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Abstract

We investigate the use of certain data-dependent estimates of the complexity of a function
class, called Rademacher and Gaussian complexities. In a decision theoretic setting, we
prove general risk bounds in terms of these complexities. We consider function classes
that can be expressed as combinations of functions from basis classes and show how the
Rademacher and Gaussian complexities of such a function class can be bounded in terms of
the complexity of the basis classes. We give examples of the application of these techniques
in finding data-dependent risk bounds for decision trees, neural networks and support vector
machines.
Keywords: Error Bounds, Data-Dependent Complexity, Rademacher Averages, Maxi-
mum Discrepancy

1. Introduction

In learning problems like pattern classification and regression, a considerable amount of
effort has been spent on obtaining good error bounds. These are useful, for example, for
the problem of model selection—choosing a model of suitable complexity. Typically, such
bounds take the form of a sum of two terms: some sample-based estimate of performance
and a penalty term that is large for more complex models. For example, in pattern clas-
sification, the following theorem is an improvement of a classical result of Vapnik and
Chervonenkis (Vapnik and Chervonenkis, 1971).

Theorem 1 Let F be a class of {±1}-valued functions defined on a set X . Let P be a
probability distribution on X × {±1}, and suppose that (X1, Y1), . . . , (Xn, Yn) and (X, Y )
are chosen independently according to P . Then, there is an absolute constant c such that
for any integer n, with probability at least 1 − δ over samples of length n, every f in F
satisfies

P (Y 6= f(X)) ≤ P̂n(Y 6= f(X)) + c

√
VCdim(F )

n
,

where VCdim(F ) denotes the Vapnik-Chervonenkis dimension of F ,

P̂n(S) =
1
n

n∑
i=1

1S(Xi, Yi),
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and 1S is the indicator function of S.

In this case, the sample-based estimate of performance is the proportion of examples
in the training sample that are misclassified by the function f , and the complexity penalty
term involves the VC-dimension of the class of functions. It is natural to use such bounds
for the model selection scheme known as complexity regularization: choose the model class
containing the function with the best upper bound on its error. The performance of such
a model selection scheme critically depends on how well the error bounds match the true
error (see Bartlett et al., 2002). There is theoretical and experiment evidence that error
bounds involving a fixed complexity penalty (that is, a penalty that does not depend on
the training data) cannot be universally effective (Kearns et al., 1997).

Recently, several authors have considered alternative notions of the complexity of a func-
tion class: the maximum discrepancy (Bartlett et al., 2002) and the Rademacher and Gaus-
sian complexities (see Bartlett et al., 2002, Koltchinskii, 2001, Koltchinskii and Panchenko,
2000a,b, Mendelson, 2002).

Definition 2 Let µ be a probability distribution on a set X and suppose that X1, . . . , Xn

are independent samples selected according to µ. Let F be a class of functions mapping from
X to R. Define the maximum discrepancy of F as the random variable

D̂n(F ) = sup
f∈F


 2

n

n/2∑
i=1

f(Xi)− 2
n

n∑
i=n/2+1

f(Xi)


 .

Denote the expected maximum discrepancy of F by Dn(F ) = ED̂n(F ).
Define the random variable

R̂n(F ) = E

[
sup
f∈F

∣∣∣∣∣ 2n
n∑

i=1

σif(Xi)

∣∣∣∣∣
∣∣∣∣∣ X1, . . . , Xn

]
,

where σ1, . . . , σn are independent uniform {±1}-valued random variables. Then the Rademacher
complexity of F is Rn(F ) = ER̂n(F ). Similarly, define the random variable

Ĝn(F ) = E

[
sup
f∈F

∣∣∣∣∣ 2n
n∑

i=1

gif(Xi)

∣∣∣∣∣
∣∣∣∣∣ X1, . . . , Xn

]
,

where g1, . . . , gn are independent Gaussian N(0, 1) random variables. The Gaussian com-
plexity of F is Gn(F ) = EĜn(F ).

All three quantities are intuitively reasonable as measures of complexity of the function
class F : D̂n(F ) quantifies how much the behavior on half of the sample can be unrepresen-
tative of the behavior on the other half, and both Rn(F ) and Gn(F ) quantify the extent
to which some function in the class F can be correlated with a noise sequence of length n.
The following two lemmas show that these complexity measures are closely related. The
proof of the first is in Appendix A; the second is due to Tomczak-Jaegermann (1989).
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Lemma 3 Let F be a class of functions that map to [−1, 1]. Then for every integer n,

Rn(F )
2

− 2

√
2
n
≤ Dn(F ) ≤ Rn(F ) + 4

√
2
n

.

If F is closed under negation, the lower bound can be strengthened to

Rn(F )− 4

√
2
n
≤ Dn(F ).

Furthermore,

P
{∣∣∣D̂n(F )−Dn(F )

∣∣∣ ≥ ε
}
≤ 2 exp

(−ε2n

2

)
.

Lemma 4 There are absolute constants c and C such that for every class F and every
integer n, cRn(F ) ≤ Gn(F ) ≤ C lnnRn(F ).

The following theorem is an example of the usefulness of these notions of complexity.
The proof of the first part is due to Bartlett et al. (2002). The proof of the second part is
a slight refinement of a proof of a more general result which we give below (Theorem 8); it
is presented in Appendix B.

