
Journal of Machine Learning Research 2 (2002) 639–668 Submitted 9/01; Published 3/02

Shallow Parsing with PoS Taggers and Linguistic Features

Beáta Megyesi bea@speech.kth.se

Centre for Speech Technology (CTT)
Department of Speech, Music and Hearing
KTH, Sweden
Drottning Kristinas väg 31
SE–100 44, Stockholm, Sweden

Editors: James Hammerton, Miles Osborne, Susan Armstrong and Walter Daelemans

Abstract

Three data-driven publicly available part-of-speech taggers are applied to shallow parsing of
Swedish texts. The phrase structure is represented by nine types of phrases in a hierarchical
structure containing labels for every constituent type the token belongs to in the parse tree.
The encoding is based on the concatenation of the phrase tags on the path from lowest to
higher nodes. Various linguistic features are used in learning; the taggers are trained on
the basis of lexical information only, part-of-speech only, and a combination of both, to
predict the phrase structure of the tokens with or without part-of-speech. Special attention
is directed to the taggers’ sensitivity to different types of linguistic information included
in learning, as well as the taggers’ sensitivity to the size and the various types of training
data sets. The method can be easily transferred to other languages.
Keywords: Chunking, Shallow parsing, Part-of-speech taggers, Hidden Markov models,
Maximum entropy learning, Transformation-based learning

1. Introduction

Machine learning techniques in the last decade have permeated several areas of natural
language processing (NLP). The reason is that a vast number of machine learning algorithms
have proved to be able to learn from natural language data given a relatively small correctly
annotated corpus. Therefore, machine learning algorithms make it possible to within a short
period of time develop language resources—data analyzed on various linguistic levels—that
are necessary for numerous applications in natural language processing.

One of the most popular NLP areas that machine learning algorithms have been suc-
cessfully applied to is part-of-speech (PoS) tagging, i.e. the annotation of words with
the contextually appropriate PoS tags, often including morphological features. The data-
driven algorithms that have been successfully applied to this task for several languages in-
clude, among others, hidden Markov modeling (Brants, 2000), inductive logic programming
(Cussens, 1998; Eineborg and Lindberg, 2000), maximum entropy learning (Ratnaparkhi,
1996), memory-based learning (Daelemans et al., 1996; Zavrel and Daelemans, 1999), and
transformation-based learning (Brill, 1994). The main advantage with data-driven PoS
taggers is that they are language and tag set independent and thereby easily applicable
to new languages and domains. The average accuracy that is reported for state-of-the-art

c©2002 Beáta Megyesi.

Megyesi

data-driven PoS taggers lies between 95% and 98% depending on the language type the
taggers are trained and tested on.

In the past years, some attempts also have been made to build data-driven shallow
parsers. The main goal of the data-driven parsers is, above all, to find the phrase structure
of the sentence and not, as one might think, to disambiguate words according to their
context. The disambiguation is already taken care of by the PoS taggers which use some
kind of background knowledge, i.e. parameters that tell the system to check the contextual
environment of the current word and/or tag.

As a first step in building corpus-based parsers, a considerable amount of research has
been carried out to find syntactically related non-overlapping groups of words, so-called
“chunks” (Abney, 1991). A chunk is a major phrase category consisting of the phrasal
head and its modifiers on the left hand side. The example below, borrowed from Tjong
Kim Sang & Buchholz (2000), illustrates three different chunk types (np, vp and pp) for
the sentence “He reckons the current account deficit will narrow to only £1.8 billion in
September” shown in bracketing structure.

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow]
[PP to] [NP only £1.8 billion] [PP in] [NP September].

Within the area of data-driven chunking, much attention has been directed to the de-
velopment of recognition methods for simple, non-recursive noun phrases, also called base
np chunks (e.g. Church, 1988; Cardie and Pierce, 1998; Skut and Brants, 1998). These
phrases play an important role in many application areas, such as information extraction
and information retrieval, as well as in human language processing (Gee and Grosjean,
1983). Research on the detection of other chunk types, such as prepositional phrases (pp),
adverb phrases (advp), adjective phrases (adjp) and verb clusters, by data-driven methods
has also been carried out with promising results (see Ramshaw and Marcus, 1995; Arga-
mon et al., 1998; Brants, 1999; Buchholz et al., 1999; Veenstra, 1999; Osborne, 2000; and
Megyesi, 2001a). However, most of these chunkers only recognize a phrase up to its head
word without finding the arguments on the right side of the head. For example, in the
example above, the two pps do not include their np arguments. Additionally, in almost all
these studies with the exception of work by Brants (1999), the internal phrase structure of
the chunk is not analyzed. As we can see in the example sentence, the phrases inside the np

are not marked. Also, different studies use various linguistic information to find the chunks;
some use PoS only without taking any lexical information under consideration, while some
combine the words and their PoS in learning.

It is also worth mentioning that the majority of studies on chunking have been focused
on the development of data-driven chunkers/parsers for English, just as was the case with
the part of speech tagging task a couple of years ago. The reason is mainly that there
is a correctly parsed corpus for English, the Penn Treebank (Marcus et al., 1994), while
such a corpus is missing for most languages. Given this correctly parsed large data set, the
development and evaluation of data-driven approaches become easier and more reliable.

The motivating purpose of this work is to build a data-driven shallow parser without
a great deal of human effort for Swedish, describing the whole constituent structure the
word belongs to in a hierarchical fashion. Desirable properties of the shallow parser are as
follows:

640

Shallow Parsing with PoS Taggers and Linguistic Features

• easily trainable, fast and robust
• corpus-based, i.e. data-driven, so that it can be applicable to various domains
• having a hierarchical phrase representation so that it is capable of being used for many
different applications

The fact that many data-driven PoS taggers are language and tag set independent,
and the fact that these taggers have some implemented linguistic knowledge about the
contextual environment of words and/or tags, lead to the thought that these PoS taggers
can be assumed to be useful to parse texts, given some correctly chunked/parsed data, i.e.
a treebank. Inspired by the success of the maximum entropy based data-driven PoS tagger,
mxpost (Ratnaparkhi, 1996), applied directly to chunk English (Osborne, 2000), we will
use three different data-driven PoS taggers as a basis for parsing Swedish texts. The PoS
taggers are implementations of three algorithms: hidden Markov modeling (Brants, 2000),
maximum entropy learning (Ratnaparkhi, 1996), and transformation-based learning (Brill,
1994).

The aim of this study is, in particular, to find out what combinations of linguistic
information are the most appropriate for the parsing task so that the taggers can efficiently
learn to parse texts, and to find out what effects different kinds of linguistic information
included in the training data has on the parsers in this processing. In addition, the taggers’
sensitivity to the size of the training set is investigated, and an evaluation for real-world
applications is carried out.

The remainder of the paper is organized as follows: Section 2 gives an overview of
previous studies performed on data-driven chunking; Section 3 presents the phrase structure
representation, the training data and benchmark, as well as a brief description of the taggers
that the parsers are built on; Section 4 describes the experiments on various linguistic
features used in learning; Section 5 presents the experiments and the results; and finally,
Section 6 concludes the paper and gives directions for further research.

2. Previous Work on Data-Driven Text Chunking

The concept of the chunk was introduced by Abney (1991). He defines a chunk as “a single
content word surrounded by a constellation of function words, matching a fixed template”.
He proposed that by dividing a sentence into meaningful, correlated sequences of words—
chunks—and combining those into trees, we can build a parser which has psycholinguistic
evidence in that it represents structures corresponding to pauses and intonation changes in
speech. Abney’s chunk parser consists of two steps; first the chunker finds potential chunks
on the basis of PoS information, and then an attacher finds the correct chunk by resolving
structural ambiguities on the basis of lexical information.

Abney’s pioneering work has influenced a lot of researchers. Several studies have been
performed to develop data-driven chunkers as a first step to build parsers. One of the
earliest studies on this topic was presented by Ramshaw and Marcus (1995). They used
transformation-based learning (Brill, 1994) to locate chunks in texts by treating chunking
as a tagging problem. The chunk structure was represented as tags attached to words, in
a similar way as is done in data-driven PoS tagging. They performed experiments using

641

Megyesi

two different chunk structure targets. The first target was to identify non-overlapping, non-
recursive noun phrases, so called base nps, as far as the nominal head, including determiners
and adjectives, but not prepositional phrases or other types of arguments located after the
head word. The tag set consisted of three types of tags: B for the first word of the base np,
I for the words inside the base np, and O for the words outside of the chunk. The second
target of their work was to partition sentences into non-overlapping noun-type (N) and
verb-type (V) chunks in a similar fashion as was proposed by Abney (1991). The noun-type
chunks consisted of, among others, noun phrases as far as the nominal head, prepositional
phrases including an np argument, but not coordinating conjoined nps. Each N and V type
had two tags, depending on whether the word was initially positioned in the type or not,
and an extra tag was reserved for punctuation marks. They used the parsed Wall Street
Journal texts from Penn Treebank (Marcus et al., 1994) to automatically derive the chunk
structure. They extended the templates of Brill’s PoS tagger to include references up to
two chunk tags, as well as to up to three words and/or their PoS tags. The result showed
a precision of 93.1% and a recall of 93.5% for base np chunks when trained on 950k words
and tested on 50k words using lexical and PoS information. When lexical information was
excluded, precision and recall decreased to 90.5% and 90.7% respectively. For the N and V
partitioning, precision and recall rates are reported to be 88% when training was performed
on 200k words. Also, they pointed out that the size of the training set has a significant
effect on the results.

