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Abstract

Shallow parsers are usually assumed to be trained on noise-free material, drawn from the
same distribution as the testing material. However, when either the training set is noisy or
else drawn from a different distributions, performance may be degraded. Using the parsed
Wall Street Journal, we investigate the performance of four shallow parsers (maximum
entropy, memory-based learning, N-grams and ensemble learning) trained using various
types of artificially noisy material. Our first set of results show that shallow parsers are
surprisingly robust to synthetic noise, with performance gradually decreasing as the rate
of noise increases. Further results show that no single shallow parser performs best in all
noise situations. Final results show that simple, parser-specific extensions can improve
noise-tolerance. Our second set of results addresses the question of whether naturally
occurring disfluencies undermines performance more than does a change in distribution.
Results using the parsed Switchboard corpus suggest that, although naturally occurring
disfluencies might harm performance, differences in distribution between the training set
and the testing set are more significant.

1. Introduction

Shallow parsers are usually automatically constructed using a training set of annotated
examples (Ramshaw and Marcus, 1995, Skut and Brants, 1998, Daelemans et al., 1999a).
Without loss of generality, let X be a set of word sequences and Y be a set of syntactic
labels. The training set will then be a sequence of pairs of the form 〈x1, y1〉, . . . , 〈xn, yn〉,
where xi ∈ X, yi ∈ Y . Such a sequence would be generated by some process Q. On the
basis of such a training set, a shallow parser would make predictions about future, unlabelled
examples.

Arguably, significant progress in shallow parsing performance will only come from hav-
ing access to massive quantities of annotated training material (Banko and Brill, 2001).
Unsupervised approaches (which do not require annotated material, and so can make use
of unlimited quantities of raw text), by contrast, are unlikely to yield comparable levels of
performance. Now, producing annotated material on an industrial scale is highly likely to
result in the introduction of significant noise levels and/or distributional differences into the
training set. Therefore, successfully dealing with lower-quality (but voluminous) annotated
training material will hinge upon the ability of shallow parsers to tolerate high noise levels.
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Until now, the need to deal with noise has not been identified as a potential problem within
the shallow parsing literature. Furthermore, issues involved with distributional differences
in the training set have not been dealt with either. In this paper, we consider both of
these issues -noise in the training set and distribution differences- when training a variety
of shallow parsers.

Our first set of results shows that a variety of shallow parsers are surprisingly robust to
synthetic noise, and only show a marked decrease in performance when the noise rates are
high. Further results show that no single shallow parser performs best in all noise situations.
Final results show that simple, parser-specific extensions can improve noise-tolerance.

Our second set of results addresses the question of whether naturally occurring disfluen-
cies undermines performance more than does a change in distribution. Our results suggest
that, although naturally occurring disfluencies might harm performance, differences in dis-
tribution between the training set and the testing set are more significant. Note that this
conclusion is only true for noise levels that are natural, and not, for example when noise
levels are higher (as might be produced when quickly trying to create large volumes of
annotated material).

The rest of this paper is as follows. Section 2 briefly surveys shallow parsers from
the perspective of noise-tolerance. Afterwards (Section 3) we introduce the shallow parsers
used in our experiments. Next (Section 4) we present a set of simple, artificial noise models.
This then leads onto a set of experiments (Section 5) where we show what happens when
various parsers are trained upon noisy material, and how our various parsers can be made
more noise tolerant. Section 6 deals with naturally occurring disfluencies and distributional
differences. Finally, Section 7 summarises the paper.

We now look more closely at noise tolerance in a variety of shallow parsers.

2. Noise and shallow parsing

Shallow parsers (as reported in the literature) usually do not have explicit mechanisms for
dealing with noise. This is probably because they are assumed to be trained upon relatively
noise-free material. However, this does not mean to say that shallow parsers cannot deal
with noise. For example, we see that shallow parsing systems can be made more noise
tolerant either by smoothing, selection of a model which is ‘simple’, with post-processing
of parsed output, or else with some combination of all three methods. Such approaches
potentially might also tackle the problem of non-stationary training material.

Smoothing refers to a general set of techniques whereby a model estimated from a
training set is modified in some way, such that performance upon material unlike the training
material improves. Such modification is motivated on a priori grounds (meaning information
outside of the training set is brought to bear). Since noise typically manifests as a model
having a complex surface, making it smoother may remove some of the effects of noise.
Note that because smoothing is motivated on an a priori basis, smoothing may in some
circumstances actually reduce performance. We shall see two different examples of dealing
with noise through smoothing in Sections 3.2 and 3.3.

Selecting a model which is ‘simple’ can also be seen as a technique for dealing with
noise. For example, maximum entropy will select a model (from the set of possible maximum
likelihood models) that has parameters which are maximally compressible. This is therefore
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a preference for simplicity, which in turn is similar to explicit smoothing. However, unlike
smoothed maximum likelihood models (which are really maximum a posteriori models),
maximum entropy is still maximum likelihood estimation, and so (in principle) nothing
need be lost about the training material. Note that a preference for simplicity is nothing
more than a noise-avoidance strategy, which may or may not work, depending upon the
nature of the sample (Schaffer, 1993). Section 3.1 describes a shallow parser based upon
maximum entropy.

Post-processing the test material, in the context of shallow parsing, was advocated by
Cardie and Pierce (1998). They manually created a set of rules to correct the output of their
parser. Whilst they were able to show an improvement in performance, in general, such a
technique is arguably ad-hoc and cannot guarantee that all error patterns are treated. In
subsequent work, Cardie et al. (1999) automated the construction of these postprocessing
rules.

Given the (open) question of whether some single noise-tolerance strategy works in all
domains, short of finding such an approach, an alternative method is to ‘average’ over
whatever noise-avoidance methods one has available. The general idea is that no single
approach will always work, but that when taken together, an ensemble of approaches can
work better than any single method within that ensemble (Dietterich, 1999).

