalization, sampling and
inference can be performed efficiently in tree distributions; in particular, each of these opera-
tions has time complexity O(n). This is a direct consequence of the factorized representation
of tree distributions in equations (1) and (2).

2.2 Representational capabilities

If graphical representations are natural for human intuition, then the subclass of tree models
are particularly intuitive. Trees are sparse graphs, having n − 1 or fewer edges. There is
at most one path between every pair of variables; thus, independence relationships between
subsets of variables, which are not easy to read out in general Bayesian network topologies,
are obvious in a tree. In a tree, an edge corresponds to the simple, common-sense notion
of direct dependency and is the natural representation for it. However, the very simplicity

6

Learning with Mixtures of Trees

that makes tree models appealing also limits their modeling power. Note that the number
of free parameters in a tree grows linearly with n while the size of the state space Ω(V)
is an exponential function of n. Thus the class of dependency structures representable by
trees is a relatively small one.

2.3 Learning of tree distributions

The learning problem is formulated as follows: we are given a set of observations D =
{x1, x2, . . . , xN} and we are required to find the tree T ∗ that maximizes the log likelihood
of the data:

T ∗ = argmax
T

N∑
i=1

log T (xi),

where xi is an assignment of values to all variables. Note that the maximum is taken both
with respect to the tree structure (the choice of which edges to include) and with respect
to the numerical values of the parameters. Here and in the rest of the paper we will assume
for simplicity that there are no missing values for the variables in V , or, in other words,
that the observations are complete.

Letting P (x) denote the proportion of observations xi in the training set D that are
equal to x, we can alternatively express the maximum likelihood problem by summing over
configurations x:

T ∗ = argmax
T

∑
x∈Ω

P (x) log T (x).

In this form we see that the log likelihood criterion function is a (negative) cross-entropy. We
will in fact solve the problem in general, letting P (x) be an arbitrary probability distribution.
This generality will prove useful in the following section where we consider mixtures of trees.

The solution to the learning problem is an algorithm, due to Chow and Liu (1968), that
has quadratic complexity in n (see Figure 3). There are three steps to the algorithm. First,
we compute the pairwise marginals Puv(xu, xv) =

∑
xV −{u,v} P (xu, xv, xV −{u,v}). If P is an

empirical distribution, as in the present case, computing these marginals requires O(n2N)
operations. Second, from these marginals we compute the mutual information between each
pair of variables in V under the distribution P :

Iuv =
∑
xuxv

Puv(xu, xv) log
Puv(xu, xv)

Pu(xu)Pv(xv)
, u, v ∈ V, u =/ v,

an operation that requires O(n2r2
MAX) operations. Third, we run a maximum-weight span-

ning tree (MWST) algorithm (Cormen, Leiserson, & Rivest, 1990), using Iuv as the weight
for edge (u, v), forallu, v ∈ V . Such algorithms, which run in time O(n2), return a spanning
tree that maximizes the total mutual information for edges included in the tree.

Chow and Liu showed that the maximum-weight spanning tree also maximizes the like-
lihood over tree distributions T , and moreover the optimizing parameters T k

uv (or T k
u|v), for

(u, v) ∈ ET k , are equal to the corresponding marginals Puv of the distribution P :

Tuv ≡ Puv.

The algorithm thus attains a global optimum over both structure and parameters.

7

Meilă & Jordan

Algorithm ChowLiu(P)

Input: Distribution P over domain V
Procedure MWST(weights) that outputs a maximum weight spanning tree
over V

1. Compute marginal distributions Pv, Puv for u, v ∈ V
2. Compute mutual information values Iuv for u, v ∈ V
3. ET = MWST({Iuv})
4. Set Tuv ≡ Puv for uv ∈ ET

Output: T

Figure 3: The Chow and Liu algorithm for maximum likelihood estimation of tree structure
and parameters.

3. Mixtures of trees

We define a mixture-of-trees (MT) model to be a distribution of the form:

Q(x) =
m∑

k=1

λkT
k(x)

with

λk ≥ 0, k = 1, . . . ,m;
m∑

k=1

λk = 1.

The tree distributions T k are the mixture components and λk are called mixture coefficients.
A mixture of trees can be viewed as containing an unobserved choice variable z, which takes
value k ∈ {1, . . . m} with probability λk. Conditioned on the value of z, the distribution of
the observed variables V is a tree. The m trees may have different structures and different
parameters. In Figure 1, for example, we have a mixture of trees with m = 3 and n = 5.

Note that because of the varying structure of the component trees, a mixture of trees is
neither a Bayesian network nor a Markov random field. Let us adopt the notation

A ⊥P B | C
for “A is independent of B given C under distribution P”. If for some (all) k ∈ {1, . . . m}
we have

A ⊥T k B | C with A,B,C ⊂ V,

this will not imply that
A ⊥Q B | C.

On the other hand, a mixture of trees is capable of representing dependency structures that
are conditioned on the value of a variable (the choice variable), something that a usual

8

Learning with Mixtures of Trees

1

2

3 4 5

z

1

2

3 4 5

z

(a) (b)

Figure 4: A mixture of trees with shared structure (MTSS) represented as a Bayes net (a)
and as a Markov random field (b).

Bayesian network or Markov random field cannot do. Situations where such a model is
potentially useful abound in real life: Consider for example bitmaps of handwritten digits.
Such images obviously contain many dependencies between pixels; however, the pattern of
these dependencies will vary across digits. Imagine a medical database recording the body
weight and other data for each patient. The body weight could be a function of age and
height for a healthy person, but it would depend on other conditions if the patient suffered
from a disease or were an athlete. If, in a situation like the ones mentioned above, condi-
tioning on one variable produces a dependency structure characterized by sparse, acyclic
pairwise dependencies, then a mixture of trees may provide a good model of the domain.

If we constrain all of the trees in the mixture to have the same structure we obtain a
mixture of trees with shared structure (MTSS; see Figure 4). In the case of the MTSS, if for
some (all) k ∈ {1, . . . m}

A ⊥T k B |C,

then

A ⊥Q B | C ∪ {z}.

In addition, a MTSS can be represented as a Bayesian network (Figure 4,a), as a Markov
random field (Figure 4,b) and as a chain graph (Figure 5). Chain graphs were introduced
by Lauritzen (1996); they represent a superclass of both Bayesian networks and Markov
random fields. A chain graph contains both directed and undirected edges.

While we generally consider problems in which the choice variable is hidden (i.e., unob-
served), it is also possible to utilize both the MT and the MTSS frameworks in which the
choice variable is observed. Such models, which—as we discuss in Section 1.1—have been
studied previously by Friedman et al. (1997) and Friedman et al. (1998), will be referred
to generically as mixtures with observed choice variable. Unless stated otherwise, it will be
assumed that the choice variable is hidden.

9

Meilă & Jordan

1

2

3 4 5

Z

Figure 5: A MTSS represented as a chain graph. The double boxes enclose the undirected
blocks of the chain graph.

3.1 Marginalization, inference and sampling in MT models

Let Q(x) =
∑m

k=1 λkT
k(x) be an MT model. We consider the basic operations of marginal-

ization, inference and sampling, recalling that these operations have time complexity O(n)
for each of the component tree distributions T k.

Marginalization. The marginal distribution of a subset A ⊂ V is given as follows:

QA(xA) =
m∑

k=1

λkT
k
A(xA).

Hence, the marginal of Q is a mixture of the marginals of the component trees.

Inference. Let V ′ = xV ′ be the evidence. Then the probability of the hidden variable
given evidence V ′ = xV ′ is obtained by applying Bayes’ rule as follows:

Pr[z = k|V ′ = xV ′] =
λkT

k
V ′(V ′ = xV ′)∑

k′ λk′T k′
V ′(V ′ = xV ′)

.

In particular, when we observe all but the choice variable, i.e., V ′ ≡ V and xV ′ ≡ x, we
obtain the posterior probability distribution of z:

Pr[z = k|V = x] ≡ Pr[z = k|x] =
λkT

k(x)∑
k′ λk′T k′(x)

. (4)

The probability distribution of a given subset of V given the evidence is

QA|V ′(xA|xV ′) =

∑m
k=1 λkT

k
A,V ′(xA, xV ′)∑m

k=1 λkT
k
V ′(xV ′)

=
m∑

k=1

Pr[z = k|V ′ = xV ′]T k
A|V ′(xA|xV ′).

10

Learning with Mixtures of Trees

Thus the result is again a mixture of the results of inference procedures run on the compo-
nent trees.

Sampling. The procedure for sampling from a mixture of trees is a two stage process:
first one samples a value k for the choice variable z from its distribution (λ1, λ2, . . . λm),
then a value x is sampled from T k using the procedure for sampling from a tree distribution.

In summary, the basic operations on mixtures of trees, marginalization, conditioning and
sampling, are achieved by performing the corresponding operation on each component of
the mixture and then combining the results. Therefore, the complexity of these operations
scales linearly with the number of trees in the mixture.

3.2 Learning of MT models

The expectation-maximization (EM) algorithm provides an effective approach to solving
many learning problems (Dempster, Laird, & Rubin, 1977; MacLachlan & Bashford, 1988),
and has been employed with particular success in the setting of mixture models and more
general latent variable models (Jordan & Jacobs, 1994; Jelinek, 1997; Rubin & Thayer,
1983). In this section we show that EM also provides a natural approach to the learning
problem for the MT model.

An important feature of the solution that we present is that it provides estimates for
both parametric and structural aspects of the model. In particular, although we assume (in
the current section) that the number of trees is fixed, the algorithm that we derive provides
estimates for both the pattern of edges of the individual trees and their parameters. These
estimates are maximum likelihood estimates, and although they are subject to concerns
about overfitting, the constrained nature of tree distributions helps to ameliorate overfitting
problems. It is also possible to control the number of edges indirectly via priors; we discuss
methods for doing this in Section 4.

We are given a set of observations D = {x1, x2, . . . , xN} and are required to find the
mixture of trees Q that satisfies

Q = argmax
Q′

N∑
i=1

log Q(xi).

Within the framework of the EM algorithm, this likelihood function is referred to as the
incomplete log-likelihood and it is contrasted with the following complete log-likelihood func-
tion:

lc(x1,...N , z1,...N |Q) =
N∑

i=1

log
m∏

k=1

(λkT
k(xi))δk,zi

=
N∑

i=1

m∑
k=1

δk,zi(log λk + log T k(xi)), (5)

where δk,zi is equal to one if zi is equal to the kth value of the choice variable and zero other-
wise. The complete log-likelihood would be the log-likelihood of the data if the unobserved
data {z1, z2, . . . , zN} could be observed.