Theorem 5 Let P be a probability distribution on X ×{±1}, let F be a set of {±1}-valued
functions defined on X , and let (Xi, Yi)n

i=1 be training samples drawn according to Pn.
(a) With probability at least 1− δ, every function f in F satisfies

P (Y 6= f(X)) ≤ P̂n(Y 6= f(X)) + D̂n(F ) +

√
9 ln(1/δ)

2n
.

(b) With probability at least 1− δ, every function f in F satisfies

P (Y 6= f(X)) ≤ P̂n(Y 6= f(X)) +
Rn(F )

2
+

√
ln(1/δ)

2n
.

The following result shows that this theorem implies the upper bound of Theorem 1
in terms of VC-dimension, as well as a refinement in terms of VC-entropy. In particular,
Theorem 5 can never be much worse than the VC results. Since the proof of Theorem 5 is
a close analog of the first step of the proof of VC-style results (the symmetrization step),
this is not surprising. In fact, the bounds of Theorem 5 can be considerably better than
Theorem 1, since the first part of the following result is in terms of the empirical VC-
dimension.

Theorem 6 Fix a sample X1, . . . , Xn. For a function class F ⊆ {±1}X , define the re-
striction of F to the sample as

F|Xi
= {(f(X1), . . . , f(Xn)) : f ∈ F} .

Define the empirical VC-dimension of F as d = VCdim
(
F|Xi

)
and the empirical VC-entropy

of F as E = log2

∣∣F|Xi

∣∣. Then Ĝn(F ) = O
(√

d/n
)

and Ĝn(F ) = O
(√

E/n
)
.
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The proof of this theorem is based on an upper bound on Ĝn which is due to Dudley,
together with an upper bound on covering numbers due to Haussler (see Mendelson, 2001).

Koltchinskii and Panchenko (2000a) proved an analogous error bound in terms of mar-
gins. The margin of a real-valued function f on a labelled example (x, y) ∈ X × {±1} is
yf(x). For a function h : X ×Y → R and a training sample (X1, Y1), . . . , (Xn, Yn), we write

Ênh(X, Y ) = (1/n)
n∑

i=1

h(Xi, Yi).

Theorem 7 Let P be a probability distribution on X × {±1} and let F be a set of real-
valued functions defined on X , with sup{|f(x)| : f ∈ F} finite for all x ∈ X . Suppose
that φ : R → [0, 1] satisfies φ(α) ≥ 1(α ≤ 0) and is Lipschitz with constant L. Then with
probability at least 1− δ with respect to training samples (Xi, Yi)n

i=1 drawn according to Pn,
every function in F satisfies

P (Y f(X) ≤ 0) ≤ Ênφ(Y f(X)) + 2LRn(F ) +

√
ln(2/δ)

2n
.

This improves a number of results bounding error in terms of a sample average of a
margin error plus a penalty term involving the complexity of the real-valued class (such
as covering numbers and fat-shattering dimensions; see Bartlett, 1998, Mason et al., 2000,
Schapire et al., 1998, Shawe-Taylor et al., 1998).

In the next section, we give a bound of this form that is applicable in a more general,
decision-theoretic setting. Here, we have an input space X , an action space A and an
output space Y. The n training examples (X1, Y1), . . . , (Xn, Yn) are selected independently
according to a probability measure P on X ×Y. There is a loss function L : Y ×A → [0, 1],
so that L(y, a) reflects the cost of taking a particular action a ∈ A when the outcome is
y ∈ Y. The aim of learning is to choose a function f that maps from X to A, so as to
minimize the expected loss EL(Y, f(X)).

For example, in multiclass classification, the output space Y is the space Y = {1, . . . , k}
of class labels. When using error correcting output codes (Kong and Dietterich, 1995,
Schapire, 1997) for this problem, the action space might be A = [0, 1]m, and for each y ∈ Y
there is a codeword ay ∈ A. The loss function L(y, a) is equal to 0 if the closest codeword
ay∗ has y∗ = y and 1 otherwise.

Section 2 gives bounds on the expected loss for decision-theoretic problems of this kind in
terms of the sample average of a Lipschitz dominating cost function (a function that is point-
wise larger than the loss function) plus a complexity penalty term involving a Rademacher
complexity.

We also consider the problem of estimating Rn(F ) and Gn(F ) (for instance, for model
selection). These quantities can be estimated by solving an optimization problem over
F . However, for cases of practical interest, such optimization problems are difficult. On
the other hand, in many such cases, functions in F can be represented as combinations
of functions from simpler classes. This is the case, for instance, for decision trees, voting
methods, and neural networks. In Section 3, we show how the complexity of such a class can
be related to the complexity of the class of basis functions. Section 4 describes examples of
the application of these techniques.
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2. Risk Bounds

We begin with some notation. Given an independent sample (Xi, Yi)n
i=1 distributed as

(X, Y ), we denote by Pn the empirical measure supported on that sample and by µn the
empirical measure supported on (Xi)n

i=1. We say a function φ : Y×A → R dominates a loss
function L if for all y ∈ Y and a ∈ A, φ(y, a) ≥ L(y, a). For a class of functions F , convF
is the class of convex combinations of functions from F , −F = {−f : f ∈ F}, absconvF is
the class of convex combinations of functions from F ∪−F , and cF = {cf : f ∈ F}. If φ is
a function defined on the range of the functions in F , let φ ◦ F = {φ ◦ f |f ∈ F}. Given a
set A, we denote its characteristic function by 1A or 1(A). Finally, constants are denoted
by C or c. Their values may change from line to line, or even within the same line.