Ensemble approaches have been shown to be successful in a number of domains. For ex-
ample, the current best parse selection results using the Wall Street Journal were obtained
using ensemble techniques (Henderson and Brill, 2000); POS tagging is improved by ensem-
ble methods (Brill and Wu, 1998), and for the shallow parsing domain that we consider,
ensemble methods enjoy a clear advantage over single learners (Kudoh and Matsumoto,
2000).

The two key ideas behind ensemble approaches is that the individual models should
be better than chance (they are ‘weak’ learners) and that errors made by the learners are
uncorrelated. Under such circumstances, the ensemble will provably be better than any of
the component models. Aslam and Decatur (1993) have proved that when the appropriate
assumptions are met, ensemble learning can reduce errors, even when the training material
is noisy. Ensemble learning does not always guarantee a performance improvement. Should
errors be correlated (or the component learners be worse than chance) then the performance
of the ensemble can be worse than the performance of the components. An example of an
ensemble shallow parser is given in Section 3.4.

We now describe what we mean by shallow parsing, and introduce the shallow parsers
used in our experiments.

3. Four shallow parsers

In this paper, we deal with the recovery of base phrases from the (parsed) Wall Street
Journal (henceforth called WSJ). Base phrasal recovery is a well-known task, and various
results exist for it. See Tjong Kim Sang and Buchholz (2000) for an overview.

In brief, the task is to annotate part-of-speech (POS) tagged sentences with non-
overlapping phrases. Words in sentences are marked with a ‘chunk’ label, which can be
either an O label (meaning the word is not in a phrase), a B label (meaning the associated
word is the first word of a given phrase) or an I label (meaning the word is within some
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given phrase). Both B and I labels are further divided into Verbal, Nominal, Adjectival,
Adverbial, Prepositional and a small variety of other minor phrasal categories. In total,
there are 22 possible chunk labels. Figure 1 shows an example labelled sentence. Note that

He reckons the current account deficit will narrow to
B-NP B-VP B-NP I-NP I-NP I-NP B-VP I-VP I-VP

only # $ 1.8 billion in September
I-VP B-PP B-NP I-NP I-NP B-PP B-NP

Figure 1: An example annotated Wall Street Journal sentence

POS labels have been suppressed.
We now present the shallow parsers used in our experiments. The motivation for using

these parsers is that they are broadly representative of shallow parsers, and furthermore,
help deal with a potential criticism that any results obtained from a single parser might
reflect idiosyncrasies of that approach, and not more general findings.

3.1 The maximum entropy-based shallow parser

We used Ratnaparkhi’s maximum entropy-based POS tagger as the basis of our maximum
entropy-based shallow parser (Ratnaparkhi, 1996). In brief, the tagger uses the following
exponential model:

P (h, t) = πµ
k∏

j=1

α
fj(h,t)
j

π is a normalising constant, µ, α1 . . . αk are parameters and f1 . . . fk are ‘features’. Each
parameter αj corresponds to a feature fj . Each feature takes an integer values representing
how many times that feature was active on an example. hi is the history available when
predicting POS tag ti.

Features capture aspects of the tagging task that are deemed important when modelling.
Here, features are in terms of the current word to be tagged, the previous two words, the
next two words and the previous two tags. The tagger also uses features such as prefixes
of words, word suffixes, etc. The interested reader should consult the original paper for a
description of the features used in the tagger (Ratnaparkhi, 1996).

The parameters µ, α1 . . . αk are chosen to maximise the probability of the training set:

P (D | M) =
n∏

i=1

P (hi, ti)

D is the training set (tags and their respective histories), and M is the model (parameters
and their associated weights). Parameters are estimated using Generalised Iterative Scaling
(GIS).
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The tagger is trained by taking a set of sentences, and for each word in each sentence,
labelling that word with an intended POS tag. Afterwards, the tagger uses GIS to find
the best set of weights to maximise the probability of seeing this data. GIS is an iterative
training method, and after each iteration, the likelihood probability (equation 1) increases
up to a maximum.

When tagging, the model tries to recover the most likely (unobserved) tag sequence,
given a sequence of observed words.

When shallow parsing using this approach, consider the following fragment of the train-
ing set:

Word w1 w2 w3 w4

POS Tag t1 t2 t3 t4
Chunk c1 c2 c3 c4

Words are w1, w2, w3 and w4, tags are t1, t2, t3 and t4 and chunk labels are c1, c2, c3 and c4.
The task is to predict the chunk label for word w2 (the current word).

In order to convince the part-of-speech tagger to shallow parse, we concatenate together
the POS label of the current word, the POS label of the next word (t3), that of the following
word (t4), and finally the last four letters of the current word (w2). This concatenation is
then used in place of a more conventional word (as expected by the tagger). In place
of the tagger’s POS labels, we use chunk labels. The training set is then a sequence of
concatentation-chunk label pairs. The motivation for encoding shallow parsing information
in this way comes from a tradeoff between context and accuracy. The more context we
encode, the greater our accuracy; the more context, the sparser our features will be. Osborne
(2000) gives a more detailed description of some of the issues involved with shallow parsing
using this tagger. Our experiments were all run for 100 iterations of GIS (unless specified
otherwise).

3.2 The memory-based shallow parser

Our memory-based shallow parser was constructed using the publically-available TiMBL
system (Daelemans et al., 2000). Memory-based learning stores all training examples in
memory. Examples are vectors of features and an associated label. At run time, an unseen
example is classified in terms of how similar it is to seen examples. The k most similar
training examples are retrieved from memory, and the label of the unseen example is then
some function of these seen examples.

In more detail, let D(X, Y ) be the ‘distance’ between vector X and vector Y . There are
many possible distance metrics, but in this work we used the default overlap metric:

D(X, Y ) =
n∑

i=1

wiσ(xi, yi)

σ(xi, yi) =
{
0 if xi = yi

1 otherwise

Here, xi and yi are the ith components of the vectors X and Y . wi is a weighting which can
bias matching in various ways. We used the gain ratio weighting scheme (as it produced
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reasonable results). Together, the similarity metric and weighting scheme is called IB1-IG
(Daelemans and van den Bosch, 1992).