11

Meilă & Jordan

The idea of the EM algorithm is to utilize the complete log-likelihood, which is gener-
ally easy to maximize, as a surrogate for the incomplete log-likelihood, which is generally
somewhat less easy to maximize directly. In particular, the algorithm goes uphill in the
expected value of the complete log-likelihood, where the expectation is taken with respect
to the unobserved data. The algorithm thus has the form of an interacting pair of steps: the
E step, in which the expectation is computed given the current value of the parameters, and
the M step, in which the parameters are adjusted so as to maximize the expected complete
log-likelihood. These two steps iterate and are proved to converge to a local maximum of
the (incomplete) log-likelihood (Dempster et al., 1977).

Taking the expectation of (5), we see that the E step for the MT model reduces to
taking the expectation of the delta function δk,zi , conditioned on the data D:

E[δk,zi |D] = Pr[zi = k|D] = Pr[zi = k|V = xi],

and this latter quantity is recognizable as the posterior probability of the hidden variable
given the ith observation (cf. equation (4)). Let us define:

γk(i) =
λkT

k(xi)∑
k′ λk′T k′(xi)

(6)

as this posterior probability.
Substituting (6) into the expected value of the complete log-likelihood in (5), we obtain:

E[lc(x1,...N , z1,...N |Q)] =
N∑

i=1

m∑
k=1

γk(i)(log λk + log T k(xi)).

Let us define the following quantities:

Γk =
N∑

i=1

γk(xi), k = 1, . . . m

P k(xi) =
γk(i)
Γk

,

where the sums Γk ∈ [0,N] can be interpreted as the total number of data points that are
generated by component T k. Using these definitions we obtain:

E[lc(x1,...N , z1,...N |Q)] =
m∑

k=1

Γk log λk +
m∑

k=1

Γk

N∑
i=1

P k(xi) log T k(xi). (7)

It is this quantity that we must maximize with respect to the parameters.
From (7) we see that E[lc] separates into terms that depend on disjoint subsets of the

model parameters and thus the M step decouples into separate maximizations for each of
the various parameters. Maximizing the first term of (7) with respect to the parameters λ,
subject to the constraint

∑m
k=1 λk = 1, we obtain the following update equation:

λk =
Γk

N
for k = 1, . . . m.

12

Learning with Mixtures of Trees

Algorithm MixTree(D, Q0)

Input: Dataset {x1, . . . xN}
Initial model Q0 = {m, T k, λk, k = 1, . . . m}
Procedure ChowLiu(P)

Iterate until convergence:
E step: Compute γi

k, P k(xi) for k = 1, . . . m, i = 1, . . . N
M step: for k = 1, . . . m

λk ← Γk/N
T k = ChowLiu(P k)

Output: Model Q = {m, T k, λk, k = 1, . . . m}

Figure 6: The MixTree algorithm for learning MT models.

In order to update T k, we see that we must maximize the negative cross-entropy between
P k and T k:

N∑
i=1

P k(xi) log T k(xi).

This problem is solved by the ChowLiu algorithm from Section 2.3. Thus we see that the
M step for learning the mixture components of MT models reduces to m separate runs of
the ChowLiu algorithm, where the “target” distribution P k(xi) is the normalized posterior
probability obtained from the E step.

We summarize the results of the derivation of the EM algorithm for mixtures of trees
in Figure 6.

3.2.1 Running time

Computing the likelihood of a data point under a tree distribution (in the directed tree
representation) takes n− 1 = O(n) multiplications. Hence, the E step requires O(mnN)
floating point operations.

As for the M step, the most computationally expensive phase is the computation of
the marginals P k

uv for the kth tree. This step has time complexity O(mn2N). Another
O(mn2r2

MAX) and O(mn2) are required at each iteration for the mutual informations and
for the m runs of the MWST algorithm. Finally we need O(mnr2

MAX) for computing the
tree parameters in the directed representation. The total running time per EM iteration is
thus

O(mn2N + mn2r2
MAX).

The algorithm is polynomial (per iteration) in the dimension of the domain, the number of
components and the size of the data set.

13

Meilă & Jordan

The space complexity is also polynomial, and is dominated by O(n2r2
MAX), the space

needed to store the pairwise marginal tables P k
uv (the tables can be overwritten by successive

values of k).

3.3 Learning mixtures of trees with shared structure

It is possible to modify the MixTree algorithm so as to constrain the m trees to share the
same structure, and thereby estimate MTSS models.

The E step remains unchanged. The only novelty is the reestimation of the tree distri-
butions T k in the M step, since they are now constrained to have the same structure. Thus,
the maximization cannot be decoupled into m separate tree estimations but, remarkably
enough, it can still be performed efficiently.

It can be readily verified that for any given structure the optimal parameters of each
tree edge T k

uv are equal to the parameters of the corresponding marginal distribution P k
uv.

It remains only to find the optimal structure. The expression to be optimized is the second
sum in the right-hand side of equation (7). By replacing T k

uv with P k
uv and denoting the

mutual information between u and v under P k by Ik
uv this sum can be reexpressed as follows:

m∑
k=1

Γk

N∑
i=1

P k(xi) log T k(xi) = N

m∑
k=1

λk[
∑

(u,v)∈E

Ik
uv −

∑
v∈V

H(P k
v)]

= N
∑

(u,v)∈E

Iuv|z −N
∑
v∈V

H(v|z). (8)

The new quantity Iuv|z appearing above represents the mutual information of u and v
conditioned on the hidden variable z. Its general definition for three discrete variables
u, v, z distributed according to Puvz ≡ P is

Iuv|z =
∑
xz

Pz(xz)
∑
xuxv

Puv|z(xuxv|xz) log
Puv|z(xuxv|xz)

Pu|z(xu|xz)Pv|z(xv|xz)
.

The second term in (8), N
∑

v∈V H(v|z), represents the sum of the conditional entropies
of the variables given z and is independent of the tree structure. Hence, the optimization
of the structure E can be achieved by running a MWST algorithm with the edge weights
represented by Iuv|z. We summarize the algorithm in Figure 7.

4. Decomposable priors and MAP estimation for mixtures of trees

The Bayesian learning framework combines information obtained from direct observations
with prior knowledge about the model, when the latter is represented as a probability
distribution. The object of interest of Bayesian analysis is the posterior distribution over
the models given the observed data, Pr[Q|D], a quantity which can rarely be calculated
explicitly. Practical methods for approximating the posterior include choosing a single
maximum a posteriori (MAP) estimate, replacing the continuous space of models by a finite
set Q of high posterior probability (Heckerman et al., 1995), and expanding the posterior
around its mode(s) (Cheeseman & Stutz, 1995).

14

Learning with Mixtures of Trees

Algorithm MixTreeSS(D, Q0)

Input: Dataset {x1, . . . xN}
Initial model Q0 = {m, T k, λk, k = 1, . . . m}
Procedure MWST(weights) that outputs a maximum weight spanning tree

Iterate until convergence:
E step: Compute γi

k, P k(xi) for k = 1, . . . m, i = 1, . . . N
M step: Compute marginals P k

v , P k
uv, u, v ∈ V

Compute mutual information values Iuv|z u, v ∈ V

ET = MWST({ Iuv|z })
Set λk ← Γk/N
Set T k

uv ≡ P k
uv for uv ∈ ET and for k = 1, . . . m

Output: Model Q = {m, T k, λk, k = 1, . . . m}

Figure 7: The MixTreeSS algorithm for learning MTSS models.

Finding the local maxima (modes) of the distribution Pr[Q|D] is a necessary step in all
the above methods and is our primary concern in this section. We demonstrate that maxi-
mum a posteriori modes can be found as efficiently as maximum likelihood modes, given a
particular choice of prior. This has two consequences: First, it makes approximate Bayesian
averaging possible. Second, if one uses a non-informative prior, then MAP estimation is
equivalent to Bayesian smoothing, and represents a form of regularization. Regularization
is particularly useful in the case of small data sets in order to prevent overfitting.

4.1 MAP estimation by the EM algorithm

For a model Q and dataset D the logarithm of the posterior Pr[Q|D] equals:

log Pr[Q] +
∑
x∈D

log Q(x)

plus an additive constant.
The EM algorithm can be adapted to maximize the log posterior for every fixed m (Neal

& Hinton, 1999). Indeed, by comparing with equation (5) we see that the quantity to be
maximized is now:

E[log Pr[Q|x1,...,N , z1,...,N]] = log Pr[Q] + E[lc(x1,...,N , z1,...,N |Q)]. (9)

The prior term does not influence the E step of the EM algorithm, which proceeds exactly
as before (cf. equation (6)). To be able to successfully maximize the right-hand side of
(9) in the M step we require that log Pr[Q] decomposes into a sum of independent terms
matching the decomposition of E[lc] in (7). A prior over mixtures of trees that is amenable

15

Meilă & Jordan

to this decomposition is called a decomposable prior. It will have the following product form

Pr[Q] = Pr[λ1,...,m]
m∏

k=1

Pr[Ek]Pr[parameters|Ek]︸ ︷︷ ︸
Pr[T k]

= Pr[λ1,...,m]
m∏

k=1

 ∏

(u,v)∈Ek

e−βuv

(∏

v∈V

Pr[T k
v|pa(v)]

) .

The first parenthesized factor in this equation represents the prior of the tree structure Ek

while the second factor is the prior for parameters.
Requiring that the prior be decomposable is equivalent to making several independence

assumptions: in particular, it means that the parameters of each tree in the mixture are
independent of the parameters of all the other trees as well as of the probability of the
mixture variable. In the following section, we show that these assumptions are not overly
restrictive, by constructing decomposable priors for tree structures and parameters and
showing that this class is rich enough to contain members that are of practical importance.

4.2 Decomposable priors for tree structures

The general form of a decomposable prior for the tree structure E is one where each edge
contributes a constant factor independent of the presence or absence of other edges in E:

Pr[E] ∝
∏

(u,v)∈E

exp(−βuv).

With this prior, the expression to be maximized in the M step of the EM algorithm becomes

m∑
k=1

Γk log λk +
m∑

k=1

Γk

 N∑

i=1

P k(xi) log T k(xi)−
∑

(u,v)∈Ek

βuv

Γk

 .

Consequently, each edge weight W k
uv in tree Tk is adjusted by the corresponding value βuv

divided by the total number of points that tree k is responsible for:

W k
uv = Ik

uv −
βuv

Γk
.

A negative βuv increases the probability of (u, v) being present in the final solution, whereas
a positive value of βuv acts like a penalty on the presence of edge (u, v) in the tree. If the
MWST procedure is modified so as to not add negative-weight edges, one can obtain
(disconnected) trees having fewer than n − 1 edges. Note that the strength of the prior is
inversely proportional to Γk, the total number of data points assigned to mixture component
k. Thus, with equal priors for all trees T k, trees accounting for fewer data points will be
penalized more strongly and therefore will be likely to have fewer edges.