Theorem 8 Consider a loss function L : Y × A → [0, 1] and a dominating cost function
φ : Y × A → [0, 1]. Let F be a class of functions mapping from X to A and let (Xi, Yi)n

i=1

be independently selected according to the probability measure P . Then, for any integer n
and any 0 < δ < 1, with probability at least 1 − δ over samples of length n, every f in F
satisfies

EL(Y, f(X)) ≤ Ênφ(Y, f(X)) + Rn(φ̃ ◦ F ) +

√
8 ln(2/δ)

n
,

where φ̃ ◦ F = {(x, y) 7→ φ(y, f(x))− φ(y, 0) : f ∈ F}.

The proof uses McDiarmid’s inequality (McDiarmid, 1989).

Theorem 9 (McDiarmid’s Inequality) Let X1, ..., Xn be independent random variables
taking values in a set A, and assume that f : An → R satisfies

sup
x1,...,xn,x′i∈A

∣∣f(x1, ..., xn)− f(x1, ..., xi−1, x
′
i, xi+1, ...xn)

∣∣ ≤ ci

for every 1 ≤ i ≤ n. Then, for every t > 0,

P {f(X1, ..., Xn)−Ef(X1, ..., Xn) ≥ t} ≤ e−2t2/
∑n

i=1 c2i .

Proof (of Theorem 8) Since φ dominates L, for all f ∈ F we can write

EL(Y, f(X)) ≤ Eφ(Y, f(X))

≤ Ênφ(Y, f(X)) + sup
h∈φ◦F

(
Eh− Ênh

)
= Ênφ(Y, f(X)) + sup

h∈φ̃◦F

(
Eh− Ênh

)
+ Eφ(Y, 0)− Ênφ(Y, 0).

When an (Xi, Yi) pair changes, the random variable suph∈φ̃◦F
(
Eh− Ênh

)
can change by

no more than 2/n. McDiarmid’s inequality implies that with probability at least 1− δ/2,

sup
(
Eh− Ênh

)
≤ E sup

(
Eh− Ênh

)
+

√
2 ln(2/δ)/n .
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A similar argument, together with the fact that EÊnφ(Y, 0) = Eφ(Y, 0), shows that with
probability at least 1− δ,

EL(Y, f(X)) ≤ Ênφ(Y, f(X)) + E sup
h∈φ̃◦F

(
Eh− Ênh

)
+

√
8 ln(2/δ)

n
.

It remains to show that the second term on the right hand side is no more than Rn(φ̃ ◦F ).
If (X ′

1, Y
′
1), . . . , (X ′

n, Y ′
n) are independent random variables with the same distribution as

(X, Y ), then

E sup
h∈φ̃◦F

(
Eh− Ênh

)
= E sup

h∈φ̃◦F
E

[
1
n

n∑
i=1

h(X ′
i, Y

′
i )− Ênh

∣∣∣∣∣ (Xi, Yi)

]

≤ E sup
h∈φ̃◦F

(
1
n

n∑
i=1

h(X ′
i, Y

′
i )− Ênh

)

= E sup
h∈φ̃◦F

1
n

n∑
i=1

σi

(
h(X ′

i, Y
′
i )− h(Xi, Yi)

)

≤ 2E sup
h∈φ̃◦F

1
n

n∑
i=1

σih(Xi, Yi)

≤ Rn(φ̃ ◦ F ).

As an example, consider the case A = Y = [0, 1]. It is possible to bound Rn(F ) in terms
of expected covering numbers of F or its fat-shattering dimension. Indeed, the following
result relates Gn(F ) to empirical versions of these notions of complexity, and implies that
Theorem 8 can never give a significantly worse estimate than previous estimates in terms of
these quantities. This result is essentially in (Mendelson, 2002); although that paper gave
a result in terms of the fat-shattering dimension, the same proof works for the empirical
fat-shattering dimension.

Theorem 10 Fix a sample X1, . . . , Xn. Let F be a class of functions whose range is
contained in [−1, 1]. Assume that there is some γ > 1 such that for any ε > 0, fatε

(
F|Xi

) ≤
γε−p. Then, there are absolute constants Cp, which depend only on p, such that

Ĝn(F ) ≤




Cpγ
1/2 ln γn−1/2 if 0 < p < 2,

C2

(
γ1/2 ln γ

)
n−1/2 ln2 n if p = 2,

Cp

(
γ1/2 ln γ

)
n−1/p if p > 2.