This overlap metric prefers examples which have a minimal number of (weighted) mis-
matches. We find the k examples that minimise the overlap metric, and select the final
label as being the label that is most common within the k examples.

Throughout our main experiments (Section 5.1), we used the IB1-IG similarity metric
(as it produced acceptable results for our task; the choice of metric is not crucial for our
experiments), and used k = 3. We also experimented with various values of k in our
secondary experiments (Section 5.3).

When shallow parsing, we created vectors consisting of the current word to be labelled,
the current POS tag, the previous four POS tags, and the POS tag of the next word. Better
results can be obtained by using even more context (at the expense of slower testing). Since
we were more concerned with running large numbers of experiments than with obtaining the
best possible results, we were prepared to accept a reduced performance level (that is, our
approach was about 1% less than that of Veenstra and van den Bosch (2000)). Note that
this shallow parser uses different information from the maximum entropy parser. However,
when there is no noise, both models yield very similar performance levels to each other.

3.3 The N-gram shallow parser

We use Brant’s Markov-based POS tagger as the basis of our N-gram shallow parser (Brants,
2000). Brant’s tagger selects the most likely tag sequence t1 . . . tn as follows:

argmaxt1...tnP (tn+1 | tn)
n∏

i=1

P (ti | ti−1, ti−2)P (wi | ti)

Here, wi is a word and tn+1 is a tag denoting the end of a sentence.
The components of the previous equation are estimated using N-grams. The model

uses linear interpolation as a smoothing device (smoothing over the term P (ti | ti−1, ti−2)).
There is a mechanism for dealing with unknown words, based upon suffixes. The model
is trained using maximum likelihood estimation, whilst the weights for linear interpolation
are found using deleted interpolation.

We used the default settings of the system. In particular, this means: using statis-
tics from singleton words when dealing with unknown words, using linear interpolation to
smooth and using trigrams. Note that at times we used unigrams and bigrams instead of
trigrams. These cases are clearly marked in the paper.

When shallow parsing, we used the same training set (words as concatenations of POS
tags, etc) as was used when training the maximum entropy shallow parser (mentioned in
Section 3.1).

Later in this paper, whenever we refer to the ‘N-gram parser’, as should be obvious, we
mean Brant’s tagger retrained as a shallow parser.

3.4 The ensemble parser

Our ensemble shallow parser used all three previously mentioned parsers, and arbitrated
between them using a simple majority vote. That is, we use all parsers to label material.
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For each word, we count the number of times a label was predicted by the various parsers.
If a label is predicted by a majority, then we use that as the label predicted by the ensemble
parser. Otherwise, we default to the decision made by one of the component parsers. As al-
luded to in Section 5, varying the default decision yields (marginally) different performance.
Note we have not used weighted majority voting as at least one of our shallow parsers is
non-probabilistic.

4. Noise models

In this Section, we introduce the four noise models that were used in our experiments.
Although our models are not claimed to be realistic accounts of disfluencies as found in
naturally occurring language (nor of errors made by annotators), they do allow us to in-
troduce various types of noise into the training set, such that the parsers are stressed in
different ways. Our noise models furthermore are parameterised, so we can also vary the
amount of noise. Note that training on disfluent corpora (such as Switchboard, see Section
6) would allow us to observe the effects of realistic, naturally occurring noise, but only at a
fixed rate.

Our first model (white) simulates classification errors (called the classification noise
model) (Angluin and Laird, 1988). Within the white noise model, when training, each
example received by the learner is mislabelled randomly and independently with some fixed
probability. For example, the fragment shown in Figure 2 might become corrupted as shown
in Figure 3.

He reckons the current account
B-NP B-VP B-NP I-NP I-NP

Figure 2: Example sentence fragment, without noise

He reckons the current account
I-NP B-VP O I-NP I-NP

Figure 3: An example annotated sentence with white noise in the labels (as produced by
the white noise model)

Mislabelling is within the set of possible labels, and no account is taken whether the
corrupted example is a well-formed example (a phrase is introduced by an appropriate
beginning phrasal marker). This means that examples corrupted in this manner pose a
harder learning problem than do examples which are mislabelled, yet still well-formed.

This model has been studied theoretically, and various noise-tolerant learners are known
to exist for it. From a linguistic perspective, this model is artificial, and it is unlikely that
any real training set would be corrupted in this manner. However, it is a useful baseline.

The second model (filled) introduces ‘filled-pauses’ into sentences (Shriberg, 1994).
A filled-pause is an interjection, with no semantic content, which can occur anywhere in
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a sentence. For example, Figure 4 shows the insertion of a filled pause into the fragment
shown in Figure 2.

He reckons uh the current account
B-NP B-VP B-VP B-NP I-NP I-NP

Figure 4: A sentence containing a filled pause (as produced by the filled noise model)

Filled pauses are introduced at a fixed and independent rate. They are assumed to
simply have the same chunk label as the previous word (this adds extra noise to the sequence
of labels and to the sequence of words). As such, a training set with filled-pauses contains
well-formed phrases.

The third model (repeat) introduces simple ‘repetitions’ into sentences (Shriberg, 1994).
Figure 5 shows an example repetition. Like filled-pauses, repetitions are introduced ran-

He reckons reckons the current account
B-NP B-VP I-VP B-NP I-NP I-NP

Figure 5: A sentence containing a repetition (as produced by the repeat noise model)

domly, at a fixed rate. Repetitions are assumed to be in the same phrase as that of the
previous word (this prevents the introduction of illegal sequences) and are assumed to
only occur once (as multiple occurrences of the same symbol can easily be eliminated by
post-processing). They are also constrained to only occur before function words.1 Since
repetitions depend upon the surface form of a sentence, they will be distributed differently
from the changes made by our other models.

The final noise model (all) used all three previous models. In more detail, we applied
the repeat model, then the filled model, and finally the white model to the training set.