If one chooses the edge penalties to be proportional to the increase in the number of
parameters caused by the addition of edge uv to the tree,

βuv =
1
2
(ru − 1)(rv − 1) log N

16

Learning with Mixtures of Trees

then a Minimum Description Length (MDL) (Rissanen, 1989) type of prior is implemented.
In the context of learning Bayesian networks, Heckerman et al. (1995) suggested the

following prior:
Pr[E] ∝ κ∆(E,E∗)

where ∆(·) is a distance metric between Bayes net structures and E∗ is the prior network
structure. Thus, this prior penalizes deviations from the prior network. This prior is
decomposable, entailing

βuv =
{ − ln κ, (u, v) ∈ E∗

ln κ, (u, v) 6∈ E∗ .

Decomposable priors on structure can also be used when the structure is common for
all trees (MTSS). In this case the effect of the prior is to penalize the weight Iuv|z in (8) by
−βuv/N .

A decomposable prior has the remarkable property that its normalization constant can
be computed exactly in closed form. This makes it possible not only to completely define
the prior, but also to compute averages under this prior (e.g., to compute a model’s evi-
dence). Given that the number of all undirected tree structures over n variables is nn−2,
this result (Meilă & Jaakkola, 2000) is quite surprising.

4.3 Decomposable priors for tree parameters

The decomposable prior for parameters that we introduce is a Dirichlet prior (Heckerman
et al., 1995). The Dirichlet distribution is defined over the domain of θ1,..., r > 0,

∑
j θj = 1

and has the form

D(θ1,..., r;N ′
1,..., r) ∝

r∏
j=1

θ
N ′

j−1

j .

The numbers N ′
1,..., r > 0 that parametrize D can be interpreted as the sufficient statistics

of a “fictitious data set” of size N ′ =
∑

j N ′
j . Therefore N ′

j are called fictitious counts. N ′

represents the strength of the prior.
To specify a prior for tree parameters, one must specify a Dirichlet distribution for each

of the probability tables Tv|u=xu
, uv ∈ ED, for each possible tree structure ED. This is

achieved by means of a set of parameters N ′
vuxvxu

satisfying∑
xu

N ′
vuxvxu

= N ′
vxv

,
∑
xv

N ′
vxv

= N ′ for all u, v ∈ V.

With these settings, the prior for the parameters Tv|u(xv|xu), xv = 1, . . . , rv in any tree that
contains the directed edge uv is defined by N ′

uvxuxv
, xv = 1, . . . , rv. This representation of

the prior is not only compact (order n2r2
MAX parameters) but it is also consistent: two

different directed parametrizations of the same tree distribution receive the same prior.
The assumptions allowing us to define this prior are explicated by Meilă and Jaakkola
(2000) and parallel the reasoning of Heckerman et al. (1995) for general Bayes nets.

Denote by P the empirical distribution obtained from a data set of size N and by
P ′

uv(xuxv) = N ′
uvxuxv

/N ′ the distribution defined by the fictitious counts. Then, by a
property of the Dirichlet distribution (Heckerman et al., 1995) it follows that learning a

17

Meilă & Jordan

MAP tree is equivalent to learning an ML tree for the weighted combination P̃ of the two
“datasets”

P̃ =
1

N + N ′ (N
′P ′ + NP). (10)

Consequently, the parameters of the optimal tree will be Tuv = P̃uv.

For a mixture of trees, maximizing the posterior translates into replacing P by P k and
N by Γk in equation (10) above. This implies that the M step of the EM algorithm, as
well as the E step, is exact and tractable in the case of MAP estimation with decomposable
priors.

Finally, note that the posteriors Pr[Q|D] for models with different m are defined up to
a constant that depends on m. Hence, one cannot compare posteriors of MTs with different
numbers of mixture components m. In the experiments that we present, we chose m via
other performance criteria: validation set likelihood in the density estimation experiments
and validation set classification accuracy in the classification tasks.

5. Experiments

This section describes the experiments that were run in order to assess the promise of the
MT model. The first experiments are structure identification experiments; they examine
the ability of the MixTree algorithm to recover the original distribution when the data are
generated by a mixture of trees. The next group of experiments studies the performance of
the MT model as a density estimator ; the data used in these experiments are not generated
by mixtures of trees. Finally, we perform classification experiments, studying both the
MT model and a single tree model. Comparisons are made with classifiers trained in both
supervised and unsupervised mode. The section ends with a discussion of the single tree
classifier and its feature selection properties.

In all of the experiments the training algorithm is initialized at random, independently
of the data. Unless stated otherwise, the learning algorithm is run until convergence. Log-
likelihoods are expressed in bits/example and therefore are sometimes called compression
rates. The lower the value of the compression rate, the better the fit to the data.

In the experiments that involve small data sets we use the Bayesian methods that we
discussed in Section 4 to impose a penalty on complex models. In order to regularize model
structure we use a decomposable prior over tree edges with βuv = β > 0. To regularize
model parameters we use a Dirichlet prior derived from the pairwise marginal distributions
for the data set. This approach is known as smoothing with the marginal (Friedman et al.,
1997; Ney, Essen, & Kneser, 1994). In particular, we set the parameter N ′

k characterizing
the Dirichlet prior for tree k by apportioning a fixed smoothing coefficient α equally between
the n variables and in an amount that is inversely proportional to Γk between the m mixture
components. Intuitively, the effect of this operation is to make the m trees more similar to
each other, thereby reducing the effective model complexity.

18

Learning with Mixtures of Trees

Figure 8: Eight training examples for the bars learning task.

5.1 Structure identification

5.1.1 Random trees, large data set

For the first structure identification experiment, we generated a mixture of m = 5 trees
over 30 variables with each vertex having r = 4 values. The distribution of the choice
variable λ as well as each tree’s structure and parameters were sampled at random. The
mixture was used to generate 30,000 data points that were used as a training set for a
MixTree algorithm. The initial model had m = 5 components but otherwise was random.
We compared the structure of the learned model with the generative model and computed
the likelihoods of both the learned and the original model on a test dataset consisting of
1000 points.

The algorithm was quite successful at identifying the original trees: out of 10 trials, the
algorithm failed to identify correctly only 1 tree in 1 trial. Moreover, this result can be
accounted for by sampling noise; the tree that wasn’t identified had a mixture coefficient
λ of only 0.02. The difference between the log likelihood of the samples of the generating
model and the approximating model was 0.41 bits per example.

5.1.2 Random bars, small data set

The “bars” problem is a benchmark structure learning problem for unsupervised learning
algorithms in the neural network literature (Dayan & Zemel, 1995). The domain V is the
l× l square of binary variables depicted in Figure 8. The data are generated in the following
manner: first, one flips a fair coin to decide whether to generate horizontal or vertical bars;
this represents the hidden variable in our model. Then, each of the l bars is turned on
independently (black in Figure 8) with probability pb. Finally, noise is added by flipping
each bit of the image independently with probability pn. A learner is shown data generated
by this process; the task of the learner is to discover the data generating mechanism.

A mixture of trees model that approximates the true structure for low noise levels is
shown in Figure 10. Note that any tree over the variables forming a bar is an equally
good approximation. Thus, we will consider that the structure has been discovered when
the model learns a mixture with m = 2, each T k having l connected components, one for
each bar. Additionally, we shall test the classification accuracy of the learned model by

19

Meilă & Jordan

Horiz
/Vert

0.5

Pb | 0

(1-Pn) | Pn

(1-Pn) | Pn

0 | Pb

hidden
variables

visible
variables

Figure 9: The true structure of the probabilistic generative model for the bars data.

hh h=1 =0

Figure 10: A mixture of trees that approximates the generative model for the bars problem.
The interconnection between the variables in each “bar” are arbitrary.

20

Learning with Mixtures of Trees

.0001 .01 1 100 10000
8

10

12

14

16

18

20

Smoothing value

V
al

id
at

io
n

se
t l

ik
el

ih
oo

d
[b

its
/c

as
e]

m=2

m=3

Figure 11: Test set log-likelihood on the bars learning task for different values of the smooth-
ing parameter α and different m. The figure presents averages and standard
deviations over 20 trials.

comparing the true value of the hidden variable (i.e. “horizontal” or “vertical”) with the
value estimated by the model for each data point in a test set.

As seen in the first row, third column of Figure 8, some training set examples are
ambiguous. We retained these ambiguous examples in the training set. The total training
set size was Ntrain = 400. We trained models with m = 2, 3, . . . , and evaluated the models
on a validation set of size 100 to choose the final values of m and of the smoothing parameter
α. Typical values for l in the literature are l = 4, 5 ; we choose l = 5 following Dayan and
Zemel (1995). The other parameter values were pb = 0.2, pn = 0.02 and Ntest = 200. To
obtain trees with several connected components we used a small edge penalty β = 5.

The validation-set log-likelihoods (in bits) for m = 2, 3 are given in Figure 11. Clearly,
m = 2 is the best model. For m = 2 we examined the resulting structures: in 19 out of 20
trials, structure recovery was perfect. Interestingly, this result held for the whole range of
the smoothing parameter α, not simply at the cross-validated value. By way of comparison,
Dayan and Zemel (1995) examined two training methods and the structure was recovered
in 27 and respectively 69 cases out of 100.

The ability of the learned representation to categorize new examples as coming from
one group or the other is referred to as classification performance and is shown in Table 1.
The result reported is obtained on a separate test set for the final, cross-validated value of
α. Note that, due to the presence of ambiguous examples, no model can achieve perfect
classification. The probability of an ambiguous example is pambig = pl

b + (1− pb)l ≈ 0.25,
which yields an error rate of 0.5pambig = 0.125. Comparing this lower bound with the value

21

Meilă & Jordan

Table 1: Results on the bars learning task.
Test set ambiguous unambiguous
ltest [bits/datapt] 9.82 ± 0.95 13.67 ± 0.60
Class accuracy 0.852 ± 0.076 0.951 ± 0.006

Figure 12: An example of a digit pair.

in the corresponding column of Table 1 shows that the model performs quite well, even
when trained on ambiguous examples.

To further support this conclusion, a second test set of size 200 was generated, this
time including only non-ambiguous examples. The classification performance, shown in the
corresponding section of Table 1, rose to 0.95. The table also shows the likelihood of the
(test) data evaluated on the learned model. For the first, “ambiguous” test set, this is
9.82, 1.67 bits away from the true model likelihood of 8.15 bits/data point. For the “non-
ambiguous” test set, the compression rate is significantly worse, which is not surprising
given that the distribution of the test set is now different from the distribution the model
was trained on.

5.2 Density estimation experiments

In this section we present the results of three experiments that study the mixture of trees
in the density estimation setting.