3. Estimating the Rademacher and Gaussian Complexities of Function
Classes

An important property of Rademacher complexity is that it can be estimated from a single
sample (X1, . . . , Xn), and from a single realization of the Rademacher variables. The fol-
lowing result follows from McDiarmid’s inequality. A similar result is true for the Gaussian
complexity.
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Theorem 11 Let F be a class of functions mapping to [−1, 1]. For any integer n,

P

{∣∣∣∣∣Rn(F )− 2
n

sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(Xi)

∣∣∣∣∣
∣∣∣∣∣ ≥ ε

}
≤ 2 exp

(−ε2n

8

)
,

and

P
{∣∣∣Rn(F )− R̂n(F )

∣∣∣ ≥ ε
}
≤ 2 exp

(−ε2n

8

)
,

Thus, it seems that estimation of Rn(F ) and Gn(F ) is particularly convenient. However,
as mentioned before, the computation involves an optimization over the class F , which is
hard for interesting function classes. The way we bypass this obstacle is to use that fact
that some “large” classes can be expressed as combinations of functions from simpler classes.
For instance, a decision tree can be expressed as a fixed boolean function of the functions
appearing in each decision node, voting methods use thresholded convex combinations of
functions from a simpler class, and neural networks are compositions of fixed squashing
functions with linear combinations of functions from some class. Hence, we present several
structural results that lead to bounds on the Rademacher and Gaussian complexities of a
function class F in terms of the complexities of simpler classes of functions from which F
is constructed.

3.1 Simple Structural Results

We begin with the following observations regarding Rn(F ).

Theorem 12 Let F, F1, . . . , Fk and H be classes of real functions. Then

1. If F ⊆ H, Rn(F ) ≤ Rn(H).

2. Rn(F ) = Rn(convF ) = Rn(absconvF ).

3. For every c ∈ R, Rn(cF ) = |c|Rn(F ).

4. If φ : R → R is Lipschitz with constant Lφ and satisfies φ(0) = 0, then Rn(φ ◦ F ) ≤
2LφRn(F ).

5. For any uniformly bounded function h, Rn(F + h) ≤ Rn(F ) + ‖h‖∞/
√

n.

6. For 1 ≤ q < ∞, let LF,h,q = {|f − h|q |f ∈ F}, where h is uniformly bounded. If
‖f − h‖∞ ≤ 1 for every f ∈ F , then Rn(LF,h,q) ≤ 2q (Rn(F ) + ‖h‖∞/

√
n).

7. Rn

(∑k
i=1 Fi

)
≤ ∑k

i=1 Rn(Fi).

Parts 1-3 are true for Gn, with exactly the same proof. The other observations hold for
Gn with an additional factor of lnn and may be established using the general connection
between Rn and Gn (Lemma 4). Parts 5 and 6 allow us to estimate the Rademacher
complexities of natural loss function classes.

Note that 7 is tight. To see this, let F1 = · · · = Fk = F . Then, by parts 1 and 3,
Rn

(∑k
i=1 Fi

)
≥ Rn(kF ) = kRn(F ) =

∑k
i=1 Rn(Fi).
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Proof Parts 1 and 3 are immediate from the definitions. To see part 2, notice that for
every x1, . . . , xn and σ1, . . . , σn,

sup
f∈absconvF

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣
= sup

f∈convF

∣∣∣∑ σif(xi)
∣∣∣

= max

(
sup

f∈convF

∑
σif(xi), sup

f∈convF
−

∑
σif(xi)

)

= max

(
sup
f∈F

∑
σif(xi), sup

f∈F
−

∑
σif(xi)

)

= sup
f∈F

∣∣∣∑σif(xi)
∣∣∣ .

The inequality of part 4 is due to Ledoux and Talagrand (1991, Corollary 3.17). As for
part 5, note that for every realization of X1, ..., Xn,

E sup
f∈F

∣∣∣∣∣
n∑

i=1

σi (f(xi) + h(xi))

∣∣∣∣∣
≤ E sup

f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣ + E

∣∣∣∣∣
n∑

i=1

σih(xi)

∣∣∣∣∣
≤ E sup

f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣ +

(
n∑

i=1

h(xi)2
) 1

2

,

where the last inequality follows since for any function g, E|g| ≤ (Eg2)1/2. Hence,

Rn(F + h) ≤ Rn(F ) + ‖h‖∞ /
√

n,

as claimed.
To see part 6, notice that φ(x) = |x|q is a Lipschitz function which passes through the

origin with a Lipschitz constant q. By parts 4 and 5 of Theorem 12,

Rn(LF,h,q) ≤ 2qRn(F − h) ≤ 2q

(
Rn(F ) +

‖h‖∞√
n

)
.

Finally, part 7 follows from the triangle inequality.

3.2 Lipschitz Functions on Rk

Theorem 12 part 4 shows that composing real-valued functions in some class with a Lipschitz
function changes the Rademacher complexity by no more than a constant factor. In this
section, we prove a similar result for the Gaussian complexity of a class of vector-valued
functions.
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We require the following comparison theorem for Gaussian processes which is due to
Slepian (Pisier, 1989).

Lemma 13 Let {Xi, 1 ≤ i ≤ m} and {Yi, 1 ≤ i ≤ m} be two Gaussian processes which
satisfy that, for every i, j,

‖Xi −Xj‖2 ≤ ‖Yi − Yj‖2,

where ‖Xi −Xj‖2
2 = E(Xi −Xj)2. Then

E sup
i

Xi ≤ 2E sup
i

Yi.

