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Abstract 
Hierarchical conceptual clustering has proven to be a useful, although under-explored, data mining 
technique.  A graph-based representation of structural information combined with a substructure 
discovery technique has been shown to be successful in knowledge discovery.  The SUBDUE 
substructure discovery system provides one such combination of approaches. This work presents 
SUBDUE and the development of its clustering functionalities.  Several examples are used to 
illustrate the validity of the approach both in structured and unstructured domains, as well as to 
compare SUBDUE to the Cobweb clustering algorithm. We also develop a new metric for 
comparing structurally-defined clusterings. Results show that SUBDUE successfully discovers 
hierarchical clusterings in both structured and unstructured data. 
Keywords: Clustering, Cluster Analysis, Concept Formation, Structural Data, Graph Match 

 
 

1. Introduction 
 
Data mining has become a prominent research area in recent years. One of the major reasons is 
the ever-increasing amount of data collected in diverse areas of the industrial and scientific world. 
Much of this data contains valuable knowledge that is not easily retrievable. The increasing speed 
and capacity of computer technology has made feasible the utilization of various data mining 
techniques to automatically extract knowledge from this information.  Such knowledge may take 
the form of predictive rules, clusters or hierarchies. 

Beyond simple attributes of objects, many databases store structural information about 
relationships between objects.  These structural databases provide a significant source of 
information for data mining. A well-publicized example is genome data, which is inherently 
structural (e.g., DNA atoms bonded to other atoms) and therefore benefits from a structured 
representation. Web data is also commonly represented using structural (hyperlink) as well as 
textual information.  One of the more common ways of representing structural data in a computer 
is using graphs.  Substructure discovery is a data mining technique that—unlike many other 
algorithms—can process structural data that contains not only descriptions of individual instances 
in a database, but also relationships among these instances. The graph-based substructure 
discovery approach implemented in the SUBDUE system has been the subject of research for a 
number of years and has been shown to be effective for a wide range of applications (Holder and 
Cook, 1993). Recent examples include the application of SUBDUE to earthquake activity, 
chemical toxicity domains and DNA sequences (Cook et al., 2000; Holder and Cook, 1993; 
Chittimoori et al., 1999; Maglothin, 1999).  In this project, SUBDUE is applied to hierarchical 
clustering. 

Cluster analysis—or simply clustering—is a data mining technique often used to identify 
various groupings or taxonomies in real-world databases. Most existing methods for clustering 
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apply only to unstructured data. This research focuses on hierarchical conceptual clustering in 
structured, discrete-valued databases.  By structured data, we refer to information consisting of 
data points and relationships between the data points.  This differs from a definition of  
unstructured data as containing free text and structured data containing feature vectors.  Our 
definition of structured data focuses on the inclusion of data and relationships between the data 
points. 

Section 2 of this paper discusses conceptual clustering in greater depth. Section 3 describes 
our approach to structural knowledge discovery and an implementation in the SUBDUE 
knowledge discovery system. Section 4 presents the design and implementation of hierarchical 
conceptual clustering in SUBDUE and introduces a new measure for evaluating structural 
hierarchical clusters. Section 5 summarizes the results of applying SUBDUE to examples from 
various domains and evaluates SUBDUE’s success as a clustering tool. Conclusions and future 
work are discussed in Section 6.  
 
2. Conceptual Clustering 
 
Conceptual clustering has been used in a wide variety of tasks. Among these are model fitting, 
hypothesis generation, hypothesis testing, data exploration, prediction based on groups, data 
reduction and finding true topologies (Ball, 1971).  Clustering techniques have been applied in as 
diverse fields as analytical chemistry, image analysis, geology, biology, zoology and archeology. 
Many names have been given to this technique, including cluster analysis, Q-analysis, typology, 
grouping, clumping, numerical taxonomy, mode separation and unsupervised pattern recognition, 
which further signifies the importance of clustering techniques (Everitt, 1980). 

The purpose of applying clustering to a database is to gain a better understanding of the data, 
in many cases by highlighting hierarchical topologies.  Conceptual clustering not only partitions 
the data, but generates resulting clusters that can be summarized by a conceptual description.  An 
example of a hierarchical clustering is the classification of vehicles into groups such as cars, 
trucks, motorcycles, tricycles, and so on, which are then further subdivided into smaller groups 
based on observed traits. 

Michalski defines conceptual clustering as a machine learning task (Michalski, 1980). A 
clustering system takes a set of object descriptions as input and creates a classification scheme 
(Fisher, 1987).  This classification scheme can consist of a set of disjoint clusters, or a set of 
clusters organized into a hierarchy.  Each cluster is associated with a generalized conceptual 
description of the objects within the cluster.  Hierarchical clusterings are often described as 
classification trees. 

Numerous clustering techniques have been devised, among which are statistical, syntactic, 
neural and hierarchical approaches.  Clustering is considered an unsupervised learning problem 
because it consists of identifying valuable groupings of concepts, or facts, that hopefully reveal 
previously unknown information.  Most techniques have some intrinsic disadvantages, however. 
Statistical and syntactic approaches have trouble expressing structural information, and neural 
approaches are greatly limited in representing semantic information (Schalkoff, 1992). 

Nevertheless, many relatively successful clustering systems have been constructed. An 
example of an incremental approach is Cobweb, which successively considers a set of object 
descriptions while constructing a classification tree (Fisher, 1987).  This system was created with 
real-time data collection in mind, where a useful clustering might be needed at any moment.  
Cobweb’s search algorithm is driven by the category utility heuristic, which calculates intra-class 
similarity and inter-class dissimilarity using conditional probabilities.  Instances are introduced 
into the classification tree at the top, and are moved down either by creating a new class or by 
merging the instance with an existing class.  Other existing classes might also be merged or split 
to accommodate better definitions of classes. 
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 Labyrinth, an extension to Cobweb, can represent structured objects using a probabilistic 
model (Thompson and Langley, 1991).  Cobweb creates a knowledge structure based on some 
initial set of instances.  Labyrinth is applied one step before Cobweb, resulting in a structure 
whose formal definition is exactly the same as that produced by Cobweb.  When Cobweb is 
applied after Labyrinth, the resulting algorithm employs both structures to refine the domain 
knowledge.  Both Labyrinth and SUBDUE represent structural cluster definitions.  In contrast to 
the clustering generated by SUBDUE, however, Labyrinth’s hierarchy relates parent and child 
based on attribute-value information, not based on structural information.  In addition, only a 
partial graph match is performed by Labyrinth to determine if an instance is a member of a 
cluster. 

AutoClass is an example of a Bayesian clustering system, which uses a probabilistic class 
assignment scheme to generate clusters (Cheeseman et al., 1988).  AutoClass can process real, 
discrete or missing values.  Another algorithm, called Snob, uses the Minimum Message Length 
(MML) principle to perform mixture modeling—a synonym for clustering (Wallace and Boulton, 
1968).  

Hierarchical approaches also exist that target databases containing data in Euclidean space.  
Among these are agglomerative approaches that merge clusters until an optimal separation of 
clusters is achieved based on intra- and inter-cluster distances.  Divisive approaches are also used 
that split existing clusters until an optimal clustering is found. These approaches usually have the 
disadvantage of being applicable only to metric data, which excludes discrete-valued and 
structured databases. Examples of these are Chameleon (Karypis et al. 1999) and Cure (Guha et 
al., 1998). 