5.2.1 Digits and digit pairs images

Our first density estimation experiment involved a subset of binary vector representations of
handwritten digits. The datasets consist of normalized and quantized 8×8 binary images of
handwritten digits made available by the US Postal Service Office for Advanced Technology.
One dataset—which we refer to as the “digits” dataset—contains images of single digits in
64 dimensions. The other dataset (“pairs”) contains 128-dimensional vectors representing
randomly paired digit images. These datasets, as well as the training conditions that we
employed, are described by Frey, Hinton, and Dayan (1996). (See Figure 12 for an example
of a digit pair). The training, validation and test sets contained 6000, 2000, and 5000
exemplars respectively. Each model was trained on the training set until the likelihood of
the validation set stopped increasing.

We tried mixtures of 16, 32, 64 and 128 trees, fit by the MixTree algorithm. For each
of the digits and pairs datasets we chose the mixture model with the highest log-likelihood

22

Learning with Mixtures of Trees

Table 2: Average log-likelihood (bits per digit) for the single digit (Digit) and double digit
(Pairs) datasets. Results are averaged over 3 runs.

m Digits Pairs
16 34.72 79.25
32 34.48 78.99
64 34.84 79.70

128 34.88 81.26

on the validation set and using it we calculated the average log-likelihood over the test set
(in bits per example). The averages (over 3 runs) are shown in Table 2.

In Figure 13 we compare our results (for m = 32) with the results published by Frey
et al. (1996). The algorithms plotted in the figure are the (1) completely factored or “Base
rate” (BR) model, which assumes that every variable is independent of all the others, (2)
mixture of factorial distributions (MF), (3) the UNIX “gzip” compression program, (4) the
Helmholtz Machine, trained by the wake-sleep algorithm (Frey et al., 1996) (HWS), (5) the
same Helmholtz Machine where a mean field approximation was used for training (HMF),
(5) a fully observed and fully connected sigmoid belief network (FV), and (6) the mixture
of trees (MT) model.

As shown in Figure 13, the MT model yields the best density model for the simple
digits and the second-best model for pairs of digits. A comparison of particular interest is
between the MT model and the mixture of factorial (MF) model. In spite of the structural
similarities in these models, the MT model performs better than the MF model, indicating
that there is structure in the data that is exploited by the mixture of spanning trees but
is not captured by a mixture of independent variable models. Comparing the values of the
average likelihood in the MT model for digits and pairs we see that the second is more than
twice the first. This suggests that our model (and the MF model) is able to perform good
compression of the digit data but is unable to discover the independence in the double digit
set.

5.2.2 The ALARM network

Our second set of density estimation experiments features the ALARM network as the data
generating mechanism (Heckerman et al., 1995; Cheng, Bell, & Liu, 1997). This Bayesian
network was constructed from expert knowledge as a medical diagnostic alarm message
system for patient monitoring. The domain has n = 37 discrete variables taking between 2
and 4 values, connected by 46 directed arcs. Note that this network is not a tree or a mixture
of trees, but the topology of the graph is sparse, suggesting the possibility of approximating
the dependency structure by a mixture of trees with a small number of components m.

We generated a training set having Ntrain = 10, 000 data points and a separate test
set of Ntest = 2, 000 data points. On these sets we trained and compared the following
methods: mixtures of trees (MT), mixtures of factorial (MF) distributions, the true model,

23

Meilă & Jordan

 BR MF gzip HWS HMF FV MT
0

10

20

30

40

50

60
Li

ke
lih

oo
d

[b
its

/d
ig

it]

 BR MF gzip HWS HMF FV MT
0

20

40

60

80

100

120

Li
ke

lih
oo

d
[b

its
/d

ig
it]

(a) (b)

Figure 13: Average log-likelihoods (bits per digit) for the single digit (a) and double digit
(b) datasets. Notice the difference in scale between the two figures.

Table 3: Density estimation results for the mixtures of trees and other models on the
ALARM data set. Training set size Ntrain = 10, 000. Average and standard
deviation over 20 trials.

Model Train likelihood Test likelihood
[bits/data point] [bits/data point]

ALARM net 13.148 13.264
Mixture of trees m = 18 13.51 ±0.04 14.55 ± 0.06
Mixture of factorials m = 28 17.11 ± 0.12 17.64 ± 0.09
Base rate 30.99 31.17
gzip 40.345 41.260

and “gzip.” For MT and MF the model order m and the degree of smoothing were selected
by cross validation on randomly selected subsets of the training set.

The results are presented in Table 3, where we see that the MT model outperforms the
MF model as well as gzip and the base rate model.

To examine the sensitivity of the algorithms to the size of the data set we ran the same
experiment with a training set of size 1,000. The results are presented in Table 4. Again,
the MT model is the closest to the true model. Notice that the degradation in performance
for the mixture of trees is relatively mild (about 1 bit), whereas the model complexity is
reduced significantly. This indicates the important role played by the tree structures in
fitting the data and motivates the advantage of the mixture of trees over the mixture of
factorials for this data set.

24

Learning with Mixtures of Trees

Table 4: Density estimation results for the mixtures of trees and other models on a data set
of size 1000 generated from the ALARM network. Average and standard deviation
over 20 trials. Recall that α is a smoothing coefficient.

Model Train likelihood Test likelihood
[bits/data point] [bits/data point]

ALARM net 13.167 13.264
Mixture of trees m = 2, α = 50 14.56 ±0.16 15.51 ± 0.11
Mixture of factorials m = 12, α = 100 18.20 ± 0.37 19.99 ± 0.49
Base rate 31.23 31.18
gzip 45.960 46.072

Table 5: Density estimation results for the mixtures of trees and other models on a the
FACES data set. Average and standard deviation over 10 trials.

Model Train likelihood Test likelihood
[bits/data point] [bits/data point]

Mixture of trees m = 2, α = 10 52.77 ±0.33 56.29 ± 1.67
Mixture of factorials m = 24, α = 100 56.34 ± 0.48 64.41 ± 2.11
Base rate 75.84 74.27
gzip – 103.51

5.2.3 The FACES dataset

For the third density estimation experiment, we used a subset of 576 images from a nor-
malized face images dataset (Philips, Moon, Rauss, & Rizvi, 1997). These images were
downsampled to 48 variables (pixels) and 5 gray levels. We divided the data randomly
into Ntrain = 500 and Ntest = 76 examples; of the 500 training examples, 50 were left out
as a validation set and used to select m and α for the MT and MF models. The results
in table 5 show the mixture of trees as the clear winner. Moreover, the MT achieves this
performance with almost 5 times fewer parameters than the second best model, the mixture
of 24 factorial distributions.

Note that an essential ingredient of the success of the MT both here and in the digits
experiments is that the data are “normalized”, i.e., a pixel/variable corresponds approx-
imately to the same location on the underlying digit or face. We do not expect MTs to
perform well on randomly chosen image patches.

25

Meilă & Jordan

5.3 Classification with mixtures of trees

5.3.1 Using a mixture of trees as a classifier

A density estimator can be turned into a classifier in two ways, both of them being essentially
likelihood ratio methods. Denote the class variable by c and the set of input variables by
V . In the first method, adopted in our classification experiments under the name of MT
classifier, an MT model Q is trained on the domain {c}⋃ V , treating the class variable like
any other variable and pooling all the training data together. In the testing phase, a new
instance x ∈ Ω(V) is classified by picking the most likely value of the class variable given
the settings of the other variables:

c(x) = argmax
xc

Q(xc, x)

Similarly, for the MF classifier (termed “D-SIDE” by Kontkanen et al., 1996), Q above is
an MF trained on {c}⋃ V .

The second method calls for partitioning the training set according to the values of the
class variable and for training a tree density estimator on each partition. This is equivalent
to training a mixture of trees with observed choice variable, the choice variable being the
class c (Chow & Liu, 1968; Friedman et al., 1997). In particular, if the trees are forced to
have the same structure we obtain the Tree Augmented Naive Bayes (TANB) classifier of
Friedman et al. (1997). In either case one turns to Bayes formula:

c(x) = argmax
k

P [c = k] T k(x)

to classify a new instance x. The analog of the MF classifier in this setting is the naive
Bayes classifier.

5.3.2 The AUSTRALIAN data set

This dataset has 690 examples each consisting of 14 attributes and a binary class variable
(Blake & Merz, 1998). In the following we replicated the experimental procedure of Kon-
tkanen et al. (1996) and Michie et al. (1994) as closely as possible. The test and training
set sizes were 70 and 620 respectively. For each value of m we ran our algorithm for a fixed
number of epochs on the training set and then recorded the performance on the test set.
This was repeated 20 times for each m, each time with a random start and with a random
split between the test and the training set. Because of the small data set size we used edge
pruning with β ∝ 1/m. The best performance of the mixtures of trees is compared to the
published results of Kontkanen et al. (1996) and Michie et al. (1994) for the same dataset
in Table 6.

5.3.3 The AGARICUS-LEPIOTA dataset

The AGARICUS-LEPIOTA data (Blake & Merz, 1998) comprises 8124 examples, each
specifying the 22 discrete attributes of a species of mushroom in the Agaricus and Lepiota
families and classifying it as edible or poisonous. The arities of the variables range from 2
to 12. We created a test set of Ntest = 1124 examples and a training set of Ntrain = 7000
examples. Of the latter, 800 examples were kept aside to select m and the rest were used

26

Learning with Mixtures of Trees

Table 6: Performance comparison between the MT model and other classification methods
on the AUSTRALIAN dataset (Michie et al., 1994). The results for mixtures of
factorial distribution are those reported by Kontkanen et al. (1996).

Method % correct Method % correct
Mixture of trees m = 20, β = 4 87.8 Backprop 84.6
Mixture of factorial distributions 87.2 C4.5 84.6
Cal5 (decision tree) 86.9 SMART 84.2
ITrule 86.3 Bayes Trees 82.9
Logistic discrimination 85.9 K-nearest neighbor k = 1 81.9
Linear discrimination 85.9 AC2 81.9
DIPOL92 85.9 NewID 81.9
Radial basis functions 85.5 LVQ 80.3
CART 85.5 ALLOC80 79.9
CASTLE 85.2 CN2 79.6
Naive Bayes 84.9 Quadratic discrimination 79.3
IndCART 84.8 Flexible Bayes 78.3

 MT MF TANB NB
0

0.002

0.004

0.006

0.008

0.01

E
rr

or
 r

at
e

 MT MF TANB NB
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E
rr

or
 r

at
e

(a) (b)

Figure 14: Classification results for the mixtures of trees and other models: (a) On the
AGARICUS-LEPIOTA data set; the MT has m = 12, and the MF has m = 30.
(b) On the NURSERY data set; the MT has m = 30, the MF has m = 70.
TANB and NB are the tree augmented naive Bayes and the naive Bayes classifiers
respectively. The plots show the average and standard deviation test set error
rate over 5 trials.