Now, we can formulate and prove the main result of this section, in which we estimate
the Gaussian averages of a Lipschitz image of a direct sum of classes.

Theorem 14 Let A = Rm and let F be a class of functions mapping from X to A. Suppose
that there are real-valued classes F1, . . . , Fm such that F is a subset of their direct sum.
Assume further that φ : Y×A → R is such that, for all y ∈ Y, φ(y, ·) is a Lipschitz function
(with respect to Euclidean distance on A) with constant L which passes through the origin
and is uniformly bounded. For f ∈ F , define φ ◦ f as the mapping (x, y) 7→ φ(y, f(x)).
Then, for every integer n and every sample (X1, Y1), . . . , (Xn, Yn),

Ĝn(φ ◦ F ) ≤ 2L
m∑

i=1

Ĝn(Fi),

where Ĝn(φ◦F ) are the Gaussian averages of φ◦F with respect to the sample (X1, Y1), . . . , (Xn, Yn)
and Ĝn(Fi) are the Gaussian averages of Fi with respect to the sample X1, . . . , Xn.

Proof Without loss of generality, we may assume that each class Fi is finite, denote by
|Fi| its cardinality and let f i

k be the k-th element in Fi. Let Γ be a multi-index set Γ =
{(j1, ..., jm) : 1 ≤ ji ≤ |Fi|}. Hence, there is a one-to-one correspondence between F and Γ,
which is given by α = (j1, . . . , jm) 7→ fα = (f1

j1
, . . . , fm

jm
). For every α = (j1, . . . , jm) ∈ Γ,

let

Xα =
n∑

k=1

φ
(
yk, fα(xk)

)
gk,

and

Yα = L
m∑

i=1

n∑
k=1

f i
ji
(xk)hik

where (gk) and (hik) are all standard independent normal random variables. It is easy to
see that for every α, α′ ∈ Γ,

‖Xα −Xα′‖2
2 =

n∑
k=1

(
φ
(
yk, fα(xk)

)− φ
(
yk, fα′(xk)

))2

≤ L2
m∑

i=1

n∑
k=1

(
f i

ji
(xk)− f i

j′i
(xk)

)2

= ‖Yα − Yα′‖2
2.
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Our claim follows from Slepian’s Lemma and the observation that E supα Xα = nĜn(φ◦F )
and that E supα Yα = nL

∑m
i=1 Ĝn(Fi).

Corollary 15 Let A, F, F1, . . . , Fm, φ be as in Theorem 14. Consider a loss function L :
Y × A → [0, 1] and suppose that φ : Y × A → [0, 1] dominates L. Then, for any integer n
there is a probability of at least 1− δ that every f in F has

EL(Y, f(X)) ≤ Ênφ(Y, f(X)) + cL
m∑

j=1

Gn(Fj) +

√
8 ln(2/δ)

n
.

3.3 Boolean Combinations of Functions

Theorem 16 For a fixed boolean function g : {±1}k → {±1} and classes F1, . . . , Fk of
{±1}-valued functions,

Gn(g(F1, . . . , Fk)) ≤ 2
k∑

j=1

Gn(Fj).

Proof First, we extend the boolean function g to a function g : Rk → [−1, 1] as follows:
for x ∈ Rk, define g(x) = (1−‖x−a‖)g(a) if ‖x−a‖ < 1 for some a ∈ {±1}k, and g(x) = 0
otherwise. The function is well-defined since all pairs of points in the k-cube are separated
by distance at least 2. Clearly, g(0) = 0, and g is Lipschitz with constant 1. The theorem
follows from Theorem 14, with m = k and φ = g.

4. Examples

The error bounds presented in previous sections can be used as the basis of a complexity
regularization algorithm for model selection. This algorithm minimizes an upper bound
on error involving the sample average of a cost function and a Gaussian or Rademacher
complexity penalty term. We have seen that these upper bounds in terms of Gaussian and
Rademacher complexities can never be significantly worse than bounds based, for example,
on combinatorial dimensions. They can have a significant advantage over such bounds,
since they measure the complexity of the class on the training data, and hence can reflect
the properties of the particular probability distribution that generates the data. The com-
putation of these complexity penalties involves an optimization over the model class. The
structural results of the previous section give a variety of techniques that can simplify this
optimization problem. For example, voting methods involve optimization over the convex
hull of some function class H. By Theorem 12 part 2, we can estimate Gn(convH) by
solving a maximization problem over the base class H. In this section, we give some other
examples illustrating this approach. In all cases, the resulting error bounds decrease at
least as fast as 1/

√
n.
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4.1 Decision Trees

A binary-valued decision tree can be represented as a fixed boolean function of the decision
functions computed at its nodes. Theorem 16 implies that the Gaussian complexity of the
class of decision trees of a certain size can be bounded in terms of the Gaussian complexity
of the class of node decision functions. Typically, this is simpler to compute. The following
result gives a refinement of this idea, based on the representation (see, for example, Golea
et al., 1998) of a decision tree as a thresholded linear combination of the indicator functions
of the leaves.