Examining the major differences among the above-mentioned systems, we can see that 
dichotomies exist between continuous and discrete databases and between structured and 
unstructured databases. Cobweb can handle discrete, unstructured databases. Labyrinth can 
process discrete, structural databases.  AutoClass can handle discrete or continuous unstructured 
databases.  Lastly, Chameleon and Cure work with continuous-valued, unstructured data.  

Few existing systems address the problem of clustering in discrete-valued, structural 
databases. Labyrinth is one of these systems.  SUBDUE’s hierarchical clustering algorithm 
represents another approach, centering on discrete-valued, structural databases that are 
represented as graphs. 
 
3. Graph-Based Structural Knowledge Discovery 
 
We have developed a method for discovering substructures in databases using the minimum 
description length principle introduced by Rissanen (1989) and embodied in the SUBDUE 
system.  SUBDUE discovers substructures that compress the original data and represent structural 
concepts in the data.  Once a substructure is discovered, the substructure is used to simplify the 
data by replacing instances of the substructure with a pointer to the substructure definition.  The 
discovered substructures allow abstraction over detailed structures in the original data.  Iteration 
of the substructure discovery process constructs a hierarchical description of the structural data in 
terms of the discovered substructures.  This hierarchy provides varying levels of interpretation 
that can be accessed based on the specific data analysis goals.  The SUBDUE code and sample 
databases are available http://cygnus.uta.edu/subdue. 

3.1. Graph Representation 
 
SUBDUE accepts as input a database of structured data.  This type of data is naturally 
represented using a graph.  The graph representation includes labeled vertices with vertex id 
numbers and labeled directed or undirected edges, where objects and attribute values usually map 
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to vertices, and attributes and relationships between objects map to edges (see Figure 1 for an 
example).  A substructure in SUBDUE consists of a subgraph definition and all of the instances of 
the subgraph (substructure) that occur in the graph. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 shows a geometric example of a structural database.  The graph representation of a 

substructure discovered in this database is also shown, and one of the four instances of this 
substructure is highlighted in the picture. 
 
 
 
 
 
 
 
 
 
 
 

The input graph need not be connected, as is the case when representing unstructured 
databases.  For data represented as feature vectors, instances are often represented as a collection 
of small, star-like, connected graphs. An example of the representation of an instance from the 
animal domain is shown in Figure 2. Intuitively, one might map the identifier or target attribute—
Name in this case—to the center node and all other attributes would be connected to this central 
vertex with a single edge. This would follow the semantics of most databases. In our experience, 
however, SUBDUE yields better results using a more general representation including a 
placeholder node (animal in our example) that serves as the center node in the star, a 
representative of the example. 

 

3.2. Search Algorithm 
 
SUBDUE uses a variant of beam search (see Figure 3). The goal of the search is to find the 
substructure that best compresses the input graph. A substructure in SUBDUE consists of a 
substructure definition and all its occurrences in the graph. The initial state of the search is the set 
of substructures representing each uniquely labeled vertex and its instances. The only search 
operator is the Extend-Substructure operator. As its name suggests, Extend-Substructure extends 
the instances of a substructure in all possible ways by a single edge and a vertex, or by a single 

Figure 2:  Graph representation of an animal description. 
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Fertilization
HeartChamber

BodyTemp internalregulated 

Namefour 

Figure 1:  Example substructure in graph form with textual description. The input file syntax 
is v id label for vertices, d id1 id2 label for directed edges, and u id1 id2 label for 
undirected edges.  
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v 1 object 
v 2 triangle 
v 3 object 
v 4 square 
d 1 2 shape 
d 3 4 shape 
d 1 3 on 
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edge if both vertices are already in the substructure. Using the example in Figure 1, a substructure 
representing the single vertex labeled “object” could be extended to include the vertex labeled 
“triangle” and the edge labeled “shape” between these vertices during the second iteration of the 
algorithm. The Minimum Description Length (MDL) principle is used to evaluate the 
substructures (see Section 3.3). 

The search progresses by applying the Extend-Substructure operator to each substructure in 
the current search frontier, which is an ordered list of previously discovered substructures. The 
resulting frontier, however, does not contain all the substructures generated by the Extend-
Substructure operator. The substructures are stored on a queue and are ordered based on their 
ability to compress the graph. The length of the queue, or beam width (Beam), is specified by the 
user.  The user chooses how many substructures of different value—in terms of compression—
are to be kept on the queue. Several substructures, however, might have the same ability to 
compress the graph; as a result, the actual queue length may vary.  The search terminates upon 
reaching a user specified limit on the number of substructures extended, or upon exhaustion of the 
search space.  SUBDUE’s run time is polynomial in length of the queue and the user-specified 
limit on the number of considered substructures.  An in-depth analysis of SUBDUE’s run time 
can be found in the literature (Cook et al., 1996), and empirical data indicating the scalability of 
the serial and parallel versions of the algorithm are also reported (Cook et al., 2000). 

Once the search terminates and returns the list of best substructures, the graph can be 

compres
substruc
and outg
vertex th
how ver
accurate
compres
maintain

The S
be repea
number 
that has 
Subdue ( graph G, int Beam, int Limit ) 
   queue Q = { v | v has a unique label in G } 
   bestSub = first substructure in Q 
   repeat 
      newQ = {} 
      for each S ∈∈∈∈ Q 
         newSubs = S extended by an adjacent edge from G 
                         in all possible ways 
         newQ = newQ ∪ newSubs 
         Limit = Limit - 1 
      evaluate substructures in newQ by compression of G 
      Q = first Beam substructures in newQ 

in decreasing order of value 
      if best substructure in Q better than bestSub 
      then bestSub = first substructure in Q 
   until Q is empty or Limit ≤ 0 
   return bestSub 

Figure 3:  SUBDUE's discovery algorithm. 
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sed using the best substructure. The compression procedure replaces all instances of the 
ture in the input graph by a single vertex, which represents the substructure. Incoming 
oing edges to and from the replaced substructure will point to, or originate from, the new 
at represents the substructure. In our implementation, we do not maintain information on 

tices in each instance were connected to the rest of the graph. This means that we cannot 
ly restore the information after compression (this is lossy, rather than lossless, 
sion).  Since the goal of substructure discovery is interpretation of the database, 
ing information to reverse the compression is unnecessary. 
UBDUE algorithm can be invoked again on this compressed graph. This procedure can 
ted a user-specified number of times, and is referred to as an iteration. The maximum 
of iterations that can be performed on a graph cannot be predetermined; however, a graph 
been compressed into a single vertex cannot be compressed further. 