Argamon et al. (1998) used memory-based sequence learning to recognize np and vp

chunks in PoS tagged texts. The same data set was used as in the study by Ramshaw
and Marcus (1995) but the learner was trained on PoS tag sequences containing bracketed
chunk boundaries without including lexical information. They report precision and recall
rates of 91.6%.

Other experiments on data-driven chunking were also performed with memory-based
learning methods. Cardie and Pierce (1998) presented a corpus-based approach for finding
base nps by using PoS tag sequences without any lexical information. They created gram-
mar rules from the training data and improved the grammar by pruning it on another data
set, using local repair heuristics that improved the precision without decreasing the recall.
A further step of discarding the ten worst rules was also carried out without decreasing the
precision. They achieved 94% precision and recall on simple base nps, and 91% on more
complex ones.

Veenstra (1999), also using a memory-based learning technique—igtree—(Daelemans et
al., 1996), described experiments on np, vp and pp chunking using the Wall Street Journal
for data and the bio labels attached to each chunk type as it was proposed by Ramshaw
and Marcus (1995) and described above. He reported precision and recall rates between
94% – 95%, and accuracy of 98% and 99% for np and vp chunks respectively.

Buchholz et al. (1999) used memory-based learning to assign grammatical relations (for
example subject, object, etc.) to texts by first finding np, vp, pp, adjp and advp chunks,
and then using pairs of chunks to predict grammatical relations. The data-driven chunker
was in turn applied in several steps. First, prepositions, np, vp, adjp and advp chunks were
found simultaneously, then prepositions and nps were collapsed into pps. They reported
Fβ=1 score of 92.3% for nps, 91.8% for vps, 66.7% for ap chunks, 77.9% for advp chunks,
and 96.1% for prepositions. For pp chunks, the Fβ=1 score was 92%.

642

Shallow Parsing with PoS Taggers and Linguistic Features

Brants (1999) presented a method for partial parsing that uses cascades of Markov Mod-
els to generate structural elements in a layer-by-layer fashion. The algorithm generates the
internal structure of np and pp chunks including aps and advps, and other pre-modifiers.
Sequences of words divided sentence by sentence served as input and the output was the
PoS and chunked text. The algorithm was tested on 300k words taken from the negra

corpus consisting of German newspaper texts. Recall was 54% for 1 layer and 84.8% for 9
layers; precision was 91.4% for 1 layer and 88.3% for 9 layers. As Brants points out, these
results are not directly comparable to previous studies because his study was performed on
a different language than English (namely German) and his algorithm labeled the internal
phrases within the np and pp chunks.

Osborne (2000) used a maximum entropy-based PoS tagger, mxpost (Ratnaparkhi,
1996), without modifying the PoS tagger’s internal operation, thus treating chunking as
part-of-speech tagging, with an accuracy of 94.88% and an overall Fβ=1 score of 91.94%.
The study was a part of a competition for the chunking approach at the 4th Conference
on Computational Natural Language Learning (CoNLL-2000) which supplied the tag set,
including the training and test data taken from the Wall Street Journal corpus. The training
data consisted of 211,727 tokens and the test data of 47,377 tokens. The types of chunks
used in the competition are described by Tjong Kim Sang & Buchholz (2000) and include
“base phrase categories”: noun phrases (np) to the nominal head, verb clusters (vp),
adjective phrases (adjp), adverb phrases (advp), prepositions (pp) without nps, compound
conjunctions, verbal particles, interjections, list markers and conjunctions.

The goal of the studies presented above was mainly to identify base phrase categories.
Next, we will describe our method to build data-driven shallow parsers representing general
phrasing including, among others, whole noun phrases with right-side arguments.

3. Building Shallow Parsers

Four different aspects need to be addressed in order to build a data-driven shallow parser;
the choice and the representation of the target classes that the algorithms have to learn to
predict, the data used for training and test, the choice of algorithm(s), and the attributes
or features included in learning. In the following sections, these aspects will be described.

3.1 Phrase Structure Representation

As we have seen in Section 2, in previous studies (with the exception of the work presented
by Brants, 1999), the internal structure of the chunks is not analyzed. Only categories on
higher nodes of the constituent structure are represented. For example, if a token/word
belongs to an adjective phrase which in turn belongs to a noun phrase, the token is labeled
with the noun phrase constituent only, not marking any other lower nodes in the tree.
Leaving out the lowest constituents the token belongs to can have drawbacks for several
applications, for example in dialog systems or text-to-speech systems, where information
about the whole constituent structure can be important for better system performance.
Therefore, the representation of the whole phrasal hierarchy containing information on all
phrases is desirable.

Additionally, previous studies represent only partially linguistically motivated phrasal
categories. Some phrase structures are not fully represented. For example, noun phrases

643

Megyesi

are marked as far as the head noun only, hence the arguments on the right side of the
noun head are missing. Also, prepositional phrases in many studies do not include any
noun phrase. Furthermore, some PoS categories are treated as phrases, as in the CoNLL-
2000 competition on chunking, where conjunctions constitute a conjunction phrase and
interjections an interjection phrase.

To be able to represent the whole hierarchical phrase structure, nine types of phrases
are used. Some categories correspond to the chunks used in previous studies, for example
ap, advp, and verb clusters. Other categories are designed to be able to handle arguments
on the right hand side of the phrasal head and represent maximal projections, such as the
maximal noun phrase label. Some categories are included to handle co-ordinated phrases,
such as the maximal adjective phrase label. The phrase categories are listed below, each
followed by a brief explanation and an example.

• Adverb Phrase (advp) consists of adverbs that can modify adjectives or numerical
expressions.
e.g. very

• Minimal Adjective Phrase (ap) constitutes the adjectival head and its possible mod-
ifiers, e.g. advp and/or prepositional phrase.
e.g. very interesting

• Maximal Adjective Phrase (apmax) includes more than one ap with a delimiter or a
conjunction in between.
e.g. very interesting and nice

• Numerical Expression (nump) consists of numerals with their possible modifiers, for
example ap or advp.
e.g. several thousands

• Noun Phrase (np) may include the head noun and its modifiers to the left, e.g. de-
terminers, nouns in genitive, possessive pronouns, numerical expressions, ap, apmax

and/or compound nouns. Thus, possessive expressions do not split an np into two
noun phrases as in the CoNLL-2000 shared task on chunking.
e.g. Pilger’s very interesting and nice book

• Maximal Projection of np (npmax) includes one or more np(s) with following pp(s)
as possible modifier.
e.g. Pilger’s very interesting and nice book about politics

• Prepositional Phrase (pp) consists of one or several prepositions delimited by a con-
junction and one or several nps/npmaxs, or in elliptical expressions an ap only.
e.g. about politics

• Verb Cluster (vc) consists of a continuous verb group belonging to the same verb
phrase without any intervening constituents like np or advp.
e.g. would have been

644

Shallow Parsing with PoS Taggers and Linguistic Features

• Infinitive Phrase (infp) includes an infinite verb together with the infinite particle
and may contain advp and/or verbal particles.
e.g. to go out

Note that the grammatical categories represent neither clauses, such as relative clauses,
nor sentences. These structures are planned to be analyzed in a later stage.

3.2 Training Data and Benchmark

Swedish belongs to the Scandinavian, North Germanic family of the Germanic branch of
Indo-European languages. It is morphologically richer than, for example, English. Nouns
in general have a two-gender distinction. The genders are marked mainly by articles, ad-
jectives, anaphoric pronouns, and in plural endings. As in English, nouns can appear with
or without articles. There are, however, definite and indefinite articles that agree with
the head noun in gender, number and definiteness. Furthermore, adjectives have gender,
definiteness and plurality markers. Thus, in a noun phrase, both articles and adjectives
agree in number, gender and definiteness with the head noun. Also, compound nouns are
frequent and productive. Verbs lack markers for person or number of the subject but retain
tense including complex tense forms. From a syntactic point of view, Swedish has subject-
verb-object order in independent declarative sentences, as well as in subordinate clauses,
similar to English. However, in subordinate clauses the sentence adverbs normally precede
the finite verb and the perfect auxiliary can be omitted.

Unfortunately, correctly chunked/parsed texts are not available for Swedish. Therefore,
a treebank was built to serve as training data and a benchmark corpus. For the treebank
development, an Earley Parser, spark (Aycock, 1998) was used together with a context-free
grammar for Swedish developed by the author.

The second version of the Stockholm-Ume̊a corpus (Ejerhed et al., 1992) annotated with
parole tags served as input to the parser.1 The corpus is balanced, consisting of over one
million PoS tagged tokens taken from different text genres in Swedish. The tag set consists
of 146 tags including PoS categories and morphological features. The PoS tagged texts were
parsed by spark using the nine phrase categories that were described in Section 3.1.

Each phrase type is represented with an additional tag marking position information
in a manner similar to that proposed by Ramshaw and Marcus (1995) and used in the
CoNLL-2000 competition:

XB – the initial word of the phrase X
XI – non-initial word inside the phrase X
O – word outside of any phrase.

Thus, each word and punctuation mark in a sentence is accompanied by a tag which indi-
cates the phrase structure the token belongs to in the parse tree together with the position
information. Since a token may belong to several phrases, it can have several tags.