Theorem 17 Let P be a probability distribution on X × {−1, 1}, and let H be a set of
binary-valued functions defined on X . Let T be the class of decision trees of depth no more
than d, with decision functions from H. For a training sample (X1, Y1, . . . , Xn, Yn) drawn
from Pn and a decision tree from T , let P̃n(l) denote the proportion of all training examples
which reach leaf l and are correctly classified. Then with probability at least 1 − δ, every
decision tree t from T with L leaves has Pr(y 6= t(x)) no more than

P̂n(y 6= t(x)) +
∑

l

min(P̃n(l), cdGn(H)) +

√
c ln(L/δ)

2n
.

Notice that the key term in this inequality is O(dLGn(H)). It can be considerably
smaller if many leaves have small empirical weight. This is the case, for instance, if Gn(H) =
O(n−1/2) and many leaves have weight less than O

(
dn−1/2 lnn

)
.

Proof For a tree of depth d, the indicator function of a leaf is a conjunction of no more
than d decision functions. More specifically, if the decision tree consists of decision nodes
chosen from a class H of binary-valued functions, the indicator function of leaf l (which
takes value 1 at a point x if x reaches l, and 0 otherwise) is a conjunction of dl functions
from H, where dl is the depth of leaf l. We can represent the function computed by the
tree as the sign of

f(x) =
∑

l

wlσl

dl∧
i=1

hl,i(x),

where the sum is over all leaves l, wl > 0,
∑

l wl = 1, σl ∈ {±1} is the label of leaf
l, hl,i ∈ H, and the conjunction is understood to map to {0, 1}. Let F be this class of
functions. Choose a family {φL : L ∈ N} of cost functions such that each φL dominates the
step function 1(yf(x) ≤ 0) and has a Lipschitz constant L. For each L, Theorem 7 implies
that with probability at least 1− δ,

Pr(yf(x) ≤ 0) ≤ Ên(φL(yf(x))) + 2LRn(F ) +

√
ln(2/δ)

2n
.

By setting δL = 6δ/(π2L), applying this result to all positive integer values of L, and
summing over L, we see that with probability at least 1− δ, every f ∈ F and every φL has

Pr(yf(x) ≤ 0) ≤ Ên(φL(yf(x))) + 2LRn(F ) +

√
ln(π2L/3δ)

2n
.
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Define φL(α) to be 1 if α ≤ 0, 1 − Lα if 0 < α ≤ 1/L, and 0 otherwise, where L will be
computed later. Let P̃n(l) denote the proportion of training examples which reach leaf l
and are correctly classified (y = σl). Then we have

Ên(φL(yf(x))) + 2LRn(F )

= P̂n(yf(x) ≤ 0) +
∑

l

P̃n(l)φL(wl) + 2LRn(F )

= P̂n(yf(x) ≤ 0) +
∑

l

P̃n(l)max(0, 1− Lwl) + 2LRn(F )

= P̂n(yf(x) ≤ 0) +
∑

l

max(0, (1− Lwl)P̃n(l)) + 2LRn(F ).

Now, choose wl = 0 for P̃n(l) ≤ 2Rn(F ), and wl = 1/L otherwise, where L = |{l : P̃n(l) >
2Rn(F )}|. (Notice that choosing wl = 0 for labelled examples for which yf(x) > 0 can only
increase the bound.) Then we have

P̂n(φ(yf(x))) + 2LRn(F ) ≤ P̂n(yf(x) ≤ 0)

+
∑

l

1
(
P̃n(l) ≤ 2Rn(F )

)
P̃n(l)

+2Rn(F )
∑

l

1
(
P̃n(l) > 2Rn(F )

)

= P̂n(yf(x) ≤ 0) +
∑

l

min(P̃n(l), 2Rn(F )).

Theorem 12 part 2, Theorem 16, and Lemma 4 together imply that

Rn(F ) ≤ C

(
dGn(H) +

1
n

)
lnn,

which implies the result.

4.2 Neural Networks

Neural network methods (see, for example, Anthony and Bartlett, 1999) use repeated com-
positions of linear functions with scalar nonlinearities, σ : R → [−1, 1], where σ is typically
monotonic and smooth. The following theorem bounds the Gaussian complexity of a two-
layer neural network with constraints on the magnitudes of the weights.

Theorem 18 Suppose that σ : R → [−1, 1] has Lipschitz constant L and satisfies σ(0) = 0.
Define the class computed by a two-layer neural network with 1-norm weight constraints as

F =

{
x 7→

∑
i

wiσ (vi · x) : ‖w‖1 ≤ 1, ‖vi‖1 ≤ B

}
.
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Then for x1, . . . , xn in Rk,

Ĝn(F ) ≤ cLB(ln k)1/2

n
max
j,j′

√√√√ n∑
i=1

(
xij − xij′

)2
,

where xi = (xi1, . . . , xik).

It is straightforward to extend this result to networks with more than two layers, and
to networks with multiple outputs. The theorem is immediate from the following result for
bounded linear functions.

Lemma 19 For x ∈ Rk, define

F1 =
{

x 7→ w · x : w ∈ Rk, ‖w‖1 ≤ 1
}

.

For any x1, . . . , xn ∈ Rk we have

Ĝn(F1) ≤ c

n
(ln k)1/2 max

j,j′

(
n∑

i=1

(xij − xij′)2
)1/2

.