JONYER, COOK AND HOLDER 

 
24 
 

3.3. Minimum Description Length Principle 
 
SUBDUE’s search is guided by the Minimum Description Length (MDL) principle, originally 
developed by Rissanen (1989).  According to the MDL heuristic, the best substructure is the one 
that minimizes the description length of the graph when compressed by the substructure (Cook 
and Holder, 1994). This compression is calculated as 

)(
)|()(

GDL
SGDLSDLnCompressio +=  

where DL(G) is the description length of the input graph, DL(S) is the description length of the 
substructure, and DL(G|S) is the description length of the input graph compressed by the 
substructure. The search algorithm attempts to maximize the Value of the substructure, which is 
the multiplicative inverse of the Compression.  The description length of a graph is calculated 
here as the number of bits needed to encode an adjacency matrix representation of the graph.  
Additional details of the encoding scheme are reported in the literature (Cook and Holder, 1994). 

3.4. Inexact Graph Match 
 
When applying the Extend-Substructure operator, SUBDUE finds all instances of the resulting 
substructure in the input graph.  A feature in SUBDUE, called inexact graph match, allows these 
instances to contain minor differences from the substructure definition.  This feature is optional 
and the user must enable it as well as specify the degree of maximum allowable dissimilarity.  
The command line argument to be specified is –threshold Number, where Number is between 0 
and 1 inclusive - 0 meaning no dissimilarities are allowed, and 1 meaning all graphs are 
considered the same.  A value t between 0 and 1 means that one graph can differ from another by 
no more than t times the size (number of vertices plus number of edges) of the larger graph. 

The dissimilarity of two graphs is calculated as the number of transformations that are needed 
to make one graph isomorphic to the other. The transformations include adding or deleting an 
edge, adding or deleting a vertex, changing a label on either an edge or a vertex and reversing the 
direction of an edge.  All of these transformations are defined to have a cost of 1. 

Our inexact graph match is based on work by Bunke and Allerman (1983). The algorithm 
constructs an optimal mapping between the two graphs by searching the space of all possible 
vertex mappings employing a branch-and-bound search.  Although the space requirement is 
exponential in the size of the graphs, SUBDUE constrains the run time to be polynomial by 
resorting to hill-climbing when the number of search nodes reaches a predefined function of the 
size of the substructures. This is a tradeoff between an acceptable running time and an optimal 
match cost, but in practice, the mappings found are generally at or near optimal (lowest cost). 

3.5. Improving the Search Algorithm 
 

In SUBDUE, a value-based queue is used to retain substructures with the top values (the 
number of distinct values is specified by the user) instead of a fixed number of actual 
substructures.  This approach was adopted in order to prevent arbitrarily pruning substructures 
with value equal to those surviving the pruning and thus to permit the exploration of a larger 
search space. 

The problem with the value-based queue is that the membership in each class, or number of 
substructures having one of the greatest substructure values, can increase very quickly. For 
instance, substructures from one value class on the queue, after being extended by applying the 
Extend-Substructure operator, will result in many new substructures that will be similar, and thus 
offer the same compression (yielding the same evaluation measure).  After several steps, the 
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search queue can grow to a large size.  Ironically, most of these subgraphs extend into the same 
final substructure. 

Fortunately, there is a way to prevent the above phenomenon from happening. An important 
observation is that the operator Extend-Substructure is applied to one substructure at a time, and 
that substructure is extended by only one edge (or edge and a neighboring vertex) at a time.  
These substructures can be stored on a local value-based queue.  Substructures with the same 
value on this queue may be parents of the same child, because extensions of these substructures 
could be isomorphic.  In particular, we check if the extension that created one of the substructures 
can be applied to the other substructure as well.  If so, one of the substructures can be removed 
from consideration, because all of its extensions will also be generated by the other substructure.  
After all checks and subsequent deletions have been performed to the local queue, the queue is 
copied over to the global queue. This one-step look-ahead procedure is referred to as purging, 
because it cleans the local queue by removing substructures that would introduce redundancy in 
the search process. 

 
 
 
 
 
 
 
 
 
 
 
 
An example of purging is demonstrated in Figure 4. Suppose that substructure Sa shown in 

Figure 4a occurs in the input graph 20 times. After expanding the substructure representing vertex 
A in all possible ways, the substructures shown in Figures 4b, 4c and 4d emerge.  For the sake of 
argument, suppose that these three substructures occur in the input graph only where substructure 
S occurs, and therefore they too have 20 instances. Hence, these three substructures would offer 
the same amount of compression, since they have the same size and same number of instances. 
The purging algorithm would check if substructure Sb can be extended with vertex C of Sc, and if 
substructure Sc can be extended with vertex B of Sb.  Since this is the case, substructure Sc would 
be eliminated from the queue. Next this check is performed on substructure Sb and substructure 
Sd.  The result is similar, and Sd is also eliminated from further expansion.  This leaves the queue 
with one substructure instead of three.  Since further extensions of substructure Sb result in 
substructures that would result from the extensions of substructures Sc and Sd, the same search 
space is explored using fewer substructure candidates.  In the case where Sb, Sc and Sd have 
different numbers of instances, they will have different values, and therefore will not be 
compared with each other during purging. 

The value-based queue and purging approaches together enable searching of a wider search 
space while examining potentially fewer substructures in comparison with the fixed length queue. 
The savings offered by purging has been observed to be substantial since the case described 
above arises almost every time a substructure is extended. The actual savings depend on 
particular graphs, the main factor being the connectivity of the graph. The more connected the 
graph is, the more savings purging offers. 

 

Figure 4:  Purging substructures from the queue; (a) best substructure S; (b) substructure of S; 
(c) substructure of S; (d) substructure of S.
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3.6. Additional SUBDUE Features 
 
A number of features are available in SUBDUE that improve the ease of use of the system.  Here 
we describe some of these improvements. 

The –cluster option initiates cluster analysis using SUBDUE.  Cluster analysis is described in 
detail in Section 4.  This option produces a classification lattice in the file “inputFileName.dot” 
that can be viewed with the GRAPHVIZ graph visualization package (Koutsofios and North, 
1999).  The –truelabel option will print the cluster definition into each node of the classification 
lattice when viewed with Dotty, part of the GRAPHVIZ package.  The –exhaust option will 
prevent SUBDUE from terminating after discovering all substructures that can compress the 
graph, and instead continue until the input graph is compressed into a single vertex.  To help 
evaluate the quality of clusterings the –savesub option was introduced.  This option saves the 
definition and all the instances of the best substructure found in all of the iterations. When 
clustering is enabled, it also saves the classification lattice hierarchy that can be used to 
reconstruct the discovered substructures. These files may be used with a tool specifically 
designed for evaluating clusters.  An extra output level was also added to display only the 
essential information concerned with clustering during the discovery process. 

The –prune2 number option keeps track of local minima with respect to the minimum 
description length principle (see Section 3.3). The parameter number specifies how many more 
extensions are to be allowed after identifying a local minimum. This option is selected by default 
for clustering with the argument 2. Its benefits are described in more detail in Section 4, in the 
context of clustering. 

SUBDUE also supports biasing the discovery process.  Predefined substructures can be 
provided to SUBDUE, which will try to find and expand these substructures, this way "jump-
starting" the discovery. The inclusion of background knowledge proved to be of great benefit 
(Djoko et al., 1997).   SUBDUE also supports supervised learning, where examples from each 
class are provided as separate graphs to the system. Substructures are evaluated based on their 
ability to cover examples in the positive (or target) graph and to not cover examples in the other 
graph(s).  New graphs are classified as positive if they contain the discovered substructure, and 
negative otherwise (Gonzalez et al., 2001).  This method of influencing the discovery process has 
proven successful in several experiments including the chemical toxicity domain (Cook and 
Holder, 2000; Gonzalez et al., 2001). 