As can be expected, our noise models are simple, and so arguably create unrealistic
training scenarios. For example, our approach largely predicts that disfluencies are linearly
distributed. Shriberg (1994) found that the rate of disfluencies in some texts were best
described exponentially. The filled pause and repetition models should assign part-of-speech
tags by running a part-of-speech tagger over the corrupted material.

The noise models are not that closely tied to the types of noise one might expect when
manually annotating material on a massive scale. Instead, they are largely inspired by
the disfluency literature. In lieu of a study of the kinds of errors made when annotating
material, we conjecture that the white noise model might be seen as crudely approximating
annotation errors. That is, the examples are noise-free, but the actual labels will be at times
wrong. The other noise models may be appropriate when training on material from another
genre. For example, when moving from speech to edited newswire text. Interesting future
work should attempt to characterise the classes of errors made when annotating very large
quantities of material, capture such errors in noise models, and then study their effects.

1. Constraining repetitions in this way is an attempt to model the fact that 40% of disfluencies in natural
text behave in this manner (Shriberg, 1994).
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In their defence, the noise models even if unrealistic, do allow experiments to be carried-
out whereby noise-rates can be varied. Varying the noise rate cannot be done so easily using
naturally occurring material.

We now present our experiments using synthetic noise in the training sets.

5. Experiments using artificial noise

Throughout these experiments, we used a training set consisting of 8, 885 sentences. This
was automatically extracted from the parsed Wall Street Journal (Marcus et al., 1993). We
also used a disjoint testing set (2, 011 sentences), also drawn from the parsed Wall Street
Journal. This training and testing set was the same one as used by the CoNLL00 shared
task.2

Note that the training and testing set was re-tagged using the Brill tagger (Brill, 1992).
This means that the data (with respect to the original parsed Wall Street Journal) contains
tagging errors (noise). However, as both the training and testing sets were tagged in this
manner, the effects of tagging errors will be factored-out. Whenever we say ‘uncorrupted’
material, we really mean the material as used in the CoNLL00 shared task. Future work
should repeat our experiments using training and testing material as originally tagged in
the Wall Street Journal.

When shallow parsing (as was previously mentioned in Section 3), the task was to
assign chunk labels to tagged sentences. Evaluation was in terms of an ‘f-score’. This is
the (harmonic) average of recall and precision, where recall is the percentage of exactly
matching phrases in the testing set found by the system, and precision is the percentage of
detected phrases that are correct. Shallow parsers are usually measured using f-scores, and
not in terms of tagging accuracy. For the purposes of our experiments, the actual choice of
metric is not that important.

The best reported system (an ensemble) achieved an f-score of 93.84 (Kudoh and Mat-
sumoto, 2000). In general, shallow parsing is harder than POS tagging since the correct
assignment of chunk labels can depend upon much larger contexts than those that are used
by POS taggers. For example, shallow parsing typically needs a context of five words and/or
POS labels. POS taggers usually operate in terms of three words and/or POS tags.

As a baseline, a system which made decisions according to the most likely chunk label
given a POS tag (using an uncorrupted training set) achieved an f-score of 77.07. For all
noise models, and varying the rate of noise, this baseline mainly held (as shown in Figure
6). These results are the averages of 10 runs. That is, we used the same training and
testing set on each run, but because our noise models make decisions on a random basis,
they produced different sets of disfluencies after each run.

All other experiments were single runs (as there were so many of them). Note that
at times, performance using noisy material is marginally better (at least for our baseline
model) than for performance using ‘clean’ material. This is probably an artifact.

The reason for our baseline system having high levels of performance, even when the
noise rates are high, follows from the highly peaked nature of the underlying distributions.
Figure 7 shows an example distribution from the baseline parser. As can be seen, a few

2. The site http://lcg-www.uia.ac.be/conll2000/chunking/ describes the task and contains all the train-
ing, testing and evaluation material used here.
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Noise Model Rate F-Score Noise Model Rate F-Score
White 25 77.10 White 50 77.11
Repeat 25 77.16 Repeat 50 77.96
Filled 25 77.06 Filled 50 77.06
All 25 77.10 All 50 77.98
White 75 77.15 White 100 2.93
Repeat 75 78.27 Repeat 100 78.27
Filled 75 77.06 Filled 100 77.06
All 75 78.23 All 100 3.57

Figure 6: Baseline performance using various noise models. Rate shows the percentage
chance of a corruption occurring

Label P (label | VBN) Count
B-ADVP 0.0002 1
I-ADVP 0.0002 1
O 0.0015 7
I-ADJP 0.0092 44
B-PP 0.0164 78
B-ADJP 0.0193 92
B-NP 0.0393 187
I-NP 0.0951 453
B-VP 0.2297 1094
I-VP 0.5891 2806

Figure 7: Distribution of chunk labels for P (label | VBN), trained upon uncorrupted WSJ

points in this distribution accounts for the majority of the probability mass. When noise is
introduced by our models, these distributions become flatter. However, because the distri-
butions are so peaked, even with a large amount of noise, these peaks are still prominent,
and so performance is maintained.

5.1 Performance using noise models

Here we show the performance of our shallow parsers in the presence of various kinds of
noise. Section 5.2 analyses these results.

Figure 8 shows the results using the white noise model. Here, as in graphs 9, 10 and
11, we show the performance of all single-model parsers, and the performance of the best
ensemble parser, as the noise rate increases. We have not shown all ensemble parsers as,
by-and-large, they are all quite similar to each other. It should be clear which parser relates
to which curve from the labels.
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Figure 8: Results using White Noise Model

As can be seen, increasing the noise rate decreases the performance of all our parsers.
Furthermore, we see that this degradation is relatively graceful: no parser exhibits a catas-
trophic performance drop as noise is introduced into the training set. When there is noise in
the labels, we see that the maximum entropy parser is more robust than the memory-based
parser. The N-gram parser is mid-way between the two other single-model parsers.