The proof uses the following inequality for Gaussian processes which follows from Slepian’s
Lemma (see, for example, Ledoux and Talagrand, 1991, Pisier, 1989).

Lemma 20 Let Z1, . . . , Zk be random variables such that for every 1 ≤ j ≤ k, Zj =∑n
i=1 aijgi, where g1, . . . , gn are independent N(0, 1) random variables. Then there is an

absolute constant c such that

E max
1≤j≤k

Zj ≤ c(ln k)1/2 max
j,j′

√
E(Zj − Zj′)2.

Proof (of Lemma 19) From the definitions, Ĝn(F1) is equal to

E sup
f∈F

2
n

n∑
i=1

gif(xi) = E sup
w:‖w‖1≤1

2
n

n∑
i=1

giw · xi

= E sup
w:‖w‖1≤1

w · 2
n

n∑
i=1

gixi .

Clearly, this inner product is maximized when w is at one of the extreme points of the `1

ball, which implies

Ĝn(F1) = Emax
j

2
n

n∑
i=1

gixij ,

where xi = (xi1, . . . , xik). Note that we can write

Ĝn(F1) =
2
n
Emax

j
Zj
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where Zj =
∑n

i=1 gixij . Since each Zj is Gaussian, we can apply Slepian’s Lemma to obtain

Ĝn(F1) ≤ 2c

n
(ln k)1/2 max

j,j′

√
E(Zj − Zj′)2

=
2c

n
(ln k)1/2 max

j,j′

√√√√E

(
n∑

i=1

gi(xij − xij′)

)2

=
2c

n
(ln k)1/2 max

j,j′

√√√√ n∑
i=1

(xij − xij′)2.

4.3 Kernel Methods

A kernel k : X × X → R on a compact space X is a continuous function such that for all
n ∈ N and x1, . . . , xn ∈ X , the Gram matrix K, with Kij = k(xi, xj), is positive semi-
definite and symmetric. Kernel methods, such as support vector machines (see, for example
Cristianini and Shawe-Taylor, 2000) use kernel expansions of the form

x 7→
n∑

i=1

αik(xi, x).

These methods typically restrict α = (α1, . . . , αn) so that α′Kα is small. The following
theorem gives a margin-based estimate of misclassification probability for these functions.

Theorem 21 Fix B, γ > 0, let k : X × X → R be a kernel with

sup
x∈X

|k(x, x)| < ∞.

Define the margin cost function φ : R → [0, 1] as

φ(α) =




1 if α ≤ 0
1− α/γ if 0 < α ≤ γ
0 if α > γ.

Suppose that (X1, Y1), . . . , (Xn, Yn) are chosen independently according to some probability
distribution P on X × {±1}. Then with probability at least 1 − δ, every function f of the
form

f(x) =
n∑

i=1

αik(Xi, x)

with
∑

i,j αiαjk(Xi, Xj) ≤ B2 satisfies

P (Y f(X) ≤ 0) ≤ Ênφ(Y f(X)) +
4B

γn

√√√√ n∑
i=1

k(Xi, Xi) +
(

8
γ

+ 1
) √

ln(4/δ)
2n

.
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To prove this theorem, we need to recall some properties of kernel expansions. To every
kernel k we can associate a feature map Φ : X → H, where H is a Hilbert space with inner
product 〈·, ·〉, and for all x1, x2 ∈ X , k(x1, x2) = 〈Φ(x1), Φ(x2)〉. If ‖ · ‖ denotes the norm
in H, we have ∥∥∥∥∥

n∑
i=1

αiΦ(xi)

∥∥∥∥∥
2

=
∑
i,j

αiαjk(xi, xj),

and hence

F =


x 7→

m∑
i=1

αik(x, xi) : m ∈ N, xi ∈ X ,
∑
i,j

αiαjk(xi, xj) ≤ B2




⊆ {x 7→ 〈w, Φ(x)〉 : ‖w‖ ≤ B} .

The following lemma, combined with Theorem 7 and Theorem 11, implies the theorem.

Lemma 22 Suppose that k : X × X → R is a kernel, and let X1, . . . , Xn be random
elements of X . Then for the class F defined above,

Ĝn(F ) ≤ 2B

n

√√√√ n∑
i=1

k(Xi, Xi),

R̂n(F ) ≤ 2B

n

√√√√ n∑
i=1

k(Xi, Xi).

Proof Suppose that H is a Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖,
and the kernel k has feature map Φ : X → H. Let g1, . . . , gn be independent standard
normal random variables. Then

Ĝn(F ) ≤ E

[
sup

‖w‖≤B

〈
w,

2
n

n∑
i=1

giΦ(Xi)

〉∣∣∣∣∣ Xi

]

=
2B

n
E

[∥∥∥∥∥
n∑

i=1

giΦ(Xi)

∥∥∥∥∥
∣∣∣∣∣ Xi

]

=
2B

n
E





∑

i,j

gigjk(Xi, Xj)




1/2
∣∣∣∣∣∣∣ Xi




≤ 2B

n


∑

i,j

E [gigjk(Xi, Xj)|Xi]




1/2

=
2B

n

(∑
i

E
[
g2
i k(Xi, Xi)

∣∣ Xi

])1/2

=
2B

n

(∑
i

k(Xi, Xi)

)1/2

,
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where the second inequality is Jensen’s (and it is easy to see that the first inequality is an
equality).