 
4. Hierarchical Conceptual Clustering of Structural Data 
 
The main goal of this research is to provide a method of performing hierarchical clustering of 
structural data.  This section describes our approach to conceptual clustering of structural data 
and its implementation using SUBDUE. 

Our cluster analysis technique uses the graph-based substructure discovery algorithm to 
discover substructures that represent clusters (Jonyer et al., 2000).  These substructures are then 
used to build a hierarchy of clusters that describe the input graph. The following subsections 
describe the background of our approach and its implementation in the SUBDUE system. 

4.1. Identifying Clusters 
 
The SUBDUE algorithm requires one iteration to find a substructure that best compresses the 
input graph.  This substructure represents a single cluster in our hierarchy.  The members of the 
cluster consist of all the instances of the substructure in the input graph. 

Within a single iteration, SUBDUE has several ways to decide when to stop.  SUBDUE 
always has a single best substructure at the head of the queue, so in effect it could stop at any 
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point.  SUBDUE has a limit which specifies the maximum number of substructures to consider in 
a single iteration. By default, the limit is set to half the size of the input graph (number of vertices 
plus number of edges). This number has been observed to be sufficiently large to allow the 
discovery of the best substructure. To minimize wasted effort, SUBDUE would stop the 
discovery process right after the best substructure is discovered during each iteration. 

  A new feature, prune2, attempts to find the best stopping point. This option keeps track of the 
compression afforded by each discovered substructure (see Section 3.3).  When a minimum value 
is found, SUBDUE will continue only for a limited number of substructure extensions.  If a new 
minimum is found during this time, the count is reset and SUBDUE continues further.  This 
strategy assures that each iteration of SUBDUE returns the substructure that is responsible for the 
first local minimum. As discussed later, this is just what the clustering algorithm needs. Since 
prune2 will stop the discovery, setting a limit is not necessary when prune2 is used. This is the 
default setting for our cluster analysis. 

4.2. Creating Hierarchies of Clusters 
 
After each iteration, SUBDUE can be instructed to physically replace each occurrence of the best 
substructure by a single vertex, this way compressing the graph. The resulting compressed graph 
can then be used as the new input graph and be input to SUBDUE to discover a substructure that 
best compresses the new graph. 

This iterative approach to clustering imposes more and more hierarchy on the database with 
each successive iteration.  Using the fact that each new substructure discovered in successive 
iterations may be defined in terms of previously-discovered substructures, a hierarchy of clusters 
can be constructed.  When clustering is enabled, the number of iterations is set to indefinite.  As a 
result, SUBDUE will iterate until the best substructure in the last iteration does not compress the 
graph.  If the –exhaust option is enabled, SUBDUE iterates until the input graph is compressed 
into a single vertex.  This default behavior may be overridden by explicitly specifying the number 
of iterations to be performed, in essence specifying the number of clusters to be discovered. 

Hierarchies are typically viewed as tree structures, and are used this way in many previous 
works on hierarchical clustering. We found, however, that in structured domains a strict tree 
representation is inadequate.  In these cases, a lattice-like structure emerges instead of a tree.  
Therefore, newly discovered clusters are used to build a classification lattice.  A classification 
lattice can be used to perform classification, in a method similar to the classification tree use by 
Fisher and others. 

The classification lattice is a consequence of the fact that any cluster definition—except for 
the very first one—may contain previously-defined clusters.  If a cluster definition does not 
contain any other clusters, it is inserted as the child of the root.  If it is a specialization of another 
cluster, it is inserted as the child of that cluster, the number of branches indicating the number of 
times the parent cluster is in the definition of the child cluster.  If the cluster definition includes 
more than one other cluster, then it is inserted as the child for all of those clusters.  

 
 
 
 
 
 
 
 
 
 Figure 5:  Artificial domain. 
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To provide an example of the explanation above, the generation of a hierarchical conceptual 

clustering for the artificial domain shown in Figure 5 is demonstrated here.  In the first iteration, 
SUBDUE discovers the substructure that describes the pentagon pattern in the input graph. This 
comprises the first cluster Cp. This cluster is inserted as a child of the root node. The resulting 
classification lattice is shown in Figure 6a.  During iterations 2 and 3, the square shape (cluster 
Cs) and the triangle shape (cluster Ct) are discovered, respectively.  These are inserted as children 
of the root as well, since Cs does not contain Cp in its definition, and Ct does not contain either Cp 
or Cs. The resulting lattice is shown in Figure 6b.  

All of the basic shapes (pentagon, square and triangle) appear four times in the input graph.  
So why are these substructures discovered in the order described above?  Since all of them have 
the same number of instances in the input graph, the size of the substructure will decide how 
much they can compress the input graph.  The substructure describing the pentagon contains five 
vertices and five edges, the square contains four vertices and four edges, and the triangle contains 
three vertices and three edges. Given the same number of instances, the larger substructure will 
better compress the input graph. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the fourth iteration, SUBDUE returns the substructure describing two pentagon shapes 

connected by a single edge.  There are only two instances of this formation in the graph, not four, 
since no overlapping of instances is permitted.  This cluster is inserted into the classification 
lattice as the child of the cluster describing the pentagon, because that cluster appears in its 

Root 

(a) 

Root 

(b)

Figure 6:  Clustering of the artificial domain after one iteration (a) and after three iterations (b). 

Root 

Figure 7:  Clustering of the artificial domain after four iterations. 
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definition. The resulting classification lattice is shown in Figure 7. There are two links connecting 
this new cluster to its parent, because the parent cluster definition appears twice. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
During iteration 5, a substructure is discovered that contains a pair of squares connected by an 

edge, a pair of triangles connected by an edge, and these two pairs are connected by a single edge. 
This substructure has two instances in the input graph. This cluster is inserted as a child of two 
clusters in the first level of the lattice, both of  which appear in the definition of this new cluster. 
The resulting lattice is depicted in Figure 8.  Since both parent cluster definitions appear twice in 
the new cluster, there are two links from each of these parents to the new node. 

4.3. First Minimum Heuristic 
 
SUBDUE searches the hypothesis space of classification lattices.  During each iteration of the 
search process (while searching for each cluster), numerous local minima are encountered.  The 
global minimum, however, tends to be one of the first few local minima.  For clustering purposes, 
the first local minimum is used as the best cluster definition.  The reason for this is as follows.  
SUBDUE starts with all the single-vertex instances of all unique substructures, and iteratively 
expands the best ones by a single edge.  The local minimum encountered first is therefore caused 
by a smaller substructure with more instances than the next local minimum, which must be larger, 
and have fewer instances. A smaller substructure is more general than a larger one, and should 
function as a parent node in the classification lattice for any more specific clusters.  