The representation is illustrated in the example below for the Swedish equivalent of the
sentence “Everybody should read Pilger’s very good books about politics” represented first
by parenthesis notation, and second by PoS and phrase tags.
1. Thanks to Britt Hartmann at the Department of Linguistics, Stockholm University, Sweden for making

the second version of the Stockholm-Ume̊a corpus with parole tags available.

645

Megyesi

[NP Alla NP] [VC borde läsa VC] [NPMAX [NP Pilgers [AP [ADVP mycket ADVP] bra AP]
böcker NP] [PP om [NP politik NP] PP] NPMAX].

Word PoS + morphology Phrase tags Translation
as parole tags

Alla PI@0P0@S NPB (everybody)
borde V@IIAS VCB (should)
läsa V@N0AS VCI (read)
Pilgers NP00G@0S NPB NPMAXB (Pilger’s)
mycket RGPS ADVPB APB NPI NPMAXI (very)
bra AQP00N0S API NPI NPMAXI (good)
böcker NCUPN@IS NPI NPMAXI (books)
om SPS PPB NPMAXI (about)
politik NCUSN@IS NPB PPI NPMAXI (politics)
. FE 0

The label for a word forms a hierarchical grouping of the parts of the sentence into
constituents where lower nodes are situated nearest the word and higher nodes are farthest
out. The advantage of the hierarchical annotation on the phrase level is that the user can
choose the level of analysis by skipping phrase categories on lower, or higher nodes. For
example, the user may only want to use noun phrase extraction without any information on
the constituents inside the noun phrase, or to get a full analysis of every large phrase in the
sentence. This type of annotation can be used in many different applications. The question
is how well the data-driven PoS taggers can learn the hierarchical phrasal structure.

The parsed text, annotated with the hierarchical constituent structure serves as training
data and benchmark corpus for the experiments. spark introduced some errors in both
the training and benchmark. The error rate is estimated between 6% and 11% with 98%
confidence, and was determined by calculating the errors on a sample of 2,450 tokens in the
training and test sets respectively. 60% of the errors are due to pp attachment problem in
maximal projections of nps, which is considered to be difficult even for human annotators.
About 25% of the noise is due to wrong position information of the np. The rest of the
errors can be found mainly in connection to adjective phrases. As manual post-processing
to eliminate the noise was found to be prohibitively time-consuming, these errors have not
been corrected.

After this description of the representation of the data, a brief overview of the algorithms,
each with implementations for the PoS tagging approach that the parsers are built on,
follows.

3.3 Algorithms and Implementations

The shallow parsers are based on three state-of-the-art data-driven algorithms that have
implementations for the PoS tagging approach. Common to these taggers are their language
and tag set independence, their free availability for research and their successful usage for

646

Shallow Parsing with PoS Taggers and Linguistic Features

several languages. The taggers that will be used to parse Swedish in this study are: fntbl
(Ngai and Florian, 2001) which is a fast version of Brill’s tagger based on transformation-
based learning (Brill, 1994), mxpost, based on the maximum entropy framework (Ratna-
parkhi, 1996), and lastly, Trigrams’n’Tags (tnt) based on a Hidden Markov Model (Brants,
2000).

fntbl, developed by Ngai and Florian (2001), is a fast version of Brill’s transformation-
based learning algorithm2. It is a rule-based approach that learns by detecting errors. It
begins with an unannotated text that is labeled by an initial-state annotator in a heuristic
fashion. Known words (according to some lexicon) are annotated with their most frequent
tag while unknown words receive an initial tag (for example the most frequently occurring
tag in the corpus). Then, an ordered list of rules learned during training is applied deter-
ministically to change the tags of the words according to their contexts. Unknown words
are first assumed to be nouns and handled by prefix and suffix analysis by looking at the
first/last one to four letters, capitalization feature and adjacent word co-occurrence. For
the disambiguation of known words, the system uses a context of up to three preceding and
following words and/or tags of the focus word as default.

mxpost, developed by Ratnaparkhi (1996), is a probabilistic classification-based ap-
proach based on a maximum entropy model where contextual information is represented as
binary features that are used simultaneously in order to predict the PoS tags. The binary
features used by mxpost as default include the current word, the following and preceding
two words and the preceding one or two tags. For rare and unknown words the first and
last four characters are included in the features, as well as information about whether the
word contains uppercase characters, hyphens or numbers. The tagger uses a beam search
in order to find the most probable sequence of tags. The tag sequence with the highest
probability is chosen.

Trigrams’n’Tags (tnt), developed by Brants (2000), is a statistical approach, based
on a hidden Markov model that uses the Viterbi algorithm with beam search for fast pro-
cessing. The states represent tags and the transition probabilities depend on pairs of tags.
The system uses maximum likelihood probabilities derived from the relative frequencies.
The main smoothing technique implemented as default is linear interpolation. The system
uses a context of three tags. Unknown words are handled by suffix analysis up to the last
ten characters of the word. Additionally, information about capitalization is included as
default.

For the experiments, all systems are used with the default settings according to their
documentation and were trained on the Swedish data described in Section 3.2.

4. Experiments on Various Linguistic Features in Learning

In previous studies on chunking, different types of linguistic information was used in training
in order to find the correct chunk structure of the sentence. Ramshaw and Marcus (1995)
used lexical and/or PoS information, Argamon et al. (1998) and Cardie and Pierce (1998)

2. The difference between Brill’s original and Ngai & Florian’s implementation (fntbl) is that the latter
stores the rules in memory instead of regenerating the rules at each step of the learning process, and the
rules are only generated for the examples that change. A detailed description can be found in Ngai and
Florian (2001).

647

Megyesi

induced learning on the basis of PoS sequences without including any lexical information,
while Brants (1999) entirely relied on words to be able to recognize both the PoS tags and
the chunks. Comparing the results of these studies, we can see that the average accuracy
is reported to be lowest when training is performed on PoS sequences only. However, it is
difficult to compare the results because either the learning algorithm, the data set or the
language vary across the studies. Therefore, it is of particular interest to train, test and
compare the taggers on different types of data sets containing various linguistic features,
using the same training and test set for reliable evaluation.

In order to ascertain how well different data-driven PoS taggers can learn the whole
hierarchical constituent structure of the word sequences, and to examine what effect differ-
ent kinds of linguistic information included in the training data have on the taggers, four
experiments are carried out. Each tagger is trained on four types of data set, each including
different types of linguistic information, as is shown in Table 1. First, the training is per-
formed on the basis of the word only—lexical information—to predict the PoS tag and the
phrase tags. Second, similarly to the first case, training is performed on the word sequences
to predict the phrase tags without PoS information. Third, the training is based on the
word together with its PoS to predict the phrase labels. Lastly, the words are removed from
the training data, and only the PoS tags of the words are trained with phrase labels. In
this way, all combinations of possible types (word and/or PoS) and possible target classes
(phrases with or without PoS) are examined.

types to learn from target classes

Words PoS + Phrases
Words Phrases
Words + PoS Phrases
PoS Phrases

Table 1: Combinations of the linguistic features in learning.

In order to examine how the size of the training set influences the performance of the
classifiers, each tagger is trained in each experiment nine times on the subsets of same data
set of various sizes from one thousand to five hundred thousand tokens: 1k, 2k, 5k, 10k,
20k, 50k, 100k, 200k, and 500k tokens respectively. Then, the same test set, consisting of
117,530 tokens, is annotated by each classifier. In each experiment, the training and test
sets are disjoint.

5. Results

In this section, the results from the four learning tasks as described in Section 4 are pre-
sented. In each experiment, the evaluation is based on the widely used measure accuracy,
which is obtained by dividing the number of correctly labeled tokens with the total number
of tokens, see Equation 1. A correct parse requires complete and correct phrase labels for
a token including the position information (bio tag). If the word would lack a label for a

648

Shallow Parsing with PoS Taggers and Linguistic Features

phrase that it is part of, or if a phrase label would have wrong position information then
the whole tag is considered to be incorrect.

Accuracy =
of correctly tagged tokens

of tokens
(1)

In some cases, the performance of the classifiers is also measured with precision, recall,
and Fβ=1 rates for each single phrase type given by the hierarchical annotation. Each phrase
type is extracted from the concatenated phrase label and counted as described below in
Equations 2, 3 and 4.

Precision =
of correctly tagged tokens as phrase type X

of detected tokens as phrase type X
(2)

Recall =
of correctly tagged tokens as phrase type X

of tokens as phrase type X
(3)

Fβ=1 =
(β2 + 1) ∗ Precision ∗ Recall

β2 ∗ Precision+Recall
(4)

Before we go into details about the results, several aspects that might influence the
performance of the classifiers have to be considered. One of these concerns the number
of target classes the learners learn to predict in the different experiments when training is
performed on various sizes of data sets with different linguistic features involved in learning.
Due to the the hierarchical annotation, the number of possible combinations of phrase types
lies between 260 and 3100 classes, depending on the size and the type of the training data.
The relationship between the size of the training set and the number of classes that the
learners search through to predict the phrase tags with and without PoS information is
shown in Figure 1. We can see that the number of target classes increases with the size of
the training set, as well as when the prediction of PoS tags together with phrase tags are
required by the learners.