27

Meilă & Jordan

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Er
ro

r r
at

e

α: 0 0 0 1 10 100 0 1 10 100

KBNN NN TANB NB
︸ ︷︷ ︸

Tree
︸ ︷︷ ︸

MT m = 3

Figure 15: Comparison of classification performance of the MT and other models on the
SPLICE data set when N train = 2000, N test = 1175. Tree represents a mixture
of trees with m = 1, MT is a mixture of trees with m = 3. KBNN is the
Knowledge based neural net, NN is a neural net.

for training. No smoothing was used. The classification results on the test set are presented
in figure 14(a). As the figure suggests, this is a relatively easy classification problem, where
seeing enough examples guarantees perfect performance (achieved by the TANB). The MT
(with m = 12) achieves nearly optimal performance, making one mistake in one of the 5
trials. The MF and naive Bayes models follow about 0.5% behind.

5.3.4 The NURSERY dataset

This data set contains 12,958 entries (Blake & Merz, 1998), consisting of 8 discrete attributes
and one class variable taking 4 values1. The data were randomly separated into a training
set of size Ntrain = 11, 000 and a test set of size Ntest = 1958. In the case of MTs and
MFs the former data set was further partitioned into 9000 examples used for training the
candidate models and 2000 examples used to select the optimal m. The TANB and naive
Bayes models were trained on all the 11,000 examples. No smoothing was used since the
training set was large. The classification results are shown in figure 14(b).

5.3.5 The SPLICE dataset: Classification

We also studied the classification performance of the MT model in the domain of DNA
SPLICE-junctions. The domain consists of 60 variables, representing a sequence of DNA

1. The original data set contains another two data points which correspond to a fifth class value; we
eliminated those from the data we used.

28

Learning with Mixtures of Trees

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rr

or
 r

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rr

or
 r

at
e

α: 0 . 10 . 103 0 . 10 . 103 0 . 10 . 103 α: 0 . 10 . 103 0 . 10 . 103 0 . 10 . 103︸ ︷︷ ︸
DELVE

︸ ︷︷ ︸
Tree

︸ ︷︷ ︸
TANB

︸ ︷︷ ︸
NB

︸ ︷︷ ︸
DELVE

︸ ︷︷ ︸
Tree

︸ ︷︷ ︸
TANB

︸ ︷︷ ︸
NB

a. N train = 100, N test = 1575 b. N train = 200, N test = 1575

Figure 16: Comparison of classification performance of the mixture of trees and other models
trained on small subsets of the SPLICE data set. The models tested by DELVE are,
from left to right: 1-nearest neighbor, CART, HME (hierarchical mixture of experts)-
ensemble learning, HME-early stopping, HME-grown, K-nearest neighbors, LLS (linear
least squares), LLS-ensemble learning, ME (mixture of experts)-ensemble learning, ME-
early stopping. TANB is the Tree Augmented Naive Bayes classifier, NB is the Naive
Bayes classifier, and Tree is the single tree classifier.

29

Meilă & Jordan

bases, and an additional class variable (Rasmussen et al., 1996). The task is to determine
if the middle of the sequence is a splice junction and what is its type. Splice junctions are
of two types: exon-intron (EI) represents the end of an exon and the beginning of an intron
whereas intron-exon (IE) is the place where the intron ends and the next exon, or coding
section, begins. Hence, the class variable can take 3 values (EI, IE or no junction) and the
other variables take 4 values corresponding to the 4 possible DNA bases (C, A, G, T). The
dataset consists of 3,175 labeled examples.2

We ran two series of experiments comparing the MT model with competing models. In
the first series of experiments, we compared to the results of Noordewier et al. (1991), who
used multilayer neural networks and knowledge-based neural networks for the same task.
We replicated these authors’ choice of training set size (2000) and test set size (1175) and
sampled new training/test sets for each trial. We constructed trees (m = 1) and mixtures
of trees (m = 3). In fitting the mixture, we used an early-stopping procedure in which
Nvalid=300 examples were separated out of the training set and training was stopped when
the likelihood on these examples stopped increasing. The results, averaged over 20 trials,
are presented in Figure 15 for a variety of values of α. It can be seen that the single tree
and the MT model perform similarly, with the single tree showing an insignificantly better
classification accuracy. Note that in this situation smoothing does not improve performance;
this is not unexpected since the data set is relatively large. With the exception of the
“oversmoothed” MT model (α = 100), all the single tree or MT models outperform the
other models tested on this problem. Note that whereas the tree models contain no prior
knowledge about the domain, the other two models do: the neural network model is trained
in supervised mode, optimizing for class accuracy, and the KBNN includes detailed domain
knowledge.

Based on the strong showing of the single tree model on the SPLICE task, we pursued
a second series of experiments in which we compare the tree model with a larger collection
of methods from the DELVE repository (Rasmussen et al., 1996). The DELVE benchmark
uses subsets of the SPLICE database with 100 and 200 examples for training. Testing is
done on 1500 examples in all cases. Figure 16 presents the results for the algorithms tested
by DELVE as well as the single trees with different degrees of smoothing. We also show
results for naive Bayes (NB) and Tree Augmented Naive Bayes (TANB) models (Friedman
et al., 1997). The results from DELVE represent averages over 20 runs with different
random initializations on the same training and testing sets; for trees, NB and TANB,
whose outputs are not initialization-dependent, we averaged the performance of the models
learned for 20 different splits of the union of the training and testing set. No early stopping
or cross-validation was used in this case.

The results show that the single tree is quite successful in this domain, yielding an error
rate that is less than half of the error rate of the best model tested in DELVE. Moreover,
the average error of a single tree trained on 200 examples is 6.9%, which is only 2.3% greater
than the average error of the tree trained on 2000 examples. We attempt to explain this
striking preservation of accuracy for small training sets in our discussion of feature selection
in Section 5.3.7.

2. We eliminated 15 examples from the original data set that had ambiguous inputs (Noordewier, Towell,
& Shavlik, 1991; Rasmussen et al., 1996).

30

Learning with Mixtures of Trees

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
0

3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

60

Figure 17: Cumulative adjacency matrix of 20 trees fit to 2000 examples of the SPLICE
data set with no smoothing. The size of the square at coordinates ij represents
the number of trees (out of 20) that have an edge between variables i and j. No
square means that this number is 0. Only the lower half of the matrix is shown.
The class is variable 0. The group of squares at the bottom of the figure shows
the variables that are connected directly to the class. Only these variable are
relevant for classification. Not surprisingly, they are all located in the vicinity
of the splice junction (which is between 30 and 31). The subdiagonal “chain”
shows that the rest of the variables are connected to their immediate neighbors.
Its lower-left end is edge 2–1 and its upper-right is edge 60-59.

31

Meilă & Jordan

EI junction
Exon Intron

28 29 30 31 32 33 34 35 36
Tree CA A G G T AG A G -
True CA A G G T AG A G T

IE junction
Intron Exon

15 16 . . . 25 26 27 28 29 30 31
Tree – CT CT CT – – CT A G G
True CT CT CT CT – – CT A G G

Figure 18: The encoding of the IE and EI splice junctions as discovered by the tree learning
algorithm, compared to the ones given by Watson et al., “Molecular Biology of
the Gene” (Watson et al., 1987). Positions in the sequence are consistent with
our variable numbering: thus the splice junction is situated between positions
30 and 31. Symbols in boldface indicate bases that are present with probability
almost 1, other A,C,G,T symbols indicate bases or groups of bases that have
high probability (>0.8), and a – indicates that the position can be occupied by
any base with a non-negligible probability.

The Naive Bayes model exhibits behavior that is very similar to the tree model and only
slightly less accurate. However, augmenting the Naive Bayes model to a TANB significantly
hurts the classification performance.

5.3.6 The SPLICE dataset: Structure identification

Figure 17 presents a summary of the tree structures learned from the N = 2000 dataset
in the form of a cumulated adjacency matrix. The adjacency matrices of the 20 graph
structures obtained in the experiment have been summed. The size of the black square
at coordinates i, j in the figure is proportional to the value of the i, j-th element of the
cumulated adjacency matrix. No square means that the respective element is 0. Since the
adjacency matrix is symmetric, only half of the matrix is shown. From Figure 17 we see that
the tree structure is very stable over the 20 trials. Variable 0 represents the class variable;
the hypothetical splice junction is situated between variables 30 and 31. The figure shows
that the splice junction (variable 0) depends only on DNA sites that are in its vicinity. The
sites that are remote from the splice junction are dependent on their immediate neighbors.
Moreover, examining the tree parameters, for the edges adjacent to the class variable, we
observe that these variables build certain patterns when the splice junction is present, but
are random and almost uniformly distributed in the absence of a splice junction. The
patterns extracted from the learned trees are shown in Figure 18. The same figure displays
the “true” encodings of the IE and EI junctions as given by Watson et al. (1987). The
match between the two encodings is almost perfect. Thus, we can conclude that for this

32

Learning with Mixtures of Trees

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101106111116121
01
6

11
16
21
26
31
36
41
46
51
56
61
66
71
76
81
86
91
96

101
106
111
116

Figure 19: The cumulated adjacency matrix for 20 trees over the original set of variables
(0-60) augmented with 60 “noisy” variables (61-120) that are independent of
the original ones. The matrix shows that the tree structure over the original
variables is preserved.

33

Meilă & Jordan

domain, the tree model not only provides a good classifier but also discovers a model of the
physical reality underlying the data. Note that the algorithm arrives at this result in the
absence of prior knowledge: (1) it does not know which variable is the class variable, and
(2) it does not know that the variables are in a sequence (i.e., the same result would be
obtained if the indices of the variables were scrambled).

5.3.7 The SPLICE dataset: Feature selection

Let us examine the single tree classifier that was used for the SPLICE data set more closely.
According to the Markov properties of the tree distribution, the probability of the class
variables depends only on its neighbors, that is, on the variables to which the class variable is
connected by tree edges. Hence, a tree acts as an implicit variable selector for classification:
only the variables adjacent to the queried variable (this set of variables is called the Markov
blanket; Pearl, 1988) are relevant for determining its probability distribution. This property
also explains the observed preservation of the accuracy of the tree classifier when the size
of the training set decreases: out of the 60 variables, only 18 are relevant to the class;
moreover, the dependence is parametrized as 18 independent pairwise probability tables
Tclass,v. Such parameters can be fit accurately from relatively few examples. Hence, as long
as the training set contains enough data to establish the correct dependency structure, the
classification accuracy will degrade slowly with the decrease in the size of the data set.

This explanation helps to understand the superiority of the tree classifier over the models
in DELVE: only a small subset of variables are relevant for classification. The tree finds
them correctly. A classifier that is not able to perform feature selection reasonably well will
be hindered by the remaining irrelevant variables, especially if the training set is small.