Consider the plot of a sample run shown in Figure 9. The horizontal axis of the plot shows the 
number of the substructure being evaluated (in order of discovery), and the vertical axis indicates 
the compression offered by the substructures (smaller values are better).  Figure 9 shows one 
global minimum, appearing at substructure number 37.  Several local minima occur before this 
substructure. Those minima, however, are caused by the dissimilarities in compression among the 
substructures on the queue in each search iteration.  For instance, if the maximum queue length is 
set to be four, then there will be approximately four substructures in the queue after each 
extension.  These four substructures will offer different amounts of compression, the first in the 
queue offering the most, the last in the queue offering the least. This is reflected in Figure 9. 

 
 
 

Root 

Figure 8:  Clustering of the artificial domain after five iterations. 



JONYER, COOK AND HOLDER 

 
30 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The staircase-like formation, shown from substructures 1 to 20, reflects similar-valued 

substructures in the queue (substructures 1 through 4, for example, were in the queue at the same 
time and had similar values).  As the discovery process continues we can see that the head of the 
queue offers more compression than the tail (as seen in substructures 14 through 17), resulting in 
local minima. The prune2 feature, however, does not consider fluctuations within each iteration 
(pass through the queue), but rather between iterations. In other words, minima are determined by 
looking at the best substructure in the queue between successive iterations. The first local 
minimum therefore occurs at substructure number 37. This minimum turns out to be the global 
minimum as well for this iteration. 

As a second example, Figure 10 shows the compression of substructures as discovered by 
SUBDUE in a different database.  The search depicted in Figure 10 features numerous local 
minima, the first one occurring at substructure number 46.  This is not the global minimum, but 
for clustering purposes this one will be used as the best substructure, according to the described 
selection criteria. 
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Figure 9:  Compression of substructures as considered during one iteration of SUBDUE. 
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Figure 10:  Compression of substructures as considered by SUBDUE during one iteration on an
aircraft safety database. 
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Even though it is possible to use the global minimum as the best substructure, we found that if 
the global minimum is not the first local minimum (and is therefore not discovered in the current 
iteration), SUBDUE may generate overlapping clusters.  Overlapping clusters are those that 
include the same information.  For example, in a particular clustering of the vehicles domain, two 
clusters may include the information “number of wheels = 4”. In the case of SUBDUE, the 
substructure representing the global minimum may be discovered in a later pass through the 
database and often will share information with the earlier (local minimum) cluster.  This suggests 
that perhaps a better clustering could be constructed in which this information resided in a cluster 
at a higher level.  

4.4. Implementation 
 
This section discusses the implementation details for cluster analysis in SUBDUE.  Most of the 
clustering functionalities center around building and printing the classification lattice.  We will 
also describe the Dotty visualization package with emphasis on interpreting the classification 
lattice displayed by Dotty. 

A classification lattice describes a hierarchical conceptual clustering of a database.  Each node 
in the lattice represents a cluster.  The classification lattice is a tree-like data structure with the 
special property that one node may have several parents.  Information stored in a node includes 
the substructure definition and instances, pointers to children, number of children, number of 
parents, the substructure label, a descriptive label and a shape flag. 

The substructure label specifies the vertex label (e.g., “Sub1”) assigned to the substructure that 
represents the cluster.  This label is automatically assigned to the substructure when replacing 
each occurrence of the substructure with a single vertex during compression. This information is 
useful for identifying the parents of a cluster. 

The descriptive label contains information about the cluster definition in an easy-to-read 
format.  This has significance when displaying the lattice with Dotty.  The label is generated 
when the –truelabel option is set by reporting all pairs of vertices connected by an edge using the 
format sourceVertex edge: targetVertex.  For example, if a substructure contains two vertices 
labeled car and red, connected by an edge labeled color, the descriptive label would read car 
color: red. 

The shape flag determines the shape of the cluster when displayed by Dotty. The shape of the 
cluster is just another visual aid in interpreting the cluster lattice. By default, all clusters are 
displayed with an oval shape. When the –exhaust option is set, however, SUBDUE is instructed 
to form clusters out of substructures that do not compress the input graph further, and these 
clusters are given a rectangular shape. 

4.5. Visualization 
 

The GRAPHVIZ graph visualization package is used to display the cluster results (Koutsofios 
and North, 1999).  When clustering is enabled, a file with the .dot extension is created.  This file 
can be used by the program dot to create a PostScript file, or by Dotty to view it interactively.  
From Dotty one can directly print the lattice to a printer or a file.  Dotty also allows the 
rearrangement of clusters, and the changing of cluster parameters. 

Consider the portion of a classification lattice shown in Figure 11.  The root node contains the 
file name of the input graph.  Nodes other than the root node contain the sub-label of the 
substructure that defines the cluster, the number of instances the substructure has in the input 
graph (shown in brackets) and a series of descriptive labels. Each line, except for the first one, 
contains a descriptive label.  Clusters on the same level are shown using the same color (we 
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modify the visualization for this paper to use multiple line textures).  In some cases the lattice can 
become highly interconnected, and the colors are useful in identifying levels of the lattice. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.6. Cluster Evaluation Metrics 
 
Conventional (non-hierarchical) clusters have been evaluated using the observation that instances 
within a cluster should be similar to each other, and instances in separate clusters should be 
significantly different.  The measure suggested by this observation can be defined as:  

erDistanceIntraClust
erDistanceInterClustQualityClustering = , 

where InterClusterDistance is the average dissimilarity between members of different clusters, 
and IntraClusterDistance is the average dissimilarity between members of the same cluster. If a 
clustering receives a large clustering quality value, the clusters are distinctly defined, yielding a 
desirable clustering.   

4.6.1. Defining Good Hierarchical Clusterings 
 
When generating hierarchical clusterings, the previous metric cannot be applied.  The main 
reason for this limitation is that clusters are organized into a hierarchy, and two clusters with an 
ancestral relationship are not completely disjoint.  Therefore, it does not make sense to compute 
the average inter-cluster distance value between all pairs of clusters.  Instead, only clusters that 
have a common parent may be meaningfully compared.  Cobweb’s category utility metric 
(Fisher, 1987) and the partition utility function introduced by Markov (2001) cannot be used as a 
global measure of an entire hierarchical clustering, because these measures only provide local 
determinations as to whether the addition of a particular cluster will increase the value of the 
classification tree. 

Sub_3 [1] 
AI_LAB has: wall 
AI_LAB has: wall 
AI_LAB has: wall 
AI_LAB has: wall 

AI_LAB has: ceiling 

Sub_6 [1] 
Sub_1d of: Joe 
Sub_1d of: Joe 

Sub 1d proc: K6

AI_LAB_G 

Sub_1 [3] 
desk near: chair 

computer near: desk 
monitor on: desk 

Sub_2 [2] 
Sub_1b proc: PII 

Sub_1b brand: GW 

Figure 11:  Example of a classification lattice produced by SUBDUE and visualized by Dotty. 
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Hierarchical conceptual clustering systems have been shown to be useful in practice.  At 
the same time, there have been extensive discussions on the performance of the algorithms, as 
well as their advantages and applicability to certain domains.  Most points are demonstrated by 
example, because of the lack of an objective evaluation measure.  Here we introduce an 
evaluation measure for hierarchical clusterings.  This clustering evaluation measure should be 
distinguished from the Minimum Description Length measure, which is used to evaluate 
individual substructures within the discovery algorithm.  The performance measure defined here 
could be used to select a clustering from among the space of total possible clusterings, but this 
approach would be very computationally expensive.   