Another aspect that might have an influence on the performance concerns the number of
token types appearing in the training data, i.e. the number of different lexical token types,
part-of-speech tags or a combination of these. Figure 2 shows, not surprisingly, that the
number of token types increases with the size of the training set. The increase is largest
when lexical information serves as a basis in the learning process, and lowest when training
is performed on PoS sequences only without the presence of the words due to the low number
of PoS tags; The total number of PoS tags lies between 82 and 143 depending on the size of
the training set. It is also worth noting that the number of types is somewhat higher when
both lexical and PoS information is included in the training to learn the phrase categories,
compared to when only the words are present. The reason is, naturally, that there are no
homonyms because of the presence of the PoS tags attached to each token.

The percentage of token types that can have more than one target class in the training
data is also of interest since the algorithms have to learn to choose the correct class among
the possible ones given a certain context. Figure 3 shows the percentage of ambiguous token
types in the training data of various size for the four types of learning experiments. Between

649

Megyesi

0

500

1000

1500

2000

2500

3000

3500

1k 2k 5k 10k 20k 50k 100k 200k 500k

N
um

be
r

of
 c

la
ss

es

Size of training data

PoS+Phrases Phrases

Figure 1: The number of target classes in training data of various size.

0

10000

20000

30000

40000

50000

60000

1k 2k 5k 10k 20k 50k 100k 200k 500k

N
um

be
r

of
 to

ke
n

ty
pe

s

Size of training data

PoS Word Word+PoS

Figure 2: The number of token types in training data of various size.

60% and 85% of the PoS types are ambiguous while for the lexical types including words
with or without PoS the percentage of ambiguous types is significantly lower. However,
when the target class constitutes PoS and phrase structure, the number of ambiguous token
types is higher than it is when the target class contains phrase labels alone.

The percentage of unknown tokens is also of interest since the classification task becomes
harder when the test set includes a large number of unknown tokens, tokens that are not
present in the training data. Figure 4 illustrates the percentage of unknown tokens in the
test set compared to the training sets of different sizes for the various learning tasks. Not
surprisingly, the number of unknown tokens is very small or zero when training is performed

650

Shallow Parsing with PoS Taggers and Linguistic Features

0

10

20

30

40

50

60

70

80

90

1k 2k 5k 10k 20k 50k 100k 200k 500k

P
er

ce
nt

ag
e

of
 a

m
bi

gu
ou

s
to

ke
n

ty
pe

s

Size of training data

Ambiguous token types

Word -> PoS+Phrases
Word -> Phrases

Word+PoS -> Phrases
PoS -> Phrases

Figure 3: The percentage of ambiguous token types in training data of various size.

on PoS sequences only since the majority of PoS tags appears in the training data. The
largest number of unknown tokens is found when learning is based on lexical and PoS
information on smaller training corpora containing up to 100k tokens. On the other hand,
if large training set is used, containing both lexical and PoS information, the number of
unknown words decreases compared to when training is performed on lexical information
only.

0

5

10

15

20

25

30

35

40

45

50

55

1k 2k 5k 10k 20k 50k 100k 200k 500k

P
er

ce
nt

ag
e

of
 u

nk
no

w
n

to
ke

ns

Size of training data

Unknown tokens

Word -> PoS+Phrases, Word -> Phrases
Word+PoS -> Phrases

PoS -> Phrases

Figure 4: The percentage of unknown tokens in the test data compared to the training data
of various size.

651

Megyesi

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

1k 2k 5k 10k 20k 50k 100k 200k 500k

A
cc

ur
ac

y
(%

)

Size of training data

Baseline

Word -> PoS+Phrases
Word -> Phrases

Word+PoS -> Phrases
PoS -> Phrases

Figure 5: Baseline performance for each experiment for training data of various sizes.

Lastly, in order to evaluate the effectiveness of the classifiers for the four learning tasks,
baseline performance is relevant since it describes a minimal performance rate that each
classifier should achieve. Baseline values have therefore been obtained for the test data of
the four types of learning tasks. The baseline is counted in different ways depending on the
input the learners get and the class they have to learn to predict. Each known token in the
test data receives a class label (i.e. either PoS + Phrases, or Phrases) that is most frequently
associated with that token type in the training data. Tokens not in the training data are
treated as wrongly annotated. In Figure 5, the results are shown for the training data
of various sizes within each experiment type. On average, baseline performance is lowest
when lexical information is involved in training. When PoS categories are also included in
the training set, baseline performance increases. We can also notice that the size of the
training set influences the accuracy; when training is performed on large training corpora,
the baseline accuracies for the four types of training sets become more even.

With these prerequisites in mind, the results given by the classifiers for each learning
task will be described.

5.1 Performance of the Classifiers

To present an overall picture of the parsers’ performance, the accuracy of each classifier,
when training is performed on 200k tokens, is listed in Table 2. Performance measures for
known and unknown tokens are also listed separately. The performance of the classifiers
varies depending on what type of information is included in the training data. The best
average performance of all three parsers is achieved when only PoS information constitutes
the input to the classifiers. When PoS information is not present in learning, the accuracy
of all algorithms drops markedly.

The transformation-based learner, fntbl, achieves best performance when only PoS
information is included in training, while in the other experiments, the maximum entropy

652

Shallow Parsing with PoS Taggers and Linguistic Features

types number classes number fntbl mxpost tnt

t k u t k u t k u

Words 35,611 PoS + Phrases 2,492 72.8 77.6 36.9 77.9 80.1 61.2 72.2 75.0 51.9
Words 35,611 Phrases 534 75.1 77.9 54.4 81.7 83.0 72.0 72.8 75.0 56.3
Words + PoS 37,870 Phrases 534 83.3 83.5 82.4 87.9 88.4 84.3 79.9 80.0 79.5
PoS 141 Phrases 534 94.8 94.8 70.4 90.0 90.0 20.0 92.0 92.1 40.0

Table 2: The results are given for each classifier when trained on 200k tokens on the four
types of input, and tested on 117,530 tokens. Accuracy (%) is calculated for the
total number of tokens (t), as well as for known (k) and unknown (u) tokens.

tagger, mxpost, obtains highest accuracy. However, when training is performed on lexical
sequences only, tnt obtains better results for the annotation of unknown tokens, than
fntbl does.

The nine phrase types are also evaluated separately by extracting each phrase type from
the concatenated tags, i.e. by not considering the correctness of the phrasal categories on
lower and/or higher nodes in the tree in the evaluation process. Precision, recall and Fβ=1

rates are measured for the phrase types given by the parsers trained on 200k tokens on
various types of input features, and tested on 117,530 tokens. The Fβ=1 scores are given
in Table 3, and the complete set of values are listed in the Appendix in Table 8. Highest
scores for a phrase type are printed in bold, while the highest values for the various learning
types are italicized.

Feature Class advp ap apmax infp np npmax nump pp vc

Total 5,970 10,477 1,433 2,541 53,810 24,350 1,951 29,419 16,282

fntbl 83.5 74.0 14.4 87.4 94.2 77.3 90.1 85.0 93.5
W → PoS + Ph mxpost 81.2 78.3 24.8 93.8 95.7 79.4 89.5 88.4 96.1

tnt 83.5 80.3 27.1 88.9 96.3 66.8 91.9 79.3 96.8
fntbl 83.0 74.3 22.5 86.4 94.2 74.4 91.0 83.0 93.5

W → Ph mxpost 80.9 79.1 28.8 89.9 95.5 80.0 89.7 88.7 95.7
tnt 81.6 79.2 27.9 87.3 95.5 66.3 91.5 78.3 96.0
fntbl 99.3 86.0 41.2 93.9 97.4 81.0 95.6 87.9 99.2

W+PoS → Ph mxpost 98.5 89.1 47.2 97.3 98.3 84.6 94.3 90.9 99.4
tnt 99.4 89.3 43.0 91.8 98.0 73.1 96.7 83.0 99.1
fntbl 80.5 95.3 86.6 100.0 99.3 97.6 98.0 98.1 100.0

PoS → Ph mxpost 77.7 91.9 75.1 99.0 98.7 87.2 96.9 93.3 99.9
tnt 76.8 93.9 78.0 98.3 98.9 95.7 98.4 96.7 99.8

Table 3: Fβ=1 rates for each classifier when trained on 200k tokens on the four types of
input features, and tested on 117,530 tokens. The total number of occurrences for
each phrase type in the benchmark is given in the second row.

653

Megyesi

On average, verb clusters (vc) and infinitive phrases (infp) are easiest to classify, fol-
lowed by noun phrases (np), prepositional phrases (pp), and numerical expressions (nump).
Adjective phrases, especially the maximal projections of aps (apmax), receive a surprisingly
low Fβ=1, when lexical information is involved in the learning task. Most of the conjoined
aps are not found by the classifiers at all—the recall values are exceptionally low—as shown
in Table 8. Maximal projections of noun phrases (npmax) are also difficult to detect com-
pared to other phrase types, even though the recall rates are considerably higher than for
apmax. The low recall values for the maximal projections in general could be the result of
the biased training data and benchmark caused by the rule-based context-free parser.

We can see that the best values for eight of the phrases are achieved when training is
performed on PoS sequences only. Adverb phrases (advp), on the other hand, are more
often correctly detected when lexical information is included in learning. An explanation for
this can be found in the annotation of adverbs in the SUC corpus where the discrimination of
the adverbs is made on the basis of their morphological structure, rather than their syntactic
characteristics. Thus, sentence adverbs do not belong to a distinct PoS category. For this
reason these adverbs had to be listed in the rule-based parser in order to correctly detect
the phrase structure. Therefore, the data-driven parsers, when trained on PoS sequences
only, wrongly analyze adverb phrases, shown by the comparatively low precision.