Turning now to the ensemble parsers (only the ensemble parser defaulting to maximum
entropy is shown), firstly, we find that all three parsers usually outperform the single-model
parsers. Ensemble learning can make shallow parsing more robust in the presence of white
noise. Secondly, we see that defaulting to maximum entropy usually produces the best
results. Finally, at 100% noise the training set cannot be distinguished from the results of
flipping a coin, and so performance is minimal for all parsers.

Looking now at the results using our filled noise model (Figure 9), we see a different
picture. The main difference from the previous results is that the memory-based parser is
now the clear winner, even generally outperforming the ensemble parsers. With the various
ensemble parsers, we find that again, defaulting to the behaviour of the best single parser
yields marginally the best ensemble parsing results. However, we also found that the results
for the other two ensemble parsers (maximum entropy default and n-gram default) produce
results that are similar to each other.

The results using the repeat noise model (Figure 10) are different again from the pre-
vious two sets of results. Generally, we see that performance is much less affected than
before.
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Figure 9: Results using Filled Noise Model
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Figure 10: Results using Repeat Noise Model. Note the change of scale.

Our final set of results, as produced by the all noise model (shown in Figure 11) reveals
behaviour that is again different from the other results. As shown previously in Figure 9,
the memory-based parser does best out of the single model parsers. However, like the results
shown in Figure 8, the ensemble parsers mainly do better than the single-model parsers.
Unlike the previous results, we see that defaulting to the N-gram parser, for high noise
levels, yields better results than when defaulting to the maximum entropy parser.

Figure 12 summaries which parser is best, for selected noise models.

706



Shallow Parsing and Noise

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

F
-s

co
re

Noise rate

maxent
ngram

mbl
vote (mbl)

Figure 11: Results using All Noise Model

Rate model Best model Best model Best model Best
25 white vote (MBL) filled vote (MBL) repeat vote (MBL) all vote(MBL)
50 white vote (maxent) filled MBL repeat vote (MBL) all vote (MBL)
75 white vote (maxent) filled MBL repeat MBL all baseline

Figure 12: Summary of results

5.2 Analysis

Here we analyse the results. The most important point to be made is that no parser
is uniformly best. For example, the ensemble parser (defaulting to maximum entropy)
generally yields the best results with respect to the white noise model. However, for the
filled noise model, we see that the memory-based parser is usually best. The reason that
we get this variation in performance is due to properties of the noise-avoidance strategies
used, and, in the case of ensemble parsers, to a violation of errors not being correlated.
In more detail, we see that for white noise, because the ensemble learners beat all the
single model parsers, we can conclude that the errors made are uncorrelated. Hence, the
individual parsers all deal with white-noise suboptimally (otherwise, there would be no gain
to be made using ensemble learning). For filled pauses, we see that both maximum entropy
and N-grams make correlated errors (as the ensemble parser, defaulting to memory-based
learning, is worse than the single memory-based parser), and so ensemble learning does not
help.

The results using noise in the labels (the white model) on average are worse than the
results obtained using disfluencies in the examples (the filled and repeat models). This
might be because the white model introduces more randomness into the training set than
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does the other models.3 Another reason might be that supervised learners are more sensitive
to noise in labels than to noise in examples.

The noise-avoidance story which appears to have emerged is that, out of a space of
possible noise-reduction techniques, and for the set of parsers considered in this paper, no
single method appears to work uniformly well. Theoretical support for this position is given
by Wolpert and Macready (1995). Their No Free Lunch theorem (informally) states that no
single algorithm will work uniformly well across all problems. In terms of noise, this means
that an algorithm which can deal well with (for example) errors in the labels of examples
may not do well with (for example) errors in the examples themselves. This also suggests
that a parser which does well in the noise-free case may not do well in a noisy situation,
and that some other parser may do better.

We do not conclude that any one technique is better than any other approach. For
example, we see that memory-based learning is closely related to smoothing using backing-
off (Zavrel and Daelemans, 1997). Hence, we could probably emulate the noise-tolerance of
memory-based learning within an N-gram parser that used backing-off. This is equivalent
to using some other model better suited to noise-tolerance than the one we did use.

However, returning to the No Free Lunch Theorem, we conjecture that no single parser
will be uniformly superior in all noise scenarios. So, if we made the N-gram parser tolerant
to filled-pauses, we would expect it to perform worse on some other problem. Section 5.3
illustrates this point.

In summary, we see that robustness to noisy training material is a many-faceted problem,
and it is unlikely that any single strategy will work well uniformly. Instead, we advocate
understanding the properties of the noise-avoidance strategy used by the parser and deter-
mining whether it is suitable for some particular domain. We do not believe in a silver-bullet
algorithm which will work well for any given problem.

5.3 Parser-specific extensions

Here we consider, in the light of our previous experiments, whether we can make our parsers
more robust to noise. We restrict ourselves to what can be easily achieved within the
framework of a particular parser. So, we do not build new parsers from scratch; instead
we vary any available parameters that might improve results. This restriction is natural in
that one is more likely to try to get the best results from a given off-the-shelf parser than
try to build one from scratch.

Note that we are not primarily interested in trying to maximise the performance of
a system for a given noisy training set. Instead, we wish to gain an insight into how
parser-specific extensions behave across a variety of settings. As such, we report system
performances for a variety of noise models and for different noise levels. We therefore have
not used a held-out set to optimise the various parser extensions. Clearly however, in a
practical setting, one would want to do this.

Turning to the maximum entropy parser, within the confines of the implementation,
the only parameter we can vary is the number of training iterations allowed to fit the

3. An anonymous reviewer made the point that because this noise model does not guarantee that examples
are well-formed, the performance drop may be also due to the fact that the hypothesis space is potentially
much larger. Hence, it would be possible to reduce this drop by making sure that examples are well-
formed, possibly by some post-processing.
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model. As was mentioned in Section 3.1, after each iteration the model fits the training
material more closely. In general (modulo overfitting), after each iteration, performance
also increases. Now, roughly speaking, after a few iterations, the model fits aspects of the
data of which there is ample evidence. As the number of iterations increases, the model fits
more specific ‘patterns’. Should it be possible to differentiate noise from the underlying,
uncorrupted machinery producing the data in this manner, then it is possible that early
stopping (running for only a few iterations rather than for many iterations) would yield
better performance than when halting after carrying out many iterations.