For a given Markov blanket, the tree classifies in the same way as a naive Bayes model
with the Markov blanket variables as inputs. Note also that the naive Bayes model itself
has a built-in feature selector: if one of the input variables v is not relevant to the class, the
distributions Pv|c will be roughly the same for all values of c. Consequently, in the posterior
Pc|v that serves for classification, the factors corresponding to v will simplify and thus v will
have little influence on the classification. This may explain why the naive Bayes model also
performs well on the SPLICE classification task. Notice however that the variable selection
mechanisms implemented by the tree classifier and the naive Bayes classifier are not the
same.

To verify that indeed the single tree classifier acts like a feature selector, we performed
the following experiment, again using the SPLICE data. We augmented the variable set
with another 60 variables, each taking 4 values with randomly and independently assigned
probabilities. The rest of the experimental conditions (training set, test set and number
of random restarts) were identical to the first SPLICE experiment. We fit a set of models
with m = 1, a small β = 0.1 and no smoothing. The structure of the new models, in the
form of a cumulative adjacency matrix, is shown in Figure 19. We see that the structure
over the original 61 variables is unchanged and stable; the 60 noise variables connect in a
random uniform patterns to the original variables and among each other. As expected after
examining the structure, the classification performance of the new trees is not affected by
the newly introduced variables: in fact the average accuracy of the trees over 121 variables
is 95.8%, 0.1% higher than the accuracy of the original trees.

34

Learning with Mixtures of Trees

6. The accelerated tree learning algorithm

We have argued that the mixture of trees approach has significant advantages over general
Bayesian networks in terms of its algorithmic complexity. In particular, the M step of the
EM algorithm for mixtures of trees is the ChowLiu algorithm, which scales quadratically
in the number of variables n and linearly in the size of the dataset N . Given that the E
step is linear in n and N for mixtures of trees, we have a situation in which each pass of
the EM algorithm is quadratic in n and linear in N .

Although this time complexity recommends the MT approach for large-scale problems,
the quadratic scaling in n becomes problematic for particularly large problems. In this
section we propose a method for reducing the time complexity of the MT learning algorithm
and demonstrate empirically the large performance gains that we are able to obtain with
this method.

As a concrete example of the kind of problems that we have in mind, consider the
problem of clustering or classification of documents in information retrieval. Here the
variables are words from a vocabulary, and the data points are documents. A document is
represented as a binary vector with a component equal to 1 for each word v that is present in
the document and equal to 0 for each word v that is not present. In a typical application the
number of documents N is of the order of 103 – 104, as is the vocabulary size n. Given such
numbers, fitting a single tree to the data requires n2N ∼ 109 − 1012 counting operations.

Note, however, that this domain is characterized by a certain sparseness: in particular,
each document contains only a relatively small number of words and thus most of the
components of its binary vector are 0.

In this section, we show how to take advantage of data sparseness to accelerate the
ChowLiu algorithm. We show that in the sparse regime we can often rank order mutual
information values without actually computing these values. We also show how to speed up
the computation of the sufficient statistics by exploiting sparseness. Combining these two
ideas yields an algorithm—the acCL (accelerated Chow and Liu) algorithm—that provides
significant performance gains in both running time and memory.

6.1 The acCL algorithm

We first present the acCL algorithm for the case of binary variables, presenting the ex-
tension to general discrete variables in Section 6.2. For binary variables we will say that a
variable is “on” when it takes value 1; otherwise we say that it is “off”. Without loss of
generality we assume that a variable is off more times than it is on in the given dataset.

The target distribution P is assumed to be derived from a set of observations of size N .
Let us denote by Nv the number of times variable v is on in the dataset and by Nuv the
number of times variables u and v are simultaneously on. We call each of the latter events
a co-occurrence of u and v. The marginal Puv of u and v is given by:

N · Puv(1, 1) = Nuv

N · Puv(1, 0) = Nu −Nuv

N · Puv(0, 1) = Nv −Nuv

N · Puv(0, 0) = N −Nv −Nu + Nuv

35

Meilă & Jordan

All the information about P that is necessary for fitting the tree is summarized in the counts
N , Nv and Nuv, u, v = 1, . . . , n, and from now on we will consider P to be represented by
these counts. (It is an easy extension to handle non-integer data, such as when the data
points are “weighted” by real numbers).

We now define the notion of sparseness that motivates the acCL algorithm. Let us
denote by |x| the number of variables that are on in observation x, where 0 ≤ |x| ≤ n.
Define s, the data sparseness

s = max
i=1,N

|xi|.
If, for example, the data are documents and the variables represent words from a vocabulary,
then s represents the maximum number of distinct words in a document. The time and
memory requirements of the algorithm that we describe depend on the sparseness s; the
lower the sparseness, the more efficient the algorithm. Our algorithm will realize its largest
performance gains when s� n, N .

Recall that the ChowLiu algorithm greedily adds edges to a graph by choosing the
edge that currently has the maximal value of mutual information. The algorithm that
we describe involves an efficient way to rank order mutual information. There are two key
aspects to the algorithm: (1) how to compare mutual information between non-co-occurring
variables, and (2) how to compute co-occurrences in a list representation.

6.1.1 Comparing mutual information between non-co-occurring variables

Let us focus on the pairs u, v that do not co-occur, i.e., for which Nuv = 0. For such a pair,
the mutual information Iuv is a function of Nu,Nv and N . Let us analyze the variation of
the mutual information with respect to Nv by taking the corresponding partial derivative:

∂Iuv

∂Nv
= log

N −Nv

N −Nu −Nv
> 0 (11)

This result implies that for a given variable u and any two variables v, v′ for which Nuv =
Nuv′ = 0 we have:

Nv > Nv′ implies that Iuv > Iuv′ .

This observation allows us to partially sort the mutual information values Iuv for non-co-
occurring pairs u, v, without computing them. First, we have to sort all the variables by
their number of occurrences Nv. We store the result in a list L. This gives a total ordering
“�” for the variables in V :

v � u ⇔ v preceeds u in list L ⇒ Nv ≥ Nu.

For each u, we define the list of variables following u in the ordering “�” and not co-
occurring with it:

V0(u) = {v ∈ V, v ≺ u, Nuv = 0}.
This list is sorted by decreasing Nv and therefore, implicitly, by decreasing Iuv. Since the
data are sparse, most pairs of variables do not co-occur. Therefore, by creating the lists
V0(u), a large number of values of the mutual information are partially sorted. Before
showing how to use this construction, let us examine an efficient way of computing the Nuv

counts when the data are sparse.

36

Learning with Mixtures of Trees

F-heap

list of , , sorted by

list of , , sorted by

next edge

u Nuv> 0 Iuv

u Nuv= 0 Nv (virtual)

uv

Nv

V

V2

V1

Vn

Figure 20: The data structure that supplies the next candidate edge. Vertically on the left
are the variables, sorted by decreasing Nu. For a given u, there are two lists:
C(u), sorted by decreasing Iuv and (the virtual list) V0(u), sorted by decreasing
Nv. The maximum of the two first elements of these lists is inserted into an
Fibonacci heap. The overall maximum of Iuv can then be extracted as the
maximum of the Fibonacci heap.

6.1.2 Computing co-occurrences in a list representation

Let D = {x1, . . . xN} be a set of observations over n binary variables. If s � n it is
efficient to represent each observation in D as a list of the variables that are on in the
respective observation. Thus, data point xi, i = 1, . . . N will be represented by the list
xlisti = list{v ∈ V |xi

v = 1}. The space required by the lists is no more than sN and is
much smaller than the space required by the binary vector representation of the same data
(i.e., nN).

Note, moreover, that the total number NC of co-occurrences in the dataset D is

NC =
∑
v�u

Nuv ≤ 1
2
s2N.

For the variables that co-occur with u, a set of co-occurrence lists C(u) is created.
Each C(u) contains records (v, Iuv), v ≺ u,Nuv > 0 and is sorted by decreasing Iuv.
To represent the lists V0(u) (that contain many elements) we use their “complements”
V0(u) = {v ∈ V, v ≺ u, Nuv > 0}. It can be shown (Meilă-Predoviciu, 1999) that the

37

Meilă & Jordan

Algorithm acCL(D)

Input: Variable set V of size n
Dataset D = {xlisti, i = 1, . . . N}
Procedure Kruskal

1. compute Nv for v ∈ V ; create L, list of variables in V sorted by decreasing Nv

2. compute co-occurrences Nuv; create lists C(u), V 0(u), u ∈ V
3. create vheap

for u ∈ vlist
v = argmax

headCu,headV0(u)
Iuv

insert (Nuv, u, v, Iuv) in vheap
4. E = Kruskal(vheap); store Nuv for the edges uv added to E
5. for (u, v) ∈ E compute the probability table Tuv using Nu,Nv,Nuv and N .

Output: T

Figure 21: The acCL algorithm.

computation of the co-occurrence counts and the construction of the lists C(u) and V 0(u),
for all u ∈ V , takes an amount of time proportional to the number of co-occurrences NC ,
up to a logarithmic factor:

O(s2N log(s2N/n)).

Comparing this value with O(n2N), which is the time to compute Puv in the ChowLiu

algorithm, we see that the present method replaces the dimension of the domain n by s.
The memory requirements for the lists are also at most proportional to NC , hence O(s2N).

6.1.3 The algorithm and its data structures.

We have described efficient methods for computing the co-occurrences and for partially
sorting the mutual information values. What we aim to create is a mechanism that will
output the edges (u, v) in decreasing order of their mutual information.

We shall set up this mechanism in the form of a Fibonacci heap (Fredman & Tarjan,
1987) called vheap that contains an element for each u ∈ V , represented by the edge with the
highest mutual information among the edges (u, v), with v ≺ u, that are not yet eliminated.
The record in vheap is of the form (Nuv, u, v, Iuv), with v ≺ u, and with Iuv being the key
used for sorting. Once the maximum is extracted, the used edge has to be replaced by the
next largest (in terms of Iuv) edge in u’s lists.

To perform this latter task we use the data structures shown in Figure 20. Kruskal’s
algorithm is now used to construct the desired spanning tree. Figure 21 summarizes the
resulting algorithm.

38

Learning with Mixtures of Trees

5 500 1000 2000 3000
0

0.5

1

1.5

2

2.5
x 10

4

n

st
ep

s

Figure 22: The mean (full line), standard deviation and maximum (dotted line) of the
number of steps nK in the Kruskal algorithm over 1000 runs plotted against
n log n. n ranges from 5 to 3000. The edge weights were sampled from a uniform
distribution.

6.1.4 Running time

The algorithm requires: O(sn) for computing Nv, v ∈ V , O(n log n) for sorting the variables,
O(s2N log(s2N/n)) for step 2, O(n) for step 3, O(nK log n+NC) for the Kruskal algorithm
(nK is the number of edges examined by the algorithm, log n is the time for an extraction
from vheap, NC is an upper bound for the number of elements in the lists V 0 whose elements
need to be skipped occasionally when we extract variables from the virtual lists V0), and
O(n) for creating the the n−1 probability tables in step 5. Summing these terms, we obtain
the following upper bound for the running time of the acCL algorithm:

O(n log n + sn + s2N log
s2N

n
+ nK log n).