These results do not tell us about the algorithms’ sensitivity to the size of the training
set when different types of information are used in learning. One might surmise that the
larger amount of data we use, the better performance we get. However, the improvement
does not necessarily have to be the same for the algorithms when we train them on various
input features. Next, the effect of the different linguistic information used in learning will
be described.

5.2 The Effect of the Linguistic Features

The results for each experiment on the learners’ sensitivity to the input feature sets (word,
word and PoS, PoS only), and to the number of target classes (phrases with or without
PoS), are shown in Figures 6, 7, 8 and 9, respectively. All systems in all four experiments
outperform the baseline independently of the type of linguistic features involved in learning
or of the size of the training set.

The first learning task, where training is performed on the basis of lexical information
only, to predict the PoS together with the correct phrase labels (word → PoS + phrases),
is the most difficult classification task for every algorithm (see Figure 6). This is not
surprising since the systems have to learn a great number of classes, between 264 and 3099
tags, depending on the size of the training set. Thus, in this experiment, the hypothesis
space that the algorithms have to search through is large. The classifiers here are treated
as PoS taggers and parsers. tnt has the lowest error rate when training is performed on
small training sets consisting of up to 20k tokens while mxpost outperforms tnt when
using 50k or more tokens for training. It is also worth noticing that fntbl achieves higher
performance than mxpost when training is done on very small training sets because of
fntbl’s higher accuracy achieved for the annotation of known words.

In the second learning task, where PoS information is not present in the training data, i.e.
the training is performed entirely on lexical information (word → phrases), the hypothesis

654

Shallow Parsing with PoS Taggers and Linguistic Features

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

1k 2k 5k 10k 20k 50k 100k 200k 500k

E
rr

or
 r

at
e

(%
)

Size of training data

Word -> PoS+Phrases

Baseline FNTBL MXPOST TNT

Figure 6: The error rate for each classifier when training is performed on the basis of lexical
information to classify PoS and phrase structure information.

space becomes smaller than in the first experiment due to a decrease in the number of classes.
The smaller tag set makes the classification task easier and average system performance
increases (see Figure 7). Similarly to the first experiment, the maximum entropy approach,
mxpost, achieves the lowest error rate in cases in which the training corpus consists of
more than 5k tokens. tnt obtains the best result when the training set is small (up to 5k
tokens), while fntbl outperforms tnt on large training sets (200k tokens or more).

In the third learning task, where both lexical and PoS information is included as input
features for the recognition of the phrasal structures (word + PoS → phrases), the
average performance of the classifiers further increases (see Figure 8). A possible explanation
for the increase of the systems’ performance can be that although in this experiment we
find the largest number of token types, the problem of lexical homonymy is eliminated,
since every token type becomes unique by the PoS tag attached to it. We thereby reduce
the number of possible parse trees. Just as in the first two experiments, mxpost has the
lowest error rate when a large training set is used in learning (5k tokens or more), and
tnt succeeds well when learning is performed on small data sets (up to 5k tokens). fntbl
succeeds better than tnt when large training sets serve as input (200k tokens or more),
and has highest error rate when training is carried out on small corpora (up to 50k tokens).

Lastly, in the fourth learning task, where lexical information is not present in training
(PoS → phrases), the performance of the systems increases greatly compared to cases in
which lexical information is included in the training process. This can be explained by the
low percentage of unknown tokens (PoS tags) in small training sets, and the absence of
unknown tokens when a large training corpus is used (see Figure 4). The baseline perfor-
mance therefore increases and the learning curves of the classifiers converge (see Figure 9).
fntbl obtains the best accuracy on average compared to the statistical approaches tnt

and mxpost.

655

Megyesi

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

1k 2k 5k 10k 20k 50k 100k 200k 500k

E
rr

or
 r

at
e

(%
)

Size of training data

Word -> Phrases

Baseline FNTBL MXPOST TNT

Figure 7: The error rate for each classifier when training is performed on the basis of lexical
information to predict the phrase tags.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

1k 2k 5k 10k 20k 50k 100k 200k 500k

E
rr

or
 r

at
e

(%
)

Size of training data

Word+PoS -> Phrases

Baseline FNTBL MXPOST TNT

Figure 8: The error rate for each classifier when training is performed on the basis of lexical
information together with the correct PoS to predict the phrase labels.

To summarize the effect of the linguistic information included in training, the best results
is obtained by excluding all lexical information from the learning process. However, if the
user would like to use lexical information, each token should be annotated with its PoS tag
during learning, thereby eliminating homonyms, and achieving higher system performance.
It is worth noting though that when using words and PoS as input, the taggers used see the

656

Shallow Parsing with PoS Taggers and Linguistic Features

0

5

10

15

20

25

30

35

40

45

1k 2k 5k 10k 20k 50k 100k 200k 500k

E
rr

or
 r

at
e

(%
)

Size of training data

PoS -> Phrases

Baseline FNTBL MXPOST TNT

Figure 9: The error rate for each classifier when training is performed entirely on the basis
of the PoS to predict the phrase labels.

input as an atom and cannot ignore the word itself. If the input features were separated
from each other, the results would be different. Considering the results given when training
is performed on lexical information alone, all systems perform better when recognizing the
phrasal structure without the prediction of PoS tags. The statistical approaches can better
learn from many different token types, while the transformation-based learner achieves
highest accuracy in cases where a small number of token types is involved in learning.

Next, we will look at the effect that the size of the training set has on the three systems
given the four learning tasks.

5.3 The Effect of the Size of the Training Set

As we can see from Figures 6, 7, 8, and 9, accuracy is improved for all systems by increasing
the size of the training corpus. The fact that the learning task becomes easier with a larger
training corpus is not surprising, since as we increase the size of the training set, we increase
the number of different contextual environments in which the token types (i.e. the PoS tag,
the word, or both together) can appear, as well as decrease the percentage of unknown
tokens, as was shown in Figure 4. It has to be pointed out, that an additional large lexicon
listing all possible classes for a token type can be used in fntbl and tnt during learning
in order to decrease the total number of unknown tokens and thereby increase system
performance. However, such a lexicon was not used in this study.

The systems show different sensitivity to the size of the training corpus in the various
experiments. The maximum entropy approach, mxpost, achieves lowest error rate when
large training corpus containing lexical information is used. The hidden Markov model,
tnt, on the other hand, obtains fewest errors when trained on small data sets with lexical
information included in training, and shows the lowest sensitivity to the size of the training

657

Megyesi

set compared to the other approaches. The transformation-based approach, fntbl, succeeds
well in cases when large training sets are used, especially when PoS is included as a feature
type.

The reason for the different sensitivity the systems show can possibly be explained by
the type of background knowledge that is implemented in the systems. The success of tnt
when training is performed on small data sets might depend on the smoothing strategy in-
corporated for handling sparse data (in this study, linear interpolation is used when training
tnt), while the other systems do not use smoothing. The success of tnt might also depend
on the parameters implemented in the system for the annotation of unknown words (tnt
checks up to the last ten characters of a token while the other approaches use affix analysis
up to four characters only). Both the number of token types appearing only once and the
number of unknown tokens are high when using small training set. For example, 77% and
86% of token types appear only once when the training data consists of 20k and 1k tokens
respectively; 51% and 20% of the words are unknown in the test data given training sets
including 1k and 50k tokens each (as shown in Figure 4).

The success of the maximum entropy approach, mxpost, achieving lowest error rates
when the training corpus is large and includes lexical information, can be explained by the
window size the system uses for disambiguation. mxpost looks at a larger window size, a
context of two preceding tags, and two preceding and following tokens, while tnt uses a
context of three tags, only.

The transformation-based learner, fntbl, on the other hand, does not perform well on
small training sets and obtains the highest error rate in the annotation of unknown words.
When only PoS categories are used as the basis for learning, we eliminate the problem of the
analysis of unknown words, thereby making the classification easier for fntbl. However,
this might not be the only reason for fntbl’s success. The contextual environment that
fntbl uses for disambiguation to predict the phrasal structure of a particular PoS tag is
largest among the PoS taggers. fntbl uses a window size of up to seven tokens/tags, that
is a context of up to three preceding and following tokens and/or tags.

Thus, as we have seen, the type of linguistic information used in learning, and the size
of training set are both important facts that we have to consider when building data-driven
chunkers/parsers. However, the reader should keep in mind that the results presented above
do not show differences between the algorithms per se, since the algorithms are trained with
different parameters. Rather, the results only let us compare the implementations of the
algorithms, i.e. the PoS taggers, that are used—as they are—with their default settings for
the parsing task.

5.4 The Effect of Background Knowledge

In the previous sections, clear differences were found between the parsers’ performance for
the various learning tasks. We hypothesized that the background knowledge the parsers use
for the identification of unknown words and their disambiguation strategies may play an
important role in the systems’ performance. The question is whether the results obtained
can be related to the properties of the algorithms per se, or to the parameters (such as
suffix analysis or window size) used by the taggers.