To develop a metric for hierarchical conceptual clusterings, first we need to define what 
characteristics such clusterings should have.  One of the properties we would like to demonstrate 
is the greatest coverage by the smallest possible number of clusters. This would imply that 
clusters are general enough to describe the all data while still defining individual concepts. A 
hypothesis that uses a smaller number of clusters is a simpler hypothesis, which is desirable 
according to the minimum description length principle. 

Another desirable property is big cluster descriptions. The more features a cluster includes, 
the greater its inferential power (Lebowitz, 1987).  Hierarchical conceptual clusterings can be 
used to classify new data points.  A good example is the taxonomy of the animal kingdom, which 
can be used to classify newly discovered species using our current knowledge about animals 
already seen.  The more traits the new species shares with points in the hierarchy, the easier it is 
to classify.  Therefore, we would like to see well-defined concepts in the cluster hierarchy. 

A third property we would like a clustering to demonstrate is minimal overlap between its 
clusters.  No overlap indicates disjoint concepts.  Clearly defined concepts are of primary 
importance in conceptual clustering (Michalski and Stepp, 1983). 

These three desirable properties sometimes conflict.  The larger the cluster description is, 
the more likely it is that two clusters will share common features and thus overlap.  Conversely, if 
we remove some attributes from the cluster definition to reduce the number of overlaps, we may 
lose the inferential power of the cluster.  In addition, if we enlarge a cluster description by adding 
attributes, we are likely to generate a greater number of clusters.  Similarly, disallowing overlap 
may result in a large number of clusters.  The goal of a clustering system is to balance these 
properties to obtain the best possible clustering. 

The described features are desirable for both hierarchical and non-hierarchical clusterings 
and can be measured for each set of clusters.  In a hierarchical clustering, the measure can be 
applied recursively to all clusters in the hierarchy.  The quality of the root cluster thus represents 
the quality of the entire hierarchy.  The formulation of a metric to measure cluster quality is 
presented next. 

4.6.2. A New Metric for Hierarchical Conceptual Clustering 
 
The previous section outlined what we seek in a good clustering.  This section develops the 
formulation that encompasses those ideas.   According to our set of desirable features, the quality 
of the cluster lattice L in graph G can be computed by the equation 
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where C represents an individual cluster, Ci refers to the ith instance of cluster C, |C| represents the 
number of instances of cluster C and ||Ci|| represents the size of the graph (number of edges plus 
number of vertices). The function Degree(C) returns the number of children of cluster C, and the 
distance operation calculates the difference between the two child cluster instances as measured 
by the number of transformations required to transform the smaller instance graph into the larger 
one.  The Childi(C) function returns the ith child of cluster C, and Childi,k(C) returns the kth 
instance of the ith child of C. 

The computation of the quality of a hierarchical clustering is recursive, as indicated by the 
last term of the Diversity function.  Because of the recursive nature of the calculation, the quality 
of the root node of the classification lattice represents the quality of the entire clustering. This 
value is multiplied by the coverage which serves two purposes: it scales the measure so that 
clusterings with different coverage may be better compared, and it penalizes clusters that increase 
the coverage but fail to provide other benefits.  Coverage is calculated as the number of vertices 
and edges from the input graph that are covered by at least one of the clusters, divided by the total 
number of vertices and edges in the input graph. 

To compute the quality of a single cluster, all of its child clusters are pairwise compared 
and normalized.  A pairwise comparison between child clusters is performed using the inexact 
graph match algorithm discussed in Section 3.4.  The value returned by the inexact graph match is 
an integer signifying the number of operations required to transform one graph into an isomorph 
of the other.  This value is normalized to a 0..1 range by dividing it by the size of the larger graph.  
The dissimilarity between any two graphs is never greater than the size of the larger graph.  In 
addition, each cluster inherits the quality of its children by adding their quality to its own.  

 As suggested by the pairwise comparison of child clusters, this metric measures the 
dissimilarity of child clusters.  A larger number, or greater dissimilarity, signifies a better quality.  
This evaluation heuristic rewards the clusters exhibiting properties discussed in Section 4.6.1.  
More specific clusters are rewarded, because two such disjoint clusters need more 
transformations to map one cluster onto the other.  This dissimilarity is normalized.  For example, 
two clusters that each contain five vertices and five edges and have a single vertex in common are 
90% different, while two clusters that each contain two vertices and one edge and have a single 
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vertex in common are only 66% different.  Section 5.1 shows that this metric provides 
empirically consistent values for clusterings of varying quality. 

Disjoint clusters are also rewarded. The less two clusters overlap, the more distant they are 
according to the inexact match algorithm.  A small number of clusters is rewarded by computing 
the average of the comparisons of all the instances, this way offsetting the summing effect, which 
would normally reward a large number of clusters.  As we can see, this evaluation heuristic 
measures all of the desirable properties for a hierarchical clustering. 

Consider the clustering of the geometric database shown in Figure 8.  The value of this 
clustering is calculated as the diversity of the root of the lattice divided by the coverage of the 
lattice with respect to the original graph shown in Figure 5.  The combined size (or coverage) of 
the clusters in the lattice is 48 vertices and 56 edges, or 104.  The size of the original graph is 48 
vertices and 63 edges, or 111.  Thus the Coverage term in the equation is 104 / 111 = 0.9369. 

The numerator in the Diversity term is calculated as the pairwise distance between each 
child cluster instance, divided in each case by the size of the larger instance.  The root node has 
three children, each with four instances.  The distance between the pentagon and square clusters 
divided by the size of the larger cluster (the pentagon), summed over all 16 pairs of instances, is 
11.2.  Similarly, the sum of the normalized instance distances between the pentagon and triangle 
instances is 14.4, and between the square and triangle instances is 12.0.  The sum of these terms is 
divided by the total number of instance pairs.  There are a total of 16 + 16 + 16 = 48 instance 
pairs, so the first term in the Diversity function is 0.7833.  The second term in this function is 0, 
because each of these clusters has only one child and thus there are no pairs of child instances to 
compare.  The Quality of the lattice with respect to the input graph is thus 0.7833 / 0.9369 = 
0.8360. 
 
5. Results 
 
This section presents analyzes clusters generated using SUBDUE. First, the algorithm’s proper 
behavior is established using an artificially-generated database as the test domain. Next, the 
algorithm is compared to an existing system.  Other applications of the algorithm are also 
discussed. 

5.1. Validation in an Artificial Domain 
 
An artificial domain will serve as an example to demonstrate SUBDUE’s ability to generate valid 
clusterings in structural databases.  This artificial domain is depicted in its graph form in Figure 5, 
where only edges are shown.  Vertices in the graph represent the meeting points of the edges.  
Smaller, clearly recognizable shapes—triangles, squares and pentagons—are embedded in the 
graph.  They are organized into rings, and some edges are added between some of the triangles 
and squares to somewhat disturb the regularity.  The vertices in the graph are labeled as a, b, c, 
and so on, for each primitive shape.  Edges connecting the primitive objects are labeled as T_link, 
S_link, and P_link, for triangle, square, and pentagon, respectively.  Edges connecting different 
shapes are labeled XY, where X and Y represent the distinct shapes (e.g., TS represents triangle-
square link). 