Figure 13 shows the results we obtained when varying the number of iterations (using
the all noise model). The columns marked ‘Iter’ refer to the number of iterations used to
train a model.

Rate Iter F-score Iter F-score Iter F-score Iter F-score Iter F-score
0 20 89.89 40 90.54 60 90.67 80 90.81 100 90.87
10 20 88 40 88.54 60 88.62 80 88.44 100 88.32
20 20 85.56 40 85.81 60 85.7 80 85.46 100 85.24
30 20 82.1 40 82.01 60 81.37 80 80.83 100 80.75
40 20 75.47 40 75.54 60 74.94 80 74.64 100 74.51
50 20 68.25 40 67.44 60 66.86 80 66.7 100 66.42
60 20 57.26 40 55.38 60 54.62 80 54.31 100 54.12
70 20 45.22 40 40.81 60 39.55 80 39.23 100 39.2
80 20 30.89 40 25.38 60 23.74 80 23.14 100 22.9
90 20 14.34 40 11.73 60 10.94 80 10.62 100 10.47
100 20 3.19 40 3.29 60 3.33 80 3.46 100 3.56

Figure 13: Results for the maximum entropy parser, using early stopping, with the all
noise model

As can be seen, early stopping does improve results: as the noise rate increases, it is
better to use fewer and fewer iterations.

Next, we considered whether we could make the memory-based parser more resistant to
noise in the labels. The TiMBL implementation allows one to vary the number of nearest
neighbours that are used when classifying unseen examples. When k = 1, the system does
no smoothing over labels, and bases its decision upon just the single best matching example.
As k increases, the system becomes less sensitive to individual labels. So, varying k ought
to make the parser more robust to labelling errors.

Figure 14 shows the results obtained when training over material again corrupted by
the all noise model. For each noise level, we varied k and recorded the results.

Clearly, varying the number of nearest neighbours (k) improves results as the amount
of noise increases. Note that what is best when training upon material with no added noise
(a rate of 0) is not best when training upon material that is noisy. Also, we see that with
no noise, the best value of k is not 1. This suggests that the Wall Street Journal is noisy
(a well known result). Another possible reason is that this is some strange result of the
particular choice of features we used.
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Rate k F-score k F-score k F-score k F-score k F-score k F-score
0 1 89.44 3 90.22 5 89.78 7 88.96 9 88.16 11 87.58
10 1 78.26 3 87.74 5 87.79 7 87.36 9 86.56 11 86.09
20 1 66.86 3 84.97 5 85.94 7 85.86 9 85.83 11 85.42
30 1 57.51 3 82.93 5 85.14 7 85.02 9 84.65 11 84.04
40 1 46.96 3 77.89 5 82.92 7 83.89 9 84.14 11 83.61
50 1 36.46 3 71.35 5 80.48 7 82.13 9 82.19 11 81.77
60 1 29.67 3 64.6 5 77.18 7 80.81 9 80.73 11 80.37
70 1 22.44 3 52.97 5 70.86 7 77.05 9 78.69 11 78.17
80 1 16.99 3 42.89 5 61.93 7 71.84 9 75.28 11 75.18
90 1 11.09 3 25.18 5 41.38 7 54.18 9 63.22 11 65.75
100 1 2.93 3 2.77 5 2.62 7 2.74 9 2.09 11 1.8

Figure 14: Results for the memory-based parser, varying k and using the all noise model

Our results can be seen as being largely contrary to the related work of Daelemans et al.
(1999b). They also varied k for a range of language problems. In general, they found that
increasing k (from 1) decreased performance. Partly on the basis of this, they concluded
that one should not abstract (smooth) from the data. Clearly we see that this argument
only holds when using clean training material.

Finally, we considered whether we could improve the results of the N-gram parser. The
implementation we use allows one to vary the order of the Markov model.4 That is, we can
use either unigrams (order 1), bigrams (order 2) or else trigrams (order 3). Clearly, the
lower the order, the simpler the model. Simple models can sometimes help deal with the
effects of noise (as was argued in Section 2).

As before, we corrupted the training set with varying rates of noise (using the all
model) and estimated models using these corrupted training sets. We also varied the order
of the model. Figure 15 summarises our results.

As expected, we see that with increasing amounts of noise, it becomes better to use
simpler models. Note that we could have further simplified our models by reducing the
information present within a ‘word’. If we recall, the N-gram parser is trained using words
which are concatenations of (for example) POS tags. By reducing the information content
of a word, we would also simplify the model, and so presumably improve upon our results.
The baseline parser (which only considers POS tags of a unigram model) can be seen as
being such a simplified approach.

In summary, we see that in theory, all of our single-model parsers can be made more
noise-resistant. Furthermore, we see that tackling noise means abstracting from the training
material. For example, early stopping prevents maximum entropy from modelling all regu-
larities in the data; increasing the size of k in memory-based learning forces the system to
abstract away from actual examples; reducing the order of a Markov model means making

4. Note that it is also possible to use less specific features in an N-gram model. This would also simplify
the resulting model, and so make it less sensitive to noise. An interesting set of experiments would be
to see how this approach compares with varying the order of the model.
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Rate Model order F-score Model order F-score Model order F-score
0 1 75.45 2 83.86 3 84.10
10 1 74.20 2 80.21 3 80.23
20 1 71.52 2 76.22 3 75.44
30 1 69.21 2 71.52 3 69.86
40 1 65.98 2 66.37 3 64.04
50 1 60.35 2 59.48 3 56.64
60 1 54.14 2 52.54 3 49.85
70 1 46.43 2 43.71 3 41.42
80 1 36.77 2 33.77 3 31.81
90 1 20.88 2 17.79 3 17.03
100 1 2.15 2 2.42 3 2.61

Figure 15: Results for the N-gram-based parser, varying the model order and using All
noise model

the parser ignore more and more of the context in the training set. In practice (trying to
optimise a parser for noise in realistic setting), our noise-avoidance strategies may become
less useful. Clearly this is an empirical matter.