658

Shallow Parsing with PoS Taggers and Linguistic Features

In this section, we present a pilot investigation on how the parameters used in the
implementation of algorithms might influence system performance. First, fntbl is trained
with the same parameter settings as mxpost and tnt use (see Section 3.3). Training is
carried out separately with regard to lexical parameters for the analysis of unknown tokens,
contextual parameters for the disambiguation of known tokens, and the combination of both
types, according to the taggers’ (mxpost and tnt) settings. Other types of features, for
example smoothing, was not implemented in fntbl in order to simulate tnt. Second, tnt
is trained with different smoothing methods and suffix analysis. For fntbl, the change of
parameters is straightforward and easily applicable while for mxpost and tnt, the source
code is not included in the releases. Therefore, re-implementations of these algorithms
would be necessary in order to be able to include the same parameters in each system.

In this experiment, training is performed on a small, medium, and large data set—the
same as was used in the previous experiments—consisting of 2k, 20k, and 200k tokens
respectively on the four types of training sets with different types of linguistic information
included in learning. The test set is the same as in the experiments described above.

The results for fntbl using the parameter settings of mxpost and tnt are shown in
Table 4 and Table 5 respectively when the four types of data sets of various sizes served
as training data. In the second and the last columns, the parsers’ original performance is
shown (reported in Section 5.3) while in columns three, four and five, the results given by
the simulation experiment are listed. Accuracy is also shown for known and unknown words
separately in the Appendix in Table 9.

Considering the results, the original implementations of the systems have highest overall
performance in all training experiments. When fntbl is trained with the same lexical
and contextual parameters as mxpost (see column 3 in Table 4) with words included in
learning, accuracy drops markedly compared to mxpost’s original performance. On the
other hand, when training is performed on PoS sequences only, fntbl’s accuracy somewhat
increases compared to mxpost’s original results. The results indicate differences between
the algorithm bias; fntbl has the advantage of learning on the basis of a few token types
while mxpost learns best when a large number of types is included in the training data.
However, fntbl’s original performance and the results when it is trained with mxpost’s
lexical and its own contextual parameters (see column 4) are directly comparable. This is
due to the fact that the same parameters are used by both fntbl and mxpost for affix
analysis. However, when only mxpost’s contextual parameters are used (see column 5),
thereby decreasing the window size of fntbl from seven to five, accuracy decreases for
large training sets because of the higher error rate of the annotation of known tokens (see
Table 9) while performance increases somewhat for small data sets.

The accuracy rates for fntbl trained by using tnt’s lexical and/or contextual param-
eters are shown in column 3, 4 and 5 in Table 5. Here, as was the case in the previous
example, the original implementation of tnt achieves higher performance than fntbl us-
ing tnt’s lexical and contextual parameter settings (see column 2 and 3). The deviance is
largest for small training sets, and the error rate on average is highest for the annotation
of unknown words (see Table 9) indicating that tnt has a better method for analyzing
unknown tokens. By extending fntbl’s lexical templates from four to up to ten characters
while keeping the same window size (see column 4), performance of fntbl is directly com-
parable to fntbl’s original results. However, when we decrease the window size instead

659

Megyesi

Accuracy (%) mxpost mxpost-lex mxpost-lex fntbl-lex fntbl

original mxpost-con fntbl-con mxpost-con original

Information 2k 20k 200k 2k 20k 200k 2k 20k 200k 2k 20k 200k 2k 20k 200k

Word → PoS + Ph 40.7 62.9 77.9 43.2 58.1 70.9 43.0 59.0 72.7 42.5 58.6 70.7 44.3 58.5 72.8
Word → Ph 50.6 72.5 81.7 47.8 64.0 73.1 47.9 64.5 72.2 48.9 63.4 73.7 48.5 64.4 75.1
Word+PoS → Ph 71.3 84.6 87.9 60.0 74.7 80.9 60.5 75.5 83.2 63.4 74.5 81.8 60.8 76.2 83.3
PoS → Ph 75.5 88.4 90.0 76.6 87.4 91.7 78.3 89.4 94.8 76.6 87.4 91.7 78.6 89.4 94.8

Table 4: Accuracy (%) is shown for fntbl when trained with the same parameters—either
lexical (column 4), contextual (column 5), or both (column 3)—as mxpost.

from seven to three tags (see column 5), performance decreases as the size of the training
set increases due to the high error rate for the annotation of known tokens, as is shown in
Table 9.

Accuracy (%) tnt tnt-lex tnt-lex fntbl-lex fntbl

original tnt-con fntbl-con tnt-con original

Information 2k 20k 200k 2k 20k 200k 2k 20k 200k 2k 20k 200k 2k 20k 200k

Word → PoS + Ph 49.5 63.2 72.2 43.5 56.1 64.7 44.5 58.9 72.4 43.1 56.4 64.5 44.3 58.5 72.8
Word → Ph 57.9 66.9 72.8 48.5 61.8 71.4 48.1 63.9 75.1 48.3 60.9 71.4 48.5 64.4 75.1
Word+PoS → Ph 73.1 78.5 79.9 62.5 73.0 77.0 60.8 76.2 81.3 61.9 72.8 78.1 60.8 76.2 83.3
PoS → Ph 76.6 88.1 92.0 73.5 81.1 83.4 78.2 89.4 94.8 73.6 81.1 83.4 78.6 89.4 94.8

Table 5: Accuracy (%) is shown for fntbl when trained with the same parameters—either
lexical (column 4), contextual (column 5), or both (column 3)—as tnt.

Lastly, previously we hypothesized that the reason for tnt’s success on small corpora
might be the smoothing strategy for sparse data and/or the suffix analysis of up to ten
characters for unknown words. In this experiment, tnt is trained without any smoothing
used in learning, as well as a lexical parameter setting using four character analysis only.
The results are summarized in Table 6. It is obvious that when training is performed
without any smoothing, accuracy decreases to a great extent. Without smoothing involved
in learning, the other approaches would outperform tnt in the experiments described in
previous sections. We can also notice that, in contrast to what was expected, a suffix
analysis of up to four characters gives higher performance on average than that of ten
letters.

The results indicate that both the algorithm bias and the parameter settings used in
learning play an important role in system performance. However, further investigation
is necessary to find out the relationship between algorithm and information bias, as was
pointed out by De Pauw and Daelemans (2000). Next, we will describe how to use the
results, reported in this paper, in real-world applications in an efficient way.

660

Shallow Parsing with PoS Taggers and Linguistic Features

Accuracy (%) tnt no smoothing no smoothing smoothing

original 10 letters 4 letters 4 letters

Information 2k 20k 200k 2k 20k 200k 2k 20k 200k 2k 20k 200k

Word → PoS + Ph 49.5 63.2 72.2 30.1 43.3 52.1 35.1 43.2 52.4 49.9 65.0 73.7
Word → Ph 57.9 66.9 72.8 49.6 58.4 64.6 50.0 59.5 65.5 58.7 68.9 74.3
Word+PoS → Ph 73.1 78.5 79.9 60.5 68.3 71.5 61.9 70.0 70.6 76.7 78.9 79.8
PoS → Ph 76.6 88.1 92.0 64.1 83.9 91.6 64.1 83.9 91.6 76.6 88.2 92.1

Table 6: Accuracy (%) is shown for tnt when trained on 2k, 20k, and 200k tokens using
suffix analysis of 4 and 10 characters with and without linear interpolation as
smoothing strategy.

5.5 Evaluation for Real-World Applications

The reader might ask how we can apply the results described in this paper in real-world
applications in which the system needs both PoS tagged and parsed text. An obvious
solution is to let the best PoS tagger available for the particular language or domain annotate
the text to be analyzed. The next step would be to extract the PoS labels from the text
but keep the sentence division, and let the parser annotate the PoS sequences. The only
thing then remaining to do would be to put the words back into the parsed PoS sequences.

Obviously, if the user does not have the text annotated with correct PoS tags but has to
use a tagger for that purpose, the performance of the parser can be expected to decrease.
Therefore, an evaluation for real-world applications appears to be necessary.

Since the results described above show that the most successful parsing classification
is achieved by training on PoS categories only to predict the constituent structure of a
token, the parsers which were trained entirely on PoS information were used for the chosen
real-world evaluation task. First, the unannotated test data was tagged by a PoS tagger.
For that purpose, tnt is used since this tagger has been proved to achieve highest accuracy
on larger training sets for Swedish (Megyesi, 2001). Second, the words were removed from
the PoS tagged text, and the PoS sequences were labeled with phrase categories by each
parser. The PoS tagger tnt, as well as the three parsers (given when only PoS sequences
were included in training) were trained on 500k tokens. The reason for training the PoS
tagger, tnt, on 500k correctly annotated tokens only (and not on the whole SUC corpus)
was to assure not to include any of the test sentences into the training data.

The results are shown in Table 7. The performance of the PoS tagger is 94.98%. As was
expected, the performance of the parsers is considerably lower than was reported for correct
PoS sequences in Section 5.3. fntbl achieves the highest accuracy, followed by mxpost

and tnt, just as in the fourth experiment, described in Sections 5.1 and 5.2.

Thus, we have seen that the morphological and shallow syntactic annotation of words in
texts, including PoS with morphological features and the whole hierarchical phrase structure
that the word belongs to, is possible with approximately 90% correct result.

661

Megyesi

tagger parser result

fntbl 90.83%
94.98% mxpost 88.87%

tnt 88.19%

Table 7: Accuracy (%) is given for each classifier when the test set was first tagged by the
PoS tagger tnt, then parsed with the three classifiers based on PoS sequences.