SUBDUE was invoked using the command 
Subdue -cluster -truelabel -prune2 1 artif-tsp2.g 

where -cluster enables clustering, -truelabel enables the descriptive labels and  -prune2 1 
overrides the default option for clustering, -prune2 2, which results in increased sensitivity to 
local minima.  We have observed that in general the larger and more complex the database is, the 
more clearly defined is the local minimum. 
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The classification lattice generated by SUBDUE is shown in Figure 8.  For clarity, the 
substructures are shown that define the clusters rather than the textual description extracted from 
the graph representation. The lattice closely resembles a tree, with the exception that the 
rightmost leaf has two parents.  As the figure shows, smaller, more commonly occurring 
structures are discovered first, and compose the first level of the lattice.  These cover most of the 
graph; therefore, they are the most general clusters.  Subsequently identified clusters are based on 
these more general clusters which are either combined with each other, or with other vertices or 
edges to form new, more specific clusters.  The result of this process can clearly be seen in the 
second level of the lattice where two pentagons and a connecting edge comprise a new cluster, 
and a pair of triangles and a pair of squares comprise another cluster along with three additional 
connecting edges.  The second-level nodes in the classification lattice are connected with two 
branches from their parents. This means that there are two pentagons used in the bottom-left 
cluster, and two triangles and two squares are used in the bottom-right cluster.  Both of the 
clusters in the second level have two instances. 

SUBDUE performs as expected on this artificial domain. It was able to find the most 
commonly-embedded structures, and construct the expected classification lattice.  To further 
support the algorithm’s validity, the following section compares SUBDUE to an existing 
hierarchical clustering system. 

5.2. Comparison to Cobweb 
 
An experiment devised by Fisher (1987) can serve as a basis for comparison of SUBDUE and 
Cobweb. This example will also demonstrate SUBDUE’s performance on unstructured data.  

The database used for the experiment is given in Table 1.  The animal domain is represented in 
SUBDUE as a graph, where attribute names (like Name and BodyCover) are mapped to labeled 
edges, and attribute values (like mammal and hair) are mapped to labeled vertices, as shown in 
Figure 1. 

Table 1:  Animal Descriptions. 

Name Body Cover  Heart Chamber Body Temp. Fertilization 
mammal hair Four regulated Internal 
bird feathers Four regulated internal 
reptile cornified-skin imperfect-four unregulated internal 
amphibian moist-skin three unregulated external 
fish scales Two unregulated external 

 
 
 
 
 
 
 
 
 
 
 
 
Cobweb produces the classification tree shown in Figure 12, as reported by Fisher (Fisher, 

1987).  In contrast, SUBDUE generates the hierarchical clustering shown in Figure 13.  

animals

amphibian/fishmammal/bird reptile 

mammal bird fish amphibian 

Figure 12:  Hierarchical clustering over animal descriptions by Cobweb. 
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SUBDUE’s result is similar to that of Cobweb.  The “mammal/bird” branch is clearly the same.  
Amphibians and fish are grouped in the same cluster based on their external fertilization, which is 
grouped the same way by Cobweb.  SUBDUE, however, incorporates reptiles with amphibians 
and fish, based on their commonality in unregulated body temperature.  This clustering of the 
animal domain seems better, because SUBDUE eliminated the overlap between the two clusters 
(reptile and amphibian/fish) by creating a common parent for them that describes the common 
trait.  This example also demonstrates that SUBDUE is capable of dealing with unstructured 
domains successfully. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

5.3. Application to the Web Domain 
 
Here we demonstrate the application of SUBDUE to a graph representing a portion of the World 
Wide Web.  Researchers have asserted that a graph forms a natural representation for web data, 
and hyperlink information is frequently used to enhance web search engines (Chakrabarty et al. 
1999, Kleinberg 1998).  For this project, we transform web data to a labeled graph for input to 
SUBDUE.  Data collection is performed using a web robot written in Perl. The web robot follows 
links to pages residing on specified servers, generating a graph file representing the visited pages. 
The web robot scans each page for URL references contained in that page. A depth-first search 
through the space of connected web pages is executed to a predefined depth. The labeled graph 
represents each URL as a vertex labeled “page”, with edges labeled “hyperlink” pointing from 
parent to child URLs.  To enhance the graph representation, the web robot extracts words from 
the “title” field of each HTML page, and adds vertices labeled with each word in the title to the 
graph.  Functions from the WordNet library (Miller et al. 1991) are included to remove non-
contributory words and to replace synonyms and abbreviations with a single representative term.  
Figure 14 shows a portion of the graph generated for the site cygnus.uta.edu.  

For this experiment, we generated a graph representing 182 departmental web sites from four 
universities around the country.  Our theory is that departmental web sites have common 
structural layouts and can thus be clustered on this basis.  Over 32,000 web pages were visited, 
and the resulting graph contains 41,782 vertices and 168,421 edges.  We let SUBDUE cluster this 
graph until no further compression was possible, resulting in 136 substructures.  Completing the 
first iteration of the algorithm took 34 minutes on a 1GHz Pentium PC with 512MB memory.  

Name: reptile 
BodyCover: cornified-skin 

HeartChamber: imperfect-four 
Fertilization: internal 

Name: bird 
BodyCover: feathers 

Animals

BodyTemp: unregulated HeartChamber: four 
BodyTemp: regulated 
Fertilization: internal 

Fertilization: external 

Name: mammal 
BodyCover: hair 

Name: fish 
BodyCover: scales
HeartChamber: two

Name: amphibian 
BodyCover: moist-skin 
HeartChamber: three

Figure 13:  Hierarchical clustering over animal descriptions by SUBDUE. 
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Because the graph is compressed at the end of each iteration, subsequent iterations are faster.  
Completing 4 iterations took 48 minutes, and 16 iterations took 68 minutes.  The current version 
of SUBDUE does not write out the file between iterations but keeps all of the information in 
internal memory.  As a result, the memory eventually slowed down the performance of the 
algorithm, so that completing all 136 iterations took approximately 20 hours.  We expect this 
performance to improve by writing each iteration result to a file rather than adding the new 
information to internal memory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A portion of the lattice generated by SUBDUE is shown in Figure 15.  The first discovered 

substructure (node 1 in the figure) is defined as three web pages, the first pointing with hyperlinks 
to the other two pages.  The next few discovered substructures expanded this theme, discovering 
“hub” pages with many links to other pages on the web site.  Because the graph contained many 
more “page” vertices than “word” vertices, clusters of web pages focused on a particular topic did 
not appear until several levels down in the lattice.  Substructure 40, for example, represents a 
cluster of web pages with pointers to top-level university information pages.  Similarly, 
substructure 43 represents a cluster of departmental web pages with pointers to faculty home 
pages.  The discovered clusters do indeed show common structural regularities within 
departmental web sites.  For the sake of obtaining a timely response, we evaluated the lattice 
through the first four levels (the lower nodes typically do not add significant values to the overall 
value). The quality of this lattice using our evaluation measure is 10.08. 

  page 
 

 

university texas 
projects

subdue 

parallel 

  page hyperlink
word word

word word 

word

Figure 14:  Graph representation of a web site. 