In the next Section, we look at what happens when the training set contains naturally
occurring disfluencies.

6. Experiments using Switchboard

Since our previous experiments all used naturally occurring language corrupted by artificial
noise, we also trained our shallow parsers using realistically disfluent text. This allows us
to investigate naturally occurring noise. We did not have access to (noisy) material pro-
duced by people annotating large quantities of text and so could not carry out experiments
measuring noise related to annotator errors.

The WSJ is not disfluent (being edited newswire material) so studying the effects of
naturally occurring disfluencies requires non-edited material. The parsed Switchboard Cor-
pus (henceforth called SWBD) consists of manually parsed telephone conversations between
pairs of people. Since it is composed of conversational speech, it contains numerous dis-
fluencies (such as interruptions, incomplete sentences etc). Training upon SWBD would
therefore provide complementary results to those found using synthetic noise. However,
SWBD is a different genre from WSJ, and so phrasal distributions will be different between
these two domains. We therefore have to differentiate between the effects of disfluencies
and distributional variations before we can come to any conclusions about the effects of
naturally occurring disfluencies on shallow parsing.

For the experiments here, we used all files in section 2 of the SWBD distribution. Using
the same script (from the CoNLL website), we created a training set that consisted of
utterances marked with POS tags and chunk labels. Figure 16 shows an example SWBD
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utterance annotated in this manner (POS labels have been suppressed). There were 35, 706
sentences in our SWBD training set.

And , um , she had a fall
O O B-INTJ O B-NP B-VP B-NP I-NP

Figure 16: An example SWBD annotated utterance

Using the same parser configurations described in Section 5, and when testing using the
same testing material (namely uncorrupted parsed WSJ material), we obtained the results
shown in Figure 17. Unsurprisingly, these results are all worse than when training upon
uncorrupted WSJ material (as shown, for example, in the top row of Figure 8).

Parser F-score Parser F-score
Max 82.97 Vote (Max) 84.62
TNT 70.73 Vote (TNT) 84.33
MBL 83.20 Vote (MBL) 85.08
Baseline 65.86 - -

Figure 17: Results when training upon SWBD

In order to determine whether this performance drop was due to disfluencies, or else
due to a change in domain (or both), we ran further experiments. The next Section (6.1)
examines the influence of disfluencies, whilst Section 6.2 looks at distributional differences
between SWBD and WSJ.

6.1 Estimating the influence of noise

The first experiment tried to see if we could reduce noise using one of the techniques men-
tioned previously in Section 5.3. If we could reduce the effects of noise, then this would
suggest that SWBD contained significant levels of noise, which in turn was contributing
towards the performance drop. This assumes that there is a connection between the exper-
imental setup in Figure 14 and 18. Figure 18 shows the results obtained when training the
memory-based parser and varying k. As can be seen, the best performance occurs when k is
3. Comparing these results with those obtained using artificial noise (and the WSJ), Figure
14, we see evidence that the noise rate is less than 10%.5 That is, for Figure 14, k being
3 is best when the noise rate is less than 10%. Noise may therefore not be the significant
factor why there is a performance drop.

These results are not sufficient in themselves, so we also looked at what happened when
annotated disfluencies were removed from SWBD. If these disfluencies were significantly
contributing towards errors, then we might expect that this ‘cleaning’ of the data would

5. As an anonymous reviewer pointed out, caution should be exercised here. We do not know for sure the
relationship between Switchboard noise and our noise models. This means that it still remains to be
seen exactly how the k level relates to noise levels. One way of dealing with this issue would be to try
and model naturally occurring noise more closely and then see whether, for varying levels of noise, there
was a relationship with k.
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k 1 3 5 7 9 11
F-score 80.35 83.20 82.63 81.68 80.94 80.32

Figure 18: Results when training upon SWBD, using the memory-based parser, varying k

improve our results. We removed any words that were marked as being an interjection from
the training material. As can be seen in Figure 19, if anything, removing interjections harms
performance. The reason for this lack of improvement is that after removing interjections,
phrases are made contiguous that otherwise would have been separated by interjections.

Parser F-score Parser F-score
Max 81.90 Vote (Max) 83.77
TNT 70.47 Vote (TNT) 83.57
MBL 82.70 Vote (MBL) 84.58
Baseline 72.24 - -

Figure 19: Results when training upon SWBD with some disfluencies removed

Figure 20 shows a distribution of the baseline parser (when trained upon the usual
SWBD training set). Comparing this distribution with the one obtained when the baseline
parser was trained on WSJ material (Figure 7), we see that there are differences. For
example, in Figures 7 and 20, we see that in SWBD, words tagged with the POS label VBN
are more likely to be within a verbal chunk than to start a verbal chunk in WSJ (as was
the case in the WSJ corpus). Furthermore, we see that the distribution for SWBD is not
significantly more spread-out (more uniform) than the distributions for WSJ. If disfluencies
were strongly present, and were uniformly distributed, then we might expect to see this.

Label P (label | VBN) Count
I-CONJP 0.0002 1
B-NP 0.0035 18
O 0.0037 19
B-PP 0.0066 34
I-NP 0.0072 37
I-ADJP 0.0093 48
B-ADJP 0.0231 119
B-VP 0.2936 1512
I-VP 0.6527 3361

Figure 20: Distribution of chunk labels for P (label | VBN), trained upon SWBD

In summary, we are lead to believe that naturally occurring disfluencies are not that
harmful to performance. The next set of experiments reinforces this opinion.
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6.2 Estimating the effects of distributional differences

In order to determine whether the performance drop was due to distributional differences,
we considered the issue of what happened when the SWBD training material was augmented
with various amounts of WSJ training material. If SWBD simply lacked phrasal patterns
found in WSJ, then we would expect to find a significant improvement should we simply
add that missing information.