If we ignore the logarithmic factors this simplifies to

Õ(sn + s2N + nK).

For constant s, this bound is a polynomial of degree 1 in the three variables n, N and
nK . Because nK has the range n − 1 ≤ nK ≤ n(n− 1)/2, the worst case complexity of
the AcCL algorithm is quadratic in n. Empirically, however, as we show below, we find
that the dependence of nK on n is generally subquadratic. Moreover, random graph theory
implies that if the distribution of the weight values is the same for all edges, then Kruskal’s
algorithm should take time proportional to n log n (West, 1996). To verify this latter result,
we conducted a set of Monte Carlo experiments, in which we ran the Kruskal algorithm
on sets of random weights over domains of dimension up to n = 3000. For each n, 1000
runs were performed. Figure 22 plots the average and maximum nK versus n log n for these
experiments. The curve for the average displays an essentially linear dependence.

39

Meilă & Jordan

6.1.5 Memory requirements

Beyond the storage for data and results, we need O(NC) space to store the co-occurrences
and the lists C(u), V 0(u) and O(n) for L, vheap and the Kruskal algorithm. Hence, the
additional space used by the acCL algorithm is O(s2N + n).

6.2 Discrete variables of arbitrary arity

We briefly describe the extension of the acCL algorithm to the case of discrete domains in
which the variables can take more than two values.

First we extend the definition of data sparseness: we assume that for each variable there
exists a special value that appears with higher frequency than all the other values. This
value will be denoted by 0, without loss of generality. For example, in a medical domain,
the value 0 for a variable would represent the “normal” value, whereas the abnormal values
of each variable would be designated by non-zero values. An “occurrence” for variable v will
be the event v 6= 0 and a “co-occurrence” of u and v means that u and v are both non-zero
for the same data point. We define |x| as the number of non-zero values in observation x.
The sparseness s is, as before, the maximum of |x| over the data set.

To exploit the high frequency of the zero values we represent only the occurrences
explicitly, creating thereby a compact and efficient data structure. We obtain performance
gains by presorting mutual information values for non-co-occurring variables.

6.2.1 Computing co-occurrences

As before, we avoid representing zero values explicitly by replacing each data point x by
the list xlist, where xlist = list{(v, xv), v ∈ V, xv 6= 0}.

A co-occurrence is represented by the quadruple (u, xu, v, xv), xu, xv 6= 0. Instead of
one co-occurrence count Nuv, we now have a two-way contingency table N ij

uv. Each N ij
uv

represents the number of data points where u = i, v = j, i, j 6= 0. Counting and storing
co-occurrences can be done in the same time as before and with a O(r2

MAX) larger amount
of memory, necessitated by the additional need to store the (non-zero) variable values.

6.2.2 Presorting mutual information values

Our goal is to presort the mutual information values Iuv for all v ≺ u that do not co-occur
with u. The following theorem shows that this can be done exactly as before.
Theorem Let u, v,w be discrete variables such that v,w do not co-occur with u (i.e. u 6=
0 ⇒ v = w = 0) in a given dataset D. Let Nv0,Nw0 be the number of datapoints for which
v = 0 and w = 0 respectively, and let Iuv, Iuw be the respective empirical mutual information
values based on the sample D. Then

Nv0 > Nw0 ⇒ Iuv ≤ Iuw

with equality only if u is identically 0.
The proof of the theorem is given in the Appendix. The implication of this theorem

is that the acCL algorithm can be extended to variables taking more than two values by
making only one (minor) modification: the replacement of the scalar counts Nv and Nuv by
the vectors N j

v , j 6= 0 and, respectively, the contingency tables N ij
uv, i, j 6= 0.

40

Learning with Mixtures of Trees

50 100 200 500 1000
 1s
 2s

 5s
10s

 1m
 2m

10m

30m
 1h

 4h

 n

T
im

e

 s=5
 s=10
 s=15

 s=100

Figure 23: Running time for the acCL (full line) and (dotted line) ChowLiu algorithms
versus number of vertices n for different values of the sparseness s.

50 100 200 500 1000
10

2

10
3

10
4

10
5

10
6

 n

n
K

ru
sk

al

 s=5
 s=10

 s=15

 s=100

Figure 24: Number of steps of the Kruskal algorithm nK versus domain size n measured
for the acCL algorithm for different values of s.

6.3 Experiments

In this section we report on the results of experiments that compare the speed of the acCL

algorithm with the standard ChowLiu method on artificial data.
In our experiments the binary domain dimension n varies from 50 to 1000. Each data

point has a fixed number s of variables taking value 1. The sparseness s takes the values
5, 10, 15 and 100. The data were generated from an artificially constructed non-uniform,
non-factored distribution. For each pair (n, s) a set of 10,000 points was created.

For each data set both the ChowLiu algorithm and the acCL algorithm were used to
fit a single tree distribution. The running times are plotted in Figure 23. The improvements

41

Meilă & Jordan

of acCL over the standard version are spectacular: learning a tree on 1000 variables from
10,000 data points takes 4 hours with the standard algorithm and only 4 seconds with the
accelerated version when the data are sparse (s ≤ 15). For the less sparse regime of s = 100
the acCL algorithm takes 2 minutes to complete, improving on the traditional algorithm
by a factor of 120.

Note also that the running time of the accelerated algorithm seems to be nearly inde-
pendent of the dimension of the domain. Recall on the other hand that the number of
steps nK (Figure 24) grows with n. This implies that the bulk of the computation lies in
the steps preceding the Kruskal algorithm proper. Namely, it is in the computing of co-
occurrences and organizing the data that most of the time is spent. Figure 23 also confirms
that the running time of the traditional ChowLiu algorithm grows quadratically with n
and is independent of s.

This concludes the presentation of the acCL algorithm. The method achieves its perfor-
mance gains by exploiting characteristics of the data (sparseness) and of the problem (the
weights represent mutual information) that are external to the maximum weight spanning
tree algorithm proper. The algorithm obtained is worst case Õ(sn+s2N +n2) but typically
Õ(sn + s2N), which represents a significant asymptotic improvement over the O(n2N) of
the traditional Chow and Liu algorithm. Moreover, if s is large, then the acCL algorithm
(gracefully) degrades to the standard ChowLiu algorithm.

The algorithm extends to non-integer counts, hence being directly applicable to mixtures
of trees. As we have seen empirically, a very significant part of the running time is spent
in computing co-occurrences. This prompts future work on learning statistical models over
large domains that focus on the efficient computation and usage of the relevant sufficient
statistics. Work in this direction includes the structural EM algorithm (Friedman, 1998;
Friedman & Getoor, 1999) as well as A-D trees (Moore & Lee, 1998). The latter are
closely related to our representation of the pairwise marginals Puv by counts. In fact, our
representation can be viewed as a “reduced” A-D tree that stores only pairwise statistics.
Consequently, when an A-D tree representation is already computed, it can be exploited in
steps 1 and 2 of the acCL algorithm. Other versions of the acCL algorithm are discussed
by Meilă-Predoviciu (1999).

7. Conclusions

We have presented the mixture of trees (MT), a probabilistic model in which joint probabil-
ity distributions are represented as finite mixtures of tree distributions. Tree distributions
have a number of virtues—representational, computational and statistical—but have limited
expressive power. Bayesian and Markov networks achieve significantly greater expressive
power while retaining many of the representational virtues of trees, but incur significantly
higher costs on the computational and statistical fronts. The mixture approach provides
an alternative upgrade path. While Bayesian and Markov networks have no distinguished
relationships between edges, and statistical model selection procedures for these networks
generally involve additions and deletions of single edges, the MT model groups overlapping
sets of edges into mixture components, and edges are added and removed via a maximum
likelihood algorithm that is constrained to fit tree models in each mixture component. We
have also seen that it is straightforward to develop Bayesian methods that allow finer con-

42

Learning with Mixtures of Trees

trol over the choice of edges and smooth the numerical parameterization of each of the
component models.

Chow and Liu (1968) presented the basic maximum likelihood algorithm for fitting tree
distributions that provides the M step of our EM algorithm, and also showed how to use en-
sembles of trees to solve classification problems, where each tree models the class-conditional
density of one of the classes. This approach was pursued by Friedman et al. (1997, 1998),
who emphasized the connection with the naive Bayes model, and presented empirical re-
sults that demonstrated the performance gains that could be obtained by enhancing naive
Bayes to allow connectivity between the attributes. Our work is a further contribution
to this general line of research—we treat an ensemble of trees as a mixture distribution.
The mixture approach provides additional flexibility in the classification domain, where the
“choice variable” need not be the class label, and also allows the architecture to be applied
to unsupervised learning problems.

The algorithms for learning and inference that we have presented have relatively be-
nign scaling: inference is linear in the dimensionality n and each step of the EM learning
algorithm is quadratic in n. Such favorable time complexity is an important virtue of our
tree-based approach. In particularly large problems, however, such as those that arise in
information retrieval applications, quadratic complexity can become onerous. To allow the
use of the MT model to such cases, we have developed the acCL algorithm, where by ex-
ploiting data sparseness and paying attention to data structure issues we have significantly
reduced run time: We presented examples in which the speed-up obtained from the acCL

algorithm was three orders of magnitude.
Are there other classes of graphical models whose structure can be learned efficiently

from data? Consider the class of Bayesian networks for which the topological ordering of
the variables is fixed and the number of parents of each node is bounded by a fixed constant
l. For this class the optimal model structure for a given target distribution can be found
in O(nl+1) time by a greedy algorithm. These models share with trees the property of
being matroids (West, 1996). The matroid is the unique algebraic structure for which the
“maximum weight” problem, in particular the maximum weight spanning tree problem, is
solved optimally by a greedy algorithm. Graphical models that are matroids have efficient
structure learning algorithms; it is an interesting open problem to find additional examples
of such models.

Acknowledgments

We would like to acknowledge support for this project from the National Science Foundation
(NSF grant IIS-9988642) and the Multidisciplinary Research Program of the Department
of Defense (MURI N00014-00-1-0637).

43

Meilă & Jordan

Appendix A.

In this appendix we prove the following theorem from Section 6.2:
Theorem Let u, v,w be discrete variables such that v,w do not co-occur with u (i.e., u 6=
0 ⇒ v = w = 0 in a given dataset D). Let Nv0,Nw0 be the number of data points for which
v = 0, w = 0 respectively, and let Iuv, Iuw be the respective empirical mutual information
values based on the sample D. Then

Nv0 > Nw0 ⇒ Iuv ≤ Iuw

with equality only if u is identically 0.
Proof. We use the notation:

Pv(i) =
N i

v

N
, i 6= 0; Pv0 ≡ Pv(0) = 1−

∑
i6=0

Pv(i).