6. Conclusion and Future Work

This paper has presented empirical results on the application of publicly available PoS
taggers to shallow parsing of Swedish texts. The PoS taggers included in the study are
the transformation-based learner fntbl, the maximum entropy approach mxpost, and the
hidden Markov model Trigrams’n’Tags (tnt). The goal of the shallow parsers is to recognize
the constituent structure of the sentence, representing the whole hierarchical structure the
token belongs to in the parse tree. The encoding is based on the concatenation of the
phrase tags on the path from lowest to higher nodes. The results show that the data-
driven, language and tag set independent PoS taggers can be efficiently used for shallow
parsing of texts, given that PoS information only, i.e. without the presence of words, is
included in the training data.

Several aspects of the classifiers were evaluated, such as the taggers’ sensitivity to cer-
tain kinds of linguistic information included in the training data. Particular attention has
been directed to the various types of input features that the taggers learn from, such as
words, PoS tags, and a combination of both. Also, experiments have been carried out on
various numbers of target classes that the taggers have to search through in order to predict
phrasal categories only, or to recognize both PoS and the phrasal structure of the tokens.
Furthermore, the taggers’ sensitivity to the size of the training set including different lin-
guistic information was investigated. Additionally, some of the effects of the parameter
settings used by PoS taggers have been examined.

The results show that for all three systems, best performance is obtained if the number of
token types the taggers learn from is reduced by only considering the PoS tags. By excluding
the lexical information during learning and testing, all classifiers obtain an accuracy above
92% when the training set contains at least 50k tokens.

However, the type of linguistic information, the size of the training set, the algorithms,
as well as the parameters used by the algorithms are all factors that influence system
performance. This study shows clear differences between the taggers’ sensitivity to the type
of information used in learning, and the number of target classes to be learned.

The transformation-based learner, fntbl, obtains best results when training is per-
formed on PoS categories alone. However, fntbl does not succeed as well as the statistical
approaches in the analysis of the unknown tokens.

The maximum entropy learner, mxpost, is most successful on average when training
is performed on large data sets containing lexical information with or without PoS tags.

662

Shallow Parsing with PoS Taggers and Linguistic Features

mxpost succeeds best among the three systems when the training data includes many
different token types.

The hidden Markov model based tnt outperforms all systems when the size of the
training set is small and includes lexical information with or without PoS information
included in training. When small training set is used, the percentage of unknown tokens is
considerably large, making classification more difficult.

The taggers described in this study were used with their default settings, including
different types of background knowledge for the analysis of unknown words and the dis-
ambiguation of known words. Also, a pilot study was carried out training fntbl with the
same lexical and/or contextual parameters as mxpost and tnt use. Furthermore, tnt

was trained with the same lexical parameters as fntbl and mxpost use with and without
smoothing. The preliminary results show that both the parameters implemented in the
systems, the algorithm bias and the smoothing involved in learning play an important role
in the systems’ performance.

Future work includes a careful investigation of the algorithms applied to parsing when
using the same parameter settings (context window size and number of characters) for each
algorithm trained on various linguistic information. Additionally, since the algorithms were
not optimized for Swedish, it would be necessary to investigate the best combination of
features in the parameter settings of the systems.

Future work also includes the improvement of the detection of maximal projections,
and the provision of automatic data-driven detection of clause boundaries, such as relative
clauses and other subordinate clauses for Swedish. In order to further improve parsing
accuracy, the best combinations of the approaches could be determined by constructing
ensembles of classifiers.

Lastly, since the method described in this paper can be assumed to be directly applicable
to other languages as well, it would be very interesting to find out how well it would perform
on various language types including languages with complex morphology and free word
order.

Acknowledgments
I am very grateful to my supervisor Rolf Carlson, the three anonymous reviewers for

their valuable and helpful comments on the draft manuscript, and all the researchers who
created the PoS taggers used in this study including Thorsten Brants, Radu Florian, Grace
Ngai, and Adwait Ratnaparkhi. Also, I would like to thank Anette Hulth, Sara Rydin,
Mattias Heldner, and Fredrik Olsson for discussions and comments, and Sheri Hunnicutt
for proof-reading. Whatever errors remain are, of course, all mine. This research was
supported by vinnova, ctt’s industrial partners, kth, and hp voice webb initiative.

663

Megyesi

Appendix

Feature Class Rate advp ap apmax infp np npmax nump pp vc

Total 5,970 10,477 1,433 2,541 53,810 24,350 1,951 29,419 16,282

p 84.16 77.01 18.74 86.24 95.20 78.29 95.84 86.00 93.31
fntbl r 82.91 71.14 11.65 88.55 93.12 76.39 85.08 84.03 93.59

f-b1 83.53 73.96 14.37 87.38 94.15 77.33 90.14 85.00 93.45
p 81.26 84.97 50.21 94.34 96.83 87.90 92.22 92.87 94.36

W → PoS + Ph mxpost r 81.16 72.55 16.47 93.23 94.49 72.34 86.93 84.36 97.90
f-b1 81.21 78.27 24.80 93.78 95.65 79.36 89.50 88.41 96.10
p 83.41 82.98 41.72 88.09 97.04 73.64 93.95 82.95 95.97

tnt r 83.52 77.78 20.03 89.65 95.61 61.18 89.90 75.91 97.68
f-b1 83.46 80.29 27.07 88.86 96.32 66.83 91.88 79.27 96.82
p 82.95 74.43 34.34 87.32 95.09 79.55 95.97 87.53 92.04

fntbl r 82.95 74.26 16.68 85.40 93.32 69.89 86.57 78.95 95.04
f-b1 82.95 74.34 22.45 86.35 94.20 74.41 91.03 83.02 93.52
p 84.41 86.17 61.22 96.61 95.88 88.78 94.44 93.88 94.16

W → Ph mxpost r 77.74 73.17 18.84 84.14 95.19 72.84 85.39 84.10 97.27
f-b1 80.93 79.14 28.81 89.94 95.53 80.02 89.69 88.72 95.69
p 82.02 80.78 36.53 87.82 95.98 73.88 93.53 83.15 95.01

tnt r 81.12 77.75 22.61 86.86 95.04 60.15 89.60 73.96 96.90
f-b1 81.57 79.24 27.93 87.34 95.51 66.32 91.52 78.29 95.95
p 99.70 85.15 48.45 94.82 97.77 84.98 96.84 90.79 99.12

fntbl r 98.84 86.93 35.80 92.99 96.99 77.40 94.31 85.19 99.31
f-b1 99.27 86.03 41.18 93.90 97.38 81.01 95.56 87.90 99.21
p 98.79 93.08 79.02 98.78 98.95 93.45 96.56 95.93 99.15

W+PoS → Ph mxpost r 98.14 85.45 33.64 95.79 97.57 77.25 92.11 86.43 99.74
f-b1 98.46 89.10 47.19 97.26 98.26 84.58 94.28 90.93 99.44
p 99.23 90.59 56.62 91.61 98.45 79.44 98.25 87.14 99.30

tnt r 99.65 88.01 34.61 91.97 97.45 67.67 95.23 79.24 98.99
f-b1 99.44 89.28 42.96 91.79 97.95 73.08 96.72 83.00 99.14
p 78.75 95.18 96.09 100.00 99.39 97.84 98.65 98.59 100.00

fntbl r 82.36 95.49 78.86 99.96 99.12 97.34 97.44 97.62 99.99
f-b1 80.51 95.33 86.63 99.98 99.25 97.59 98.04 98.10 99.99
p 78.13 95.44 85.28 99.84 99.34 96.70 97.41 96.90 99.89

PoS → Ph mxpost r 77.19 88.57 67.13 98.07 98.12 79.47 96.41 89.89 99.99
f-b1 77.66 91.88 75.12 98.95 98.73 87.24 96.91 93.26 99.94
p 67.75 94.06 79.49 96.87 99.12 95.55 98.71 96.78 100.00

tnt r 88.58 93.79 76.55 99.76 98.63 95.89 98.05 96.55 99.68
f-b1 76.78 93.92 77.99 98.29 98.87 95.72 98.38 96.66 99.84

Table 8: Precision (p), recall (r) and Fβ=1 (f-b1) rates for each classifier when trained on
200k tokens on the four types of input features, and tested on 117,530 tokens.