Figure 21 shows what happens when various randomly selected amounts of WSJ training
are added to the SWBD material. There were 120k tokens (words or punctuation marks)
in the SWBD material. The total WSJ training set consisted of 211k tokens.

Here, the column marked ‘level’ shows the number of WSJ tokens added (in thousands).
So, a level of 0 indicates that the training material is entirely SWBD, whilst a level of 211
shows that the training material consisted of all of SWBD and the WSJ material. As can be
seen, with only a small amount of WSJ material, performance significantly increases. Also,
when using all material, we see that performance is very close to the performance obtained
when using just the uncorrupted WSJ material (as shown in Figure 8).

Now, these results may suggest that SWBD simply lacks phrases found in WSJ, and that
even a moderate amount of material containing such information is better than nothing.
However, it is also possible that performance may simply be increasing due to more accurate
statistics. To deal with this issue, we also used, in addition to section 2, section 3 of SWBD.
Figure 22 shows our results. The training set roughly doubled in size, and now consisted of
61, 515 SWBD sentences.

Level Max MBL TNT Vote (Max) Vote (MBL) Vote (TNT)
0 82.31 82.83 69.99 84.15 84.66 83.89
21 86.80 86.14 77.60 87.84 88.24 87.81
42 87.91 87.45 79.46 88.80 89.18 88.87
63 89.01 88.07 80.49 89.80 90.07 89.79
84 89.27 88.29 81.11 89.96 90.08 89.89
105 89.76 88.80 81.73 90.27 90.31 90.23
126 90.19 89.02 82.02 90.65 90.71 90.61
147 90.17 89.00 82.92 90.68 90.68 90.56
168 90.55 89.39 82.91 91.01 91.05 90.92
189 90.72 89.43 83.41 91.03 91.02 90.93
211 90.84 89.63 83.65 91.03 91.03 90.92

Figure 21: Results when training upon SWBD and varying randomly sampled quantities of
WSJ

As can be seen (by comparing Figures 22 and 17), our results only marginally increase,
and so the results obtained in Figure 21 are not due to more accurate estimation of models
due to training upon more material.

An error analysis of the mistakes made when training just on SWBD material (using
the best ensemble parser), and not made when training upon WSJ material, found that:

• Noun phrases in the WSJ are predicted as being too short. For example, we see:
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Parser F-score Parser F-score
Max 83.35 Vote (Max) 84.16
TNT 71.37 Vote (TNT) 84.98
MBL 83.39 Vote (MBL) 85.16
Baseline 63.71 - -

Figure 22: Results when training upon double the quantity of SWBD material

Rockwell International Corp. ’s Tulsa unit said . . .
I-NP / B-NP I-NP / B-NP

Here, the words International and Corp are labelled as being the start of a base noun
phrase, when in reality they should all be within the same base noun phrase.

• Base noun phrases with non-nominal premodifiers are seen as being phrases other
than base noun phrases:

. . . it had operating profit of $ 10 million
B-NP / I-VP I-NP / B-NP

• There was little evidence of ‘strange’ parsing decisions, as one would expect if disflu-
encies were responsible for parsing errors.

In conclusion then, we believe that the disfluencies in SWBD, whilst still a factor, are less
harmful to performance than the change of domain (speech to edited text). Alternatively,
this means that even if SWBD was edited and all disfluencies were removed, should we train
upon that, we would not expect to obtain a significant performance increase. When the
task is shallow parsing newswire material, it is better to annotate more newswire material
than to train upon material drawn from a significantly different distribution. Gildea (2001)
made a related point when training full-scale parsers using the Brown and WSJ parsed
treebanks.

7. Comments

We mentioned in the introduction that shallow parsing could in principle be undermined
by either noise in the training set, or else by distributional differences between the training
set and the testing set. The first set of results showed that the underlying distributions
are such that shallow parsing is inherently noise-tolerant, and that only large quantities
of noise will significantly undermine performance. However, should one wish to improve
performance when noise was present, then simple extensions of our basic parsers help. Our
experiments showed that different kinds of noise favoured different parsers, and that in
general, no single technique emerged as being best in all situations. When dealing with a
new problem (with unknown noise), the best strategy is probably to consider a range of
techniques, optimise them using a held-out set, and then decide which one to use on the
basis of results. The alternative, of taking a favourite approach and then hoping that is will
perform well is almost certainly likely to lead to suboptimal results.
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We do not wish to comment upon the individual parsers (for example, arguing that
memory-based learning is better than maximum entropy). The reason for abstaining follows
from our results, which tells us that even if some parser appeared to do well in many
situations, we should not conclude that it would do well in some future situation. However,
we were pleased with the performance of memory-based learning, and suggest that it might
be well suited for domains such as discourse parsing, which is known to be noisy.

The experiments with SWBD suggested that a mismatch in distribution between exam-
ples in the training set and the testing set undermined performance more than did disfluen-
cies. Furthermore, we concluded that should one want to improve upon the performance of
shallow parsing, it is better to annotate more examples, drawn from the target distribution
(which in this case is the WSJ) than to train upon additional material drawn from other
distributions. Language is non-stationary, and pretending otherwise is ill-advised.

Drawing together the results from WSJ and SWBD, and with the caveat that the noise
models we used are artificial and so not necessarily indicative of realistically found noise, one
might conclude that naturally occurring noise is not that much of an issue, and that instead,
making sure that the training set and testing sets are both drawn from the same distribution
is the key factor. With current treebanks, this is almost certainly true. However, should
one want to greatly increase the amount of annotated material in some industrial manner,
then undoubtedly such newly created material would become noisier. Under such circum-
stances, and again given the caveat regarding the relationship between our noise models and
naturally occurring noise, the techniques mentioned in this paper would become relevant.

In this paper, we only considered shallow parsing using base phrases. Further work
should consider what happens when parsing is deeper. We conjecture that the distributions
associated with deep parsing would continue to be sharply peaked. Consequently, we would
expect similar noise-performance relationships to those reported here.
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