These values represent the (empirical) probabilities of v taking value i 6= 0 and 0 respectively.
Entropies will be denoted by H. We aim to show that ∂Iuv

∂Pv0
< 0.

We first note a “chain rule” expression for the entropy of a discrete variable. In par-
ticular, the entropy Hv of any multivalued discrete variable v can be decomposed in the
following way:

Hv = −Pv0 log Pv0 − (1− Pv0) log(1− Pv0)︸ ︷︷ ︸
Hv0

−(1− Pv0)
∑
i6=0

Pv(i)
(1− Pv0)

log
Pv(i)

(1− Pv0)︸ ︷︷ ︸
−Hv

= Hv0 + (1− Pv0)Hv. (12)

Note moreover that the mutual information of two non-co-occurring variables is Iuv =
Hu −Hu|v. The second term, the conditional entropy of u given v is

Hu|v = Pv0Hu|v=0 +
∑
j 6=0

Pv(j)Hu|v=j︸ ︷︷ ︸
0

.

We now expand Hu|v=0 using the decomposition in (12):

Hu|v=0 = Hu0|v=0 + (1− Pu=0|v=0)Hu|u 6=0,v=0.

Because u and v are never non-zero at the same time, all non-zero values of u are paired
with zero values of v. Consequently Pr[u = i|u 6= 0, v = 0] = Pr[u = i|u 6= 0] and
Hu|u 6=0,v=0 = Hu. The term denoted Hu0|v=0 is the entropy of a binary variable whose
probability is Pr[u = 0|v = 0]. This probability equals

Pr[u = 0|v = 0] = 1− 1− Pu0

1− Pv0
.

44

Learning with Mixtures of Trees

Note that in order to obtain a non-negative probability in the above equation one needs
1 − Pu0 ≤ Pv0, a condition that is always satisfied if u and v do not co-occur. Replacing
the previous three equations in the formula of the mutual information, we get

Iuv = Pu0 log Pu0 − Pv0 log Pv0 + (Pu0 + Pv0 − 1) log(Pu0 + Pv0 − 1).

This expression, remarkably, depends only on Pu0 and Pv0. Taking its partial derivative
with respect to Pv0 yields

∂Iuv

∂Pv0
= log

Pv0 + Pu0 − 1
Pv0

≤ 0,

a value that is always negative, independently of Pv0. This shows the mutual information
increases monotonically with the “occurrence frequency” of v given by 1 − Pv0. Note also
that the above expression for the derivative is the same as the result obtained for binary
variables in (11).

References

Bishop, C. M. (1999). Latent variable models. In M. I. Jordan (Ed.), Learning in Graphical
Models. Cambridge, MA: MIT Press.

Blake, C., & Merz, C. (1998). UCI Repository of Machine Learning Databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D. (1996). Context-specific inde-
pendence in Bayesian networks. In Proceedings of the 12th Conference on Uncertainty
in AI (pp. 64–72). Morgan Kaufmann.

Buntine, W. (1996). A guide to the literature on learning graphical models. IEEE Trans-
actions on Knowledge and Data Engineering, 8, 195–210.

Cheeseman, P., & Stutz, J. (1995). Bayesian classification (AutoClass): Theory and results.
In U. Fayyad, G. Piatesky-Shapiro, P. Smyth, & Uthurusamy (Eds.), Advances in
Knowledge Discovery and Data Mining (pp. 153–180). AAAI Press.

Cheng, J., Bell, D. A., & Liu, W. (1997). Learning belief networks from data: an information
theory based approach. In Proceedings of the Sixth ACM International Conference on
Information and Knowledge Management.

Chow, C. K., & Liu, C. N. (1968). Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, IT-14 (3), 462–467.

Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic
networks from data. Machine Learning, 9, 309–347.

Cormen, T. H., Leiserson, C. E., & Rivest, R. R. (1990). Introduction to Algorithms.
Cambridge, MA: MIT Press.

45

Meilă & Jordan

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., & Spiegelhalter, D. J. (1999). Probabilistic
Networks and Expert Systems. New York, NY: Springer.

Dayan, P., & Zemel, R. S. (1995). Competition and multiple cause models. Neural Com-
putation, 7 (3), 565–579.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, B, 39, 1–38.

Fredman, M. L., & Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the Association for Computing Machinery, 34 (3),
596–615.

Frey, B. J., Hinton, G. E., & Dayan, P. (1996). Does the wake-sleep algorithm produce
good density estimators? In D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Neural
Information Processing Systems (pp. 661–667). Cambridge, MA: MIT Press.

Friedman, N. (1998). The Bayesian structural EM algorithm. In Proceedings of the 14th
Conference on Uncertainty in AI (pp. 129–138). San Francisco, CA: Morgan Kauf-
mann.

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine
Learning, 29, 131–163.

Friedman, N., & Getoor, L. (1999). Efficient learning using constrained sufficient statis-
tics. In Proceedings of the 7th International Workshop on Artificial Intelligence and
Statistics (AISTATS-99).

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1996). Learning probabilistic rela-
tional models. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI) (pp. 1300–1307).

Friedman, N., Goldszmidt, M., & Lee, T. (1998). Bayesian network classification with
continous attributes: Getting the best of both discretization and parametric fitting.
In Proceedings of the International Conference on Machine Learning (ICML).

Geiger, D. (1992). An entropy-based learning algorithm of Bayesian conditional trees.
In Proceedings of the 8th Conference on Uncertainty in AI (pp. 92–97). Morgan
Kaufmann Publishers.

Geiger, D., & Heckerman, D. (1996). Knowledge representation and inference in similarity
networks and Bayesian multinets. Artificial Intelligence, 82, 45–74.

Hastie, T., & Tibshirani, R. (1996). Discriminant analysis by mixture modeling. Journal
of the Royal Statistical Society B, 58, 155–176.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: the
combination of knowledge and statistical data. Machine Learning, 20 (3), 197–243.

Hinton, G. E., Dayan, P., Frey, B., & Neal, R. M. (1995). The wake-sleep algorithm for
unsupervised neural networks. Science, 268, 1158–1161.

46

Learning with Mixtures of Trees

Jelinek, F. (1997). Statistical Methods for Speech Recognition. Cambridge, MA: MIT Press.

Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of experts and the EM
algorithm. Neural Computation, 6, 181–214.

Kontkanen, P., Myllymaki, P., & Tirri, H. (1996). Constructing Bayesian finite mixture
models by the EM algorithm (Tech. Rep. No. C-1996-9). University of Helsinki, De-
partment of Computer Science.

Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing
data. Computational Statistics and Data Analysis, 19, 191–201.

Lauritzen, S. L. (1996). Graphical Models. Oxford: Clarendon Press.

Lauritzen, S. L., Dawid, A. P., Larsen, B. N., & Leimer, H.-G. (1990). Independence
properties of directed Markov fields. Networks, 20, 579–605.

MacLachlan, G. J., & Bashford, K. E. (1988). Mixture Models: Inference and Applications
to Clustering. NY: Marcel Dekker.

Meilă, M., & Jaakkola, T. (2000). Tractable Bayesian learning of tree distributions. In
C. Boutilier & M. Goldszmidt (Eds.), Proceedings of the 16th Conference on Uncer-
tainty in AI (pp. 380–388). San Francisco, CA: Morgan Kaufmann.

Meilă, M., & Jordan, M. I. (1998). Estimating dependency structure as a hidden variable.
In M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), Neural Information Processing
Systems (pp. 584–590). MIT Press.

Meilă-Predoviciu, M. (1999). Learning with mixtures of trees. Unpublished doctoral disser-
tation, Massachusetts Institute of Technology.

Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine Learning, Neural and
Statistical Classification. New York: Ellis Horwood.

Monti, S., & Cooper, G. F. (1998). A Bayesian network classfier that combines a finite
mixture model and a naive Bayes model (Tech. Rep. No. ISSP-98-01). University of
Pittsburgh.

Moore, A. W., & Lee, M. S. (1998). Cached sufficient statistics for efficient machine learning
with large datasets. Journal for Artificial Intelligence Research, 8, 67–91.

Neal, R. M., & Hinton, G. E. (1999). A view of the EM algorithm that justifies incremental,
sparse, and other variants. In M. I. Jordan (Ed.), Learning in Graphical Models (pp.
355–368). Cambridge, MA: MIT Press.

Ney, H., Essen, U., & Kneser, R. (1994). On structuring probabilistic dependences in
stochastic language modelling. Computer Speech and Language, 8, 1–38.

Noordewier, M. O., Towell, G. G., & Shavlik, J. W. (1991). Training knowledge-based neural
networks to recognize genes in DNA sequences. In R. P. Lippmann, J. E. Moody, &
D. S. Touretzky (Eds.), Advances in Neural Information Processing Systems (pp.
530–538). Morgan Kaufmann Publishers.

47

Meilă & Jordan

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Mateo, CA: Morgan Kaufman Publishers.

Philips, P., Moon, H., Rauss, P., & Rizvi, S. (1997). The FERET evaluation methodology
for face-recognition algorithms. In Proceedings of the 1997 Conference on Computer
Vision and Pattern Recognition. San Juan, Puerto Rico.

Rasmussen, C. E., Neal, R. M., Hinton, G. E., Camp, D. van, Revow, M.,
Ghahramani, Z., Kustra, R., & Tibshrani, R. (1996). The DELVE Manual.
http://www.cs.utoronto.ca/∼delve.

Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry. New Jersey: World
Scientific Publishing Company.

Rubin, D. B., & Thayer, D. T. (1983). EM algorithms for ML factor analysis. Psychome-
trika, 47, 69–76.

Saul, L. K., & Jordan, M. I. (1999). A mean field learning algorithm for unsupervised
neural networks. In M. I. Jordan (Ed.), Learning in Graphical Models (pp. 541–554).
Cambridge, MA: MIT Press.

Shafer, G., & Shenoy, P. (1990). Probability propagation. Annals of Mathematics and
Artificial Intelligence, 2, 327–352.

Smyth, P., Heckerman, D., & Jordan, M. I. (1997). Probabilistic independence networks
for hidden Markov probability models. Neural Computation, 9, 227–270.

Thiesson, B., Meek, C., Chickering, D. M., & Heckerman, D. (1997). Learning mixtures of
Bayes networks (Tech. Rep. Nos. MSR–POR–97–30). Microsoft Research.

Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A., & Weiner, A. M. (1987). Molec-
ular Biology of the Gene (Vol. I, 4 ed.). Menlo Park, CA: The Benjamin/Cummings
Publishing Company.

West, D. B. (1996). Introduction to Graph Theory. Upper Saddle River, NJ: Prentice Hall.

48