664

Shallow Parsing with PoS Taggers and Linguistic Features

feature parameter 2k 20k 200k

Lexical Context t k u t k u t k u

fntbl original 44.3 67.3 15.6 58.5 70.8 25.8 72.8 77.6 36.9
mxpost original 40.7 56.2 21.3 62.9 70.5 42.5 77.9 80.1 61.2
tnt original 49.5 68.9 25.2 63.2 71.1 42.1 72.2 75.0 51.9
fntbl mxpost 42.5 66.8 12.1 58.6 69.9 28.4 70.7 75.1 38.3

W → PoS + Ph mxpost fntbl 43.0 67.1 12.9 59.0 71.0 27.0 72.7 77.6 36.2
mxpost mxpost 43.2 66.6 14.0 58.1 70.0 26.1 70.9 75.3 38.1
fntbl tnt 43.1 65.8 14.8 56.4 67.4 27.1 64.5 71.2 14.6
tnt fntbl 44.5 67.8 15.4 58.9 71.1 26.1 72.4 77.5 34.4
tnt tnt 43.5 65.7 15.7 56.1 67.3 26.2 64.7 71.6 12.9
fntbl original 48.5 70.4 21.0 64.4 79.6 45.5 75.1 77.9 54.4
mxpost original 50.6 63.9 33.9 72.5 77.2 59.8 81.7 83.0 72.0
tnt original 57.9 72.8 39.4 66.9 72.7 51.4 72.8 75.0 56.3
fntbl mxpost 48.9 70.6 24.0 63.4 73.3 36.9 73.7 78.1 41.3

W → Ph mxpost fntbl 47.9 70.6 19.7 64.5 73.4 40.7 72.2 77.5 33.0
mxpost mxpost 47.8 57.8 20.8 64.0 73.4 38.9 73.1 77.9 37.3
fntbl tnt 48.3 70.2 21.0 60.9 71.2 33.4 71.4 74.7 47.0
tnt fntbl 48.1 70.8 19.8 63.9 73.3 38.8 75.1 77.9 54.4
tnt tnt 48.5 70.4 21.2 61.8 71.9 34.8 71.4 74.7 47.1
fntbl original 60.8 74.8 44.8 76.2 79.3 68.5 83.3 83.5 82.4
mxpost original 71.3 79.0 62.6 84.6 86.7 79.3 87.9 88.4 84.3
tnt original 73.1 79.7 65.5 78.5 78.9 77.5 79.9 80.0 79.5
fntbl mxpost 63.4 77.5 47.3 74.5 79.1 63.1 81.8 82.6 76.7

W+PoS → Ph mxpost fntbl 60.5 74.8 44.2 75.5 79.1 66.3 83.2 83.6 80.0
mxpost mxpost 60.0 77.6 39.8 74.7 79.1 63.8 80.9 82.6 69.8
fntbl tnt 61.9 76.9 44.7 72.8 76.7 63.1 78.1 79.7 67.1
tnt fntbl 60.8 74.8 44.5 76.2 79.4 68.1 81.3 83.4 66.8
tnt tnt 62.5 77.3 45.7 73.0 76.8 63.4 77.0 79.6 59.0
fntbl original 78.6 78.9 49.7 89.4 89.5 15.5 94.8 94.8 70.4
mxpost original 75.5 75.8 47.1 88.4 88.5 38.0 90.0 90.0 20.0
tnt original 76.6 76.8 50.2 88.1 88.2 33.8 92.0 92.1 40.0
fntbl mxpost 76.6 76.9 47.3 87.4 87.5 22.5 91.7 91.7 00.0

PoS → Ph mxpost fntbl 78.3 79.0 8.6 89.4 89.5 19.7 94.8 94.8 00.0
mxpost mxpost 76.6 76.9 47.3 87.4 87.5 0.0 91.7 91.7 00.0
fntbl tnt 73.6 73.9 44.1 81.1 81.1 18.3 83.4 83.4 00.0
tnt fntbl 78.2 79.0 0.0 89.4 89.5 19.7 94.8 94.8 00.0
tnt tnt 73.5 73.8 37.4 81.1 81.1 0.0 83.4 83.4 00.0

Table 9: The results are given for fntbl using different lexical and contextual parameters
of mxpost and tnt, trained on 2k, 20k and 200k tokens on the four types of input
features, and tested on 117,530 tokens. Accuracy (%) is calculated for the total
number of tokens (t), as well as for known (k) and unknown (u) tokens.

665

Megyesi

References

Steven Abney. Parsing by Chunks. In Principle-Based Parsing. Kluwer Academic Publish-
ers, 1991.

Shlomo Argamon, Ido Dagan and Yuval Krymolowsky. A Memory-Based Approach to
Learning Shallow Natural Language Patterns. In Proceedings of 36th Annual Meeting
of the Association for Computational Linguistics (ACL), pp. 67-73, Montreal, Canada,
1998.

John Aycock. Compiling Little Languages in Python. In Proceedings of the 7th International
Python Conference, 1998.

Thorsten Brants. Cascaded Markov Models. In Proceedings of the 9th Conference of the
European Chapter of the Association for Computational Linguistics (EACL-99), Bergen,
Norway, 1999.

Thorsten Brants. TnT - A Statistical Part-of-Speech Tagger. In Proceedings of the 6th
Applied Natural Language Processing Conference, Seattle, Washington, USA, 2000.

Eric Brill. Automatic Grammar Induction and Parsing Free Text: a Transformation-Based
Approach. In Meeting of the Association for Computational Linguistics (ACL), pp. 259-
265, 1993.

Eric Brill. Some Advances in Rule-Based Part of Speech Tagging. In Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI-94), Seattle, Washington, 1994.

Sabine Buchholz, Jorn Veenstra and Walter Daelemans. Cascaded Grammatical Relation
Assignment. In Proceedings of the 1999 Joint SIGDAT Conference on Empirical Methods
in Natural Language Processing and Very Large Corpora, 1999.

Claire Cardie and David Pierce. Error-Driven Pruning of Treebank Grammars for Base Noun
Phrase Identification. In Proceedings of COLING/ACL, pp 218-224, Montreal, Canada,
1998.

Kenneth Church. A Stochastic Parts Program and Noun Phrase Parser for Unrestricted
Texts. In Proceedings of the Second Conference on Applied Natural Language Processing,
pp. 136-143. Association for Computational Linguistics, 1988.

James Cussens. Notes on Inductive Logic Programming Methods in Natural Language Pro-
cessing (European Work). Manuscript (http://www.cs.york.ac.uk/mlg/), 1998.

Walter Daelemans, Jakub Zavrel, Peter Berck and Steven E. Gillis. MBT: a Memory-Based
Part of Speech Tagger-Generator. In Proceedings of Fourth Workshop on Very Large
Corpora (VLC-96), pp. 14-27, Copenhagen, Denmark, 1996.

Walter Daelemans, Antal van den Bosch and Jakub Zavrel. Forgetting exceptions is harmful
in language learning. In Machine Learning, 34, 1999.

666

Shallow Parsing with PoS Taggers and Linguistic Features

Guy De Pauw and Walter Daelemans. The Role of Algorithm Bias vs Information Source
in Learning Algorithms for Morphosyntactic Disambiguation. In Proceedings of Compu-
tational Natural Language Learning (CoNLL-00), pp. 19-24, Lisbon, Portugal, 2000.

Martin Eineborg and Nikolaj Lindberg. ILP in part-of-speech tagging - An overview. In
Cussens, J and Dzeroski, S (editors), Learning Language in Logic Workshop (LLL99),
Bled, Slovenia. 2000.

Eva Ejerhed, Gunnel Källgren, Ola Wennstedt and Magnus Åström. The Linguistic Anno-
tation System of the Stockholm-Ume̊a Project. Dept. of General Linguistics, University of
Ume̊a, 1992.

James Paul Gee and François Grosjean. Performance Structures: A psycholinguistic and
linguistic appraisal. In Cognitive Psychology, 15, pp. 411-458, 1983.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz and Britta Schasberger. The Penn Treebank: A Revised
Corpus Design for Extracting Predicate Argument Structure. In Human Language Tech-
nology, ARPA March 1994 Workshop, Morgan Kaufmann, 1994.

Beáta Megyesi. Comparing Data-Driven Learning Algorithms for PoS Tagging of Swedish.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP 2001). pp. 151-158, Carnegie Mellon University, Pittsburgh, PA, USA, June,
2001.

Beáta Megyesi. Phrasal Parsing by Using Data-Driven PoS Taggers. In Proceedings of Recent
Advances in Natural Language Processing (EuroConference RANLP-2001), Tzigov Chark,
Bulgaria, September, 2001.

Grace Ngai and Radu Florian. Transformation-Based Learning in the Fast Lane. In Pro-
ceedings of North American Chapter of the Association for Computational Linguistics
(NAACL-2001), pp. 40–47, June, 2001.

Miles Osborne. Shallow Parsing as Part-of-Speech Tagging. In Proceedings of CoNLL-2000
and LLL-2000, pp. 145-147, Lisbon, Portugal, 2000.

Lance A. Ramshaw and Mitchell P. Marcus. Text Chunking Using Transformation-Based
Learning. In Proceedings of the Third ACL Workshop on Very Large Corpora, Association
for Computational Linguistics, 1995.

Adwait Ratnaparkhi. A Maximum Entropy Model for Part-of-Speech Tagging. In Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing (EMNLP-
96), Philadelphia, PA, USA, 1996.

Wojciech Skut and Thorsten Brants. Chunk Tagger Statistical Recognition of Noun Phrases.
In ESSLLI-98 Workshop on Automated Acquisition of Syntax and Parsing (ESSLLI-98),
Saarbrücken, Germany, 1998.

Erik Tjong Kim Sang and Sabine Buchholz. Introduction to the CoNLL-2000 Shared Task:
Chunking. In Proceedings of CoNLL and LLL-2000, pp. 127-132, Lisbon, Portugal, 2000.

667

Megyesi

Hans van Halteren (editor). Syntactic Wordclass Tagging. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1999.

Jorn Veenstra. Memory-Based Text Chunking. InWorkshop on Machine Learning in Human
Language Technology, ACAI-99, Crete, Greece, 1999.

Jakub Zavrel and Walter Daelemans. Recent Advances in Memory-Based Part-of-Speech
Tagging. In Proceedings of the VI Simposio Internacional de Comunicacion Social, pp.
590-597, Santiago de Cuba, 1999.

668