Figure 15.  A portion of the web domain lattice generated by SUBDUE.   Starred 
edges represent multiple edges between the pair of nodes.
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We clustered the same database using Cobweb.  Because Cobweb cannot represent and 
process structural information, we represented each page by nine attributes.  The first two 
attributes identify the number of inlinks and outlinks for the page.  The remaining seven attributes 
identify the number of occurrences for the six most common words in the database with a 
separate attribute for all other words.  Cobweb required over 40 hours to complete the clustering.  
Nodes within this hierarchy primarily contain pages with a similar number of inlinks or outlinks.  
The quality of this hierarchy evaluated through the first four levels using our measure is 6.23.  
The main reasons for Cobweb’s lower quality measure are lack of diversity between nodes (this is 
more difficult to achieve without structural information) and the fact that the hierarchy is 
extremely deep.  Lack of structural information makes abstraction of web pages difficult, and thus 
the hierarchy decomposed nodes to the point where almost every individual data point resides in a 
leaf node somewhere within the hierarchy. 

5.4. Evaluation 
 
The previous sections have shown that SUBDUE’s clustering functionality is appealing in many 
respects.  SUBDUE has performed according to expectations in an artificial structured domain, 
has paralleled an existing system in an unstructured domain, and has discovered clusterings in 
real-world domains.  Here we revisit the artificial domain one more time, in order to provide an 
objective evaluation of SUBDUE and comparison with the clustering algorithm Cobweb using 
our evaluation measure. 

5.4.1. Self-Diagnostic Evaluation 
 
Due to the relatively large number of parameters in SUBDUE, the system can produce varying 
results. The evaluation measure can be used to help identify better clusterings generated by 
specifying different parameters.  

An example of this is found in the clustering of the artificial domain. To create a more 
interesting example in Section 4.2, we deviated from the default option –prune2 2 to –prune2 1. 
The default parameters produce the clustering shown in Figure 16. 

 
 
 
 
The clustering depicted in Figure 8 has a clustering quality of 0.836, while the one in 

Figure 16 has a quality value of 1.105.  The difference is that the few number of clusters, larger 

Figure 16:  Alternative clustering of the artificial domain. 

Root 
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cluster definitions and smaller overlap between the clusters in Figure 16 outweigh the visually 
more pleasing structural representation shown in Figure 8. 

5.4.2. Metric-Based Comparison to Cobweb 
 
Earlier we compared SUBDUE to Cobweb on the animal descriptions domain. The evaluation of 
the system in that section was only anecdotal.  In fact, SUBDUE’s superiority over Cobweb was 
based entirely on the observer’s opinion.  In this section, the performance of both systems will be 
objectively evaluated.  

The clustering generated by SUBDUE (shown in Figure 13) can be directly evaluated by 
the evaluation tool. This clustering has a quality of 2.32.  The classification tree generated by 
Cobweb, however, needs to be converted into a graph representation that the evaluation tool can 
analyze. The tree in Figure 12 was converted to a graph using the representation style indicated in 
Figure 2, but only including attributes that define the cluster.  The quality of this clustering is 
1.48, according to the evaluation tool. 

As a result, we can conclude that SUBDUE generated a clustering that has been shown to 
be better according to our evaluation metric.  The major points of difference between the two 
clusterings are that Cobweb created a cluster on its own for the instance reptile, while SUBDUE 
incorporated it with amphibians and fish, based on their commonality in unregulated body 
temperature.  This clustering offers a better coverage of instances, at the same time being more 
general.  SUBDUE also eliminated the overlap between the clusters reptile and amphibian/fish, 
which is preferable as set forth in our evaluation criteria. 

5.4.3. Discussion 
 
We have evaluated the SUBDUE clustering tool in several domains.  From both observation and 
objective analysis, the SUBDUE clustering tool has been shown here to be effective at providing 
a hierarchical cluster analysis of structured and unstructured data. 

As a result of observations and objective evaluations, we can conclude that the best 
clustering is usually the one that has the minimum number of clusters, with minimum overlap 
between clusters, such that the entire data set is described.  Too many clusters can arise if the 
clustering algorithm fails to generalize enough in the upper levels of the hierarchy, in which case 
the classification lattice may become shallow with a high branching factor from the root, and a 
greater amount of overlap.  At the other extreme, if the algorithm fails to account for the most 
specific cases, the classification lattice may not describe the data entirely.  Experimental results 
indicate that SUBDUE finds clusterings that effectively balance these extremes. 

 
6. Discussion and Conclusions 
 
The purpose of this research is to explore the mostly uncharted territory of hierarchical 
conceptual clustering in discrete-valued structural databases.  There have been numerous attempts 
at clustering.  Most of these, however, are applicable only in unstructured domains that simply 
enlist object descriptions.  SUBDUE overcomes this restriction by representing databases using 
graphs, which allows for the representation of a large number of relationships between objects.  

The technique of cluster analysis is of unquestionable importance. This is demonstrated by the 
wide variety of fields in which this technique is used, and the different names by which it has 
been referred.  Many databases represent unstructured information, such as a listing of animals 
and their traits, but many are structured, such as a web data.  Cluster analysis is equally applicable 
to both types of databases.  A modern data mining system must be able to handle these different 
types of data, and operate on them successfully.  In fact, many unstructured data sets may be 
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made structured by a simple preprocessing algorithm.  An example of this might be the 
establishment of relationships among books with the same author in the domain of book listings, 
or the creation of near and far relationships, both spatial and temporal, between events in a log of 
earthquakes.  In doing so, a data set can be made more valuable for data mining. 

SUBDUE has been demonstrated to be a successful multi-purpose data mining tool in many 
diverse domains.  Since clustering can be applied to any data set that SUBDUE can process, 
clustering is a very important addition in functionality to SUBDUE as has been demonstrated 
using various examples.  

One of the major contributions of this work is the synthesis of the classification lattice.  
Previous work in clustering suggested the creation of classification trees, which are inadequate in 
structured domains.  On the other hand, a classification lattice in unstructured domains reduces to 
a tree, which suggests that classification trees are a proper subset of classification lattices. 

Another major contribution is the new evaluation metric we define for hierarchical conceptual 
clustering.  Earlier work in this area has not developed a rigorous evaluation metric.  Instead, 
performance is typically based on the quality of the performance as perceived by an observer, 
giving only anecdotal justification to their success.  Our research provides an objective evaluation 
metric that reflects the major requirements and tradeoffs of a good quality clustering.  We have 
demonstrated that SUBDUE’s performance on unstructured datasets competes with one of the 
most prominent algorithms so far, perhaps even outperforming it.  We also showed SUBDUE’s 
applicability to highly structured domains using an artificial and a web domain. 

Future work on SUBDUE includes defining hierarchical clusterings of other real-world 
domains, and performing comparisons with other clustering systems.  Incorporation of the 
evaluation metric into SUBDUE would also be useful.  In this way, SUBDUE could modify its 
own parameter settings and select the parameter values that yield the best overall results.  We 
would also like to enhance SUBDUE to be able to effectively handle numeric data.  Although 
some work has been done that learns numeric ranges for discovered substructures, more work can 
be done in this area. 
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