Clearly, the same argument applies with any independent, zero mean, unit variance
random variables replacing the gi, which gives the same bound for R̂n(F ).

From the definitions and Jensen’s inequality,

Rn(F ) = ER̂n(F ) ≤ 2B

√
Ek(X, X)

n

Gn(F ) = EĜn(F ) ≤ 2B

√
Ek(X, X)

n

Notice that Ek(X, X) is the trace (sum of the eigenvalues) of the integral operator Tk on
L2(µ),

Tk(f) =
∫

k(x, y)f(y)dµ(y),

where µ is the induced probability measure on X .
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Appendix A. Proof of Lemma 3

The expected maximum discrepancy, Dn(F ), measures the average difference between func-
tion values on two fixed subsets of the data. The Rademacher complexity, Rn(F ), measures
the difference on two randomly chosen subsets. The idea behind the proof of the first part
of the lemma is to show that the size of the random subsets is very close to their expec-
tation, and, because the data is independent, all choices of these equally sized subsets are
equivalent.

Define

s(N) =
2
n
E

[
sup
f∈F

n∑
i=1

σif(Xi)

∣∣∣∣∣
n∑

i=1

σi = N

]
.
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Then we have

Rn(F ) = E sup
f∈F

∣∣∣∣∣ 2n
n∑

i=1

σif(Xi)

∣∣∣∣∣
≥ E sup

f∈F

2
n

n∑
i=1

σif(Xi)

= EE

[
sup
f∈F

2
n

n∑
i=1

σif(Xi)

∣∣∣∣∣
n∑

i=1

σi

]

= Es

(
n∑

i=1

σi

)
,

where the inequality is an equality when f ∈ F implies −f ∈ F . It is easy to see (from the
independence of the Xi) that

Dn(F ) = s(0) = s

(
E

n∑
i=1

σi

)
.

Furthermore, s satisfies a Lipschitz condition. To see this, choose n1, n2 satisfying 0 ≤ n2 <
n1 ≤ n and write

s(n1) =
2
n
E sup


n/2−n1/2∑

i=1

(f(X2i)− f(X2i−1)) +
n∑

i=n−n1+1

f(Xi)


 ,

s(n2) =
2
n
E sup


n/2−n1/2∑

i=1

(f(X2i)− f(X2i−1)) +
n∑

i=n−n1+1

f(Xi)

+
n/2−n2/2∑

i=n/2−n1/2+1

(f(X2i)− f(X2i−1))−
n−n2∑

i=n−n1+1

f(Xi)


 .

Clearly, the two expressions differ only in the last two terms inside the supremum in the
expression for s(n2). Each of these has magnitude no more than (n2 − n1). Thus,

|s(n1)− s(n2)| ≤ 4|n2 − n1|
n

.

Thus, if N =
∑

i σi,

Pr (|s(N)− s(EN)| ≥ ε) ≤ Pr
(
|N −EN | > εn

4

)
≤ 2 exp

(
−ε2n

32

)
,

by Chernoff’s inequality. A standard integration (see, for example, Devroye et al., 1996,
p208) shows that

|Es(N)− s(EN)| ≤ E|s(N)− s(EN)| ≤ 4

√
2
n

.
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Since Rn(F ) ≥ Es(N), this proves the upper bound on Dn(F ).
Define −F = {−f : f ∈ F}. If F = −F , Rn(F ) = Es(N), so

Rn(F ) = Rn(F ∪ −F ) ≤ Dn(F ∪ −F ) + 4

√
2
n

,

which is the required lower bound if F is closed under negation. In general, it is easy to see
that Dn(F ∪ −F ) ≤ 2Dn(F ).

The final part of the lemma follows immediately from McDiarmid’s inequality.

Appendix B. Proof of Theorem 5

We set L(Y, f(X)) = 1(Y 6= f(X)) and proceed as in the proof of Theorem 8. For all
f ∈ F ,

P (Y 6= f(X)) = EL(Y, f(X)) ≤ ÊnL(Y, f(X)) + sup
h∈L◦F

(
Eh− Ênh

)
In this case, when (Xi, Yi) changes, the supremum changes by no more than 1/n, so McDi-
armid’s inequality implies that with probability at least 1− δ, every f ∈ F satisfies

EL(Y, f(X)) ≤ ÊnL(Y, f(X)) + E sup
h∈L◦F

(
Eh− Ênh

)
+

√
ln(1/δ)

2n
.

The same argument as in the proof of Theorem 8 shows that

E sup
h∈L◦F

(
Eh− Ênh

)
≤ E sup

h∈L◦F
2
n

n∑
i=1

σih(Xi, Yi)

= E sup
f∈F

2
n

n∑
i=1

σi1(Yi 6= f(Xi))

= E sup
f∈F

2
n

n∑
i=1

σi(1− Yif(Xi))/2

= E sup
f∈F

1
n

n∑
i=1

σif(Xi)

=
Rn(F )

2
,

where we have used the fact that Yi, f(Xi) ∈ {±1}, and that the conditional distribution
of σiYi, given Yi, is the same as the distribution of σi.